Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (481)

Search Parameters:
Keywords = gradient law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2913 KiB  
Article
Radiation Mapping: A Gaussian Multi-Kernel Weighting Method for Source Investigation in Disaster Scenarios
by Songbai Zhang, Qi Liu, Jie Chen, Yujin Cao and Guoqing Wang
Sensors 2025, 25(15), 4736; https://doi.org/10.3390/s25154736 (registering DOI) - 31 Jul 2025
Abstract
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant [...] Read more.
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant challenge in emergency response scenarios. To address this issue, based on standard Gaussian process regression (GPR) models that primarily utilize a single Gaussian kernel to reflect the inverse-square law in free space, a novel multi-kernel Gaussian process regression (MK-GPR) model is proposed for high-fidelity radiation mapping in environments with physical obstructions. MK-GPR integrates two additional kernel functions with adaptive weighting: one models the attenuation characteristics of intervening materials, and the other captures the energy-dependent penetration behavior of radiation. To validate the model, gamma-ray distributions in complex, shielded environments were simulated using GEometry ANd Tracking 4 (Geant4). Compared with conventional methods, including linear interpolation, nearest-neighbor interpolation, and standard GPR, MK-GPR demonstrated substantial improvements in key evaluation metrics, such as MSE, RMSE, and MAE. Notably, the coefficient of determination (R2) increased to 0.937. For practical deployment, the optimized MK-GPR model was deployed to an RK-3588 edge computing platform and integrated into a mobile robot equipped with a NaI(Tl) detector. Field experiments confirmed the system’s ability to accurately map radiation fields and localize gamma sources. When combined with SLAM, the system achieved localization errors of 10 cm for single sources and 15 cm for dual sources. These results highlight the potential of the proposed approach as an effective and deployable solution for radiation source investigation in post-disaster environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 (registering DOI) - 31 Jul 2025
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

31 pages, 7371 KiB  
Article
Manufacturing and Mechanical Behaviour of Scalmalloy® Lattice Structures: Experimental Validation and Model
by Ilaria Lagalante, Diego Manfredi, Sergio Balestrieri, Vito Mocella, Andrea El Hassanin, Giuseppe Coppola, Mariangela Lombardi and Paolo Fino
Materials 2025, 18(15), 3479; https://doi.org/10.3390/ma18153479 - 24 Jul 2025
Viewed by 392
Abstract
This study investigates the influence of process parameters on the fabrication and mechanical performance of Scalmalloy® lattice structures produced via laser powder bed fusion (PBF-LB) and their mechanical responses at different cell size. A full-factorial design of experiments was employed to evaluate [...] Read more.
This study investigates the influence of process parameters on the fabrication and mechanical performance of Scalmalloy® lattice structures produced via laser powder bed fusion (PBF-LB) and their mechanical responses at different cell size. A full-factorial design of experiments was employed to evaluate the effect of scan speed, hatch distance, and downskin power on internal porosity and dimensional accuracy. Regression models revealed significant relationships, with optimised parameters identified at a scan speed of 700 mm/s, hatch distance of 0.13 mm, and downskin power of 80 W. Mechanical characterisation through tensile tests of bulk samples and compression tests of lattice structures highlighted the strengthening effects of the heat treatment. Experimental data on quasi-elastic gradient and yield strength were compared to predictions from the Ashby–Gibson model, revealing a partial agreement but noticeable deviations attributed to cell geometry and manufacturing defects. The scaling laws observed differed from the classical model, particularly in the yield strength exponent, indicating the need for empirical models tailored to metallic lattices. This work provides key insights into the optimisation of PBF-LB parameters for Scalmalloy® and underlines the complex interplay between process parameters, structural design, and mechanical behaviour. Full article
(This article belongs to the Special Issue Recent Advances in Advanced Laser Processing Technologies)
Show Figures

Figure 1

24 pages, 1197 KiB  
Article
Fractional Gradient-Based Model Reference Adaptive Control Applied on an Inverted Pendulum-Cart System
by Maibeth Sánchez-Rivero, Manuel A. Duarte-Mermoud, Lisbel Bárzaga-Martell, Marcos E. Orchard and Gustavo Ceballos-Benavides
Fractal Fract. 2025, 9(8), 485; https://doi.org/10.3390/fractalfract9080485 - 24 Jul 2025
Viewed by 246
Abstract
This study introduces a novel model reference adaptive control (MRAC) framework that incorporates fractional-order gradients (FGs) to regulate the displacement of an inverted pendulum-cart system. Fractional-order gradients have been shown to significantly improve convergence rates in domains such as machine learning and neural [...] Read more.
This study introduces a novel model reference adaptive control (MRAC) framework that incorporates fractional-order gradients (FGs) to regulate the displacement of an inverted pendulum-cart system. Fractional-order gradients have been shown to significantly improve convergence rates in domains such as machine learning and neural network optimization. Nevertheless, their integration with fractional-order error models within adaptive control paradigms remains unexplored and represents a promising avenue for research. The proposed control scheme extends the classical MRAC architecture by embedding Caputo fractional derivatives into the adaptive law governing parameter updates, thereby improving both convergence dynamics and control flexibility. To ensure optimal performance across multiple criteria, the controller parameters are systematically tuned using a multi-objective Particle Swarm Optimization (PSO) algorithm. Two fractional-order error models (FOEMs) incorporating fractional gradients (FOEM2-FG, FOEM3-FG) are investigated, with their stability formally analyzed via Lyapunov-based methods under conditions of sufficient excitation. Validation is conducted through both simulation and real-time experimentation on a physical pendulum-cart setup. The results demonstrate that the proposed fractional-order MRAC (FOMRAC) outperforms conventional MRAC, proportional-integral-derivative (PID), and fractional-order PID (FOPID) controllers. Specifically, FOMRAC-FG achieved superior tracking performance, attaining the lowest Integral of Squared Error (ISE) of 2.32×105 and the lowest Integral of Squared Input (ISI) of 6.40 in simulation studies. In real-time experiments, FOMRAC-FG maintained the lowest ISE (5.11×106). Under real-time experiments with disturbances, it still achieved the lowest ISE (1.06×105), highlighting its practical effectiveness. Full article
Show Figures

Figure 1

20 pages, 4023 KiB  
Article
Numerical Study on the Thermal Behavior of Lithium-Ion Batteries Based on an Electrochemical–Thermal Coupling Model
by Xing Hu, Hu Xu, Chenglin Ding, Yupeng Tian and Kuo Yang
Batteries 2025, 11(7), 280; https://doi.org/10.3390/batteries11070280 - 21 Jul 2025
Viewed by 354
Abstract
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics [...] Read more.
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics equations such as Fick’s law, Ohm’s law, and the Butler–Volmer equation, to resolve coupled electrochemical and thermal dynamics, with temperature-dependent parameters calibrated via the Arrhenius equation. Simulations under varying discharge rates reveal that high-rate discharges exacerbate internal heat accumulation. Low ambient temperatures amplify polarization effects. Forced convection cooling reduces surface temperatures but exacerbates core-to-surface thermal gradients. Structural optimization strategies demonstrate that enhancing through-thickness thermal conductivity reduces temperature differences. These findings underscore the necessity of balancing energy density and thermal management in lithium-ion battery design, proposing actionable insights such as preheating protocols for low-temperature operation, optimized cooling systems for high-rate scenarios, and material-level enhancements for improved thermal uniformity. Full article
Show Figures

Figure 1

21 pages, 4259 KiB  
Article
Transient Subcooled Boiling in Minichannels: Experimental Study and Numerical Modelling Using Trefftz Functions and ADINA
by Beata Maciejewska, Magdalena Piasecka and Paweł Łabędzki
Energies 2025, 18(14), 3865; https://doi.org/10.3390/en18143865 - 20 Jul 2025
Viewed by 360
Abstract
This study focuses on the phenomenon of boiling heat transfer during fluid flow (Fluorinert FC-72) in minichannels. The research stand was built around a specially designed test section incorporating sets of aligned minichannels, each 1 mm deep. These channel arrays varied in number, [...] Read more.
This study focuses on the phenomenon of boiling heat transfer during fluid flow (Fluorinert FC-72) in minichannels. The research stand was built around a specially designed test section incorporating sets of aligned minichannels, each 1 mm deep. These channel arrays varied in number, comprising configurations with 7, 15, 17, 19, 21, and 25 parallel channels. The test section was vertically orientated with upward fluid flow. To address the heat transfer problem associated with transient flow boiling, two numerical approaches grounded in the finite element method (FEM) were employed. One used the Trefftz function formulation, while the other relied on simulations performed using the commercial software ADINA (version 9.2). In both approaches, the heat transfer coefficient at the interface between the heated foil and the working fluid was determined by applying a Robin-type boundary condition, which required knowledge of the temperatures in both the foil and the fluid, along with the temperature gradient within the foil. The outcomes of both FEM-based models, as well as those of a simplified 1D method based on Newton’s cooling law, yielded satisfactory results. Full article
Show Figures

Figure 1

24 pages, 7960 KiB  
Article
Creep Behavior and Deformation Mechanism of Aluminum Alloy: Integrating Multiscale Simulation and Experiments
by Weizheng Lu, Jianguo Wu, Jiajun Liu, Xiaoai Yi, Qiyue Zhang, Yang Chen, Jia Li and Qihong Fang
Symmetry 2025, 17(7), 1146; https://doi.org/10.3390/sym17071146 - 17 Jul 2025
Viewed by 223
Abstract
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism [...] Read more.
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism between dislocations and precipitates, and the grain-level creep deformation mechanism in 7A09 Al alloy under creep loading. The phase field method indicates that Al alloys tend to form fewer but larger precipitates during the creep process, under the dominant effect of stress-assisted Ostwald ripening. The dynamic equilibrium process of precipitate is not only controlled by classical diffusion mechanisms, but also closely related to the local strain field induced by dislocations and the elastic interaction between precipitates. Dislocation dynamics simulations indicate that the appearance of multiple dislocation loops around the precipitate during the creep process is the main dislocation creep deformation mechanism. A crystal plasticity finite element model is established based on experimental characterization to investigate the macroscopic creep mechanism. The dislocation climb is hindered by grain boundaries during creep, and high-density dislocation bands are formed around specific grains, promoting non-uniform plastic strain and leading to strong strain gradients. This work provides fundamental insights into understanding creep behavior and deformation mechanism of Al alloy for deep-sea environments. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 3164 KiB  
Review
Is Hydra Axis Definition a Fluctuation-Based Process Picking Up External Cues?
by Mikhail A. Zhukovsky, Si-Eun Sung and Albrecht Ott
J. Dev. Biol. 2025, 13(3), 24; https://doi.org/10.3390/jdb13030024 - 17 Jul 2025
Viewed by 353
Abstract
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the [...] Read more.
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the beginning of regeneration, a hollow cellular spheroid forms, which then undergoes symmetry breaking and de novo body axis definition. In the past, we have published related work in a physics journal, which is difficult to read for scientists from other disciplines. Here, we review our work for readers not so familiar with this type of approach at a level that requires very little knowledge in mathematics. At the same time, we present a few aspects of Hydra biology that we believe to be linked to our work. These biological aspects may be of interest to physicists or members of related disciplines to better understand our approach. The proposed theoretical model is based on fluctuations of gene expression that are triggered by mechanical signaling, leading to increasingly large groups of cells acting in sync. With a single free parameter, the model quantitatively reproduces the experimentally observed expression pattern of the gene ks1, a marker for ‘head forming potential’. We observed that Hydra positions its axis as a function of a weak temperature gradient, but in a non-intuitive way. Supposing that a large fluctuation including ks1 expression is locked to define the head position, the model reproduces this behavior as well—without further changes. We explain why we believe that the proposed fluctuation-based symmetry breaking process agrees well with recent experimental findings where actin filament organization or anisotropic mechanical stimulation act as axis-positioning events. The model suggests that the Hydra spheroid exhibits huge sensitivity to external perturbations that will eventually position the axis. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology 2025)
Show Figures

Figure 1

21 pages, 10296 KiB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Viewed by 263
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

14 pages, 2847 KiB  
Article
The Influence of h-BN Distribution Behavior on the Electrothermal Properties of Bismaleimide Resin
by Weizhuo Li, Xuan Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(14), 1929; https://doi.org/10.3390/polym17141929 - 14 Jul 2025
Viewed by 340
Abstract
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal [...] Read more.
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal conductive fillers have poor interface connections between the polymer and/or thermal conductive filler, thereby increasing phonon scattering and affecting thermal conductivity. This article uses bismaleimide resin as the matrix and h-BN as the thermal conductive filler. The evolution laws of thermal conductivity and dielectric properties of thermal conductive composite materials were systematically characterized through multi-scale filler control and gradient filling design. Among them, h-BN with a diameter of 10 μm has the most significant improvement in thermal conductivity. When the filling amount is 40 wt%, the thermal conductivity reaches 1.31 W/(m·K). Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

32 pages, 735 KiB  
Article
Dynamic Balance: A Thermodynamic Principle for the Emergence of the Golden Ratio in Open Non-Equilibrium Steady States
by Alejandro Ruiz
Entropy 2025, 27(7), 745; https://doi.org/10.3390/e27070745 - 11 Jul 2025
Viewed by 479
Abstract
We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of [...] Read more.
We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of PGL(2,Q(5)). Requiring any smooth, strictly convex Lyapunov functional to be invariant under both maps enforces a single non-equilibrium fixed point: the golden mean. We confirm this result by (i) a gradient-flow partial-differential equation, (ii) a birth–death Markov chain whose continuum limit is Fokker–Planck, (iii) a Martin–Siggia–Rose field theory, and (iv) exact Ward identities that protect the fixed point against noise. Microscopic kinetics merely set the approach rate; three parameter-free invariants emerge: a 62%:38% split between entropy production and useful power, an RG-invariant diffusion coefficient linking relaxation time and correlation length Dα=ξz/τ, and a ϑ=45 eigen-angle that maps to the golden logarithmic spiral. The same dual symmetry underlies scaling laws in rotating turbulence, plant phyllotaxis, cortical avalanches, quantum critical metals, and even de-Sitter cosmology, providing a falsifiable, unifying principle for pattern formation far from equilibrium. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

17 pages, 5651 KiB  
Article
Experimental Investigation on Fatigue Crack Propagation in Surface-Hardened Layer of High-Speed Train Axles
by Chun Gao, Zhengwei Yu, Yuanyuan Zhang, Tao Fan, Bo Zhang, Huajian Song and Hang Su
Crystals 2025, 15(7), 638; https://doi.org/10.3390/cryst15070638 - 11 Jul 2025
Viewed by 308
Abstract
This study examines fatigue crack growth behavior in induction-hardened S38C axle steel with a gradient microstructure. High-frequency three-point bending fatigue tests were conducted to evaluate crack growth rates (da/dN) across three depth-defined regions: a hardened layer, a heterogeneous transition [...] Read more.
This study examines fatigue crack growth behavior in induction-hardened S38C axle steel with a gradient microstructure. High-frequency three-point bending fatigue tests were conducted to evaluate crack growth rates (da/dN) across three depth-defined regions: a hardened layer, a heterogeneous transition zone, and a normalized core. Depth-resolved da/dN–ΔK relationships were established, and Paris Law parameters were extracted. The surface-hardened layer exhibited the lowest crack growth rates and flattest Paris slope, while the transition zone showed notable scatter due to microstructural heterogeneity and residual stress effects. These findings provide experimental insight into the fatigue performance of gradient-structured axle steels and offer guidance for fatigue life prediction and inspection planning. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

21 pages, 8715 KiB  
Article
DDPG-ADRC-Based Load Frequency Control for Multi-Region Power Systems with Renewable Energy Sources and Energy Storage Equipment
by Zhenlan Dou, Chunyan Zhang, Xichao Zhou, Dan Gao and Xinghua Liu
Energies 2025, 18(14), 3610; https://doi.org/10.3390/en18143610 - 8 Jul 2025
Viewed by 254
Abstract
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region [...] Read more.
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region interconnected power systems are analyzed, which provides a basis for the subsequent RES access. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are adopted due to their rapid response capabilities and fast charge–discharge characteristics. To stabilize the frequency fluctuation, a first-order ADRC is designed, utilizing the anti-perturbation estimation capability of the first-order ADRC to achieve effective control. In addition, the system states are estimated using a linear expansion state observer. Based on the output of the observer, the appropriate feedback control law is selected. The DDPG-ADRC parameter optimization model is constructed to adaptively adjust the control parameters of ADRC based on the target frequency deviation and power deviation. The actor and critic networks are continuously updated according to the actual system response to ensure stable system operation. Finally, the experiment demonstrated that the proposed method outperforms traditional methods across all performance indicators, particularly excelling in reducing adjustment time (45.8% decrease) and overshoot (60% reduction). Full article
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 413
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

26 pages, 6918 KiB  
Article
Coordinated Reentry Guidance with A* and Deep Reinforcement Learning for Hypersonic Morphing Vehicles Under Multiple No-Fly Zones
by Cunyu Bao, Xingchen Li, Weile Xu, Guojian Tang and Wen Yao
Aerospace 2025, 12(7), 591; https://doi.org/10.3390/aerospace12070591 - 30 Jun 2025
Viewed by 338
Abstract
Hypersonic morphing vehicles (HMVs), renowned for their adaptive structural reconfiguration and cross-domain maneuverability, confront formidable reentry guidance challenges under multiple no-fly zones, stringent path constraints, and nonlinear dynamics exacerbated by morphing-induced aerodynamic uncertainties. To address these issues, this study proposes a hierarchical framework [...] Read more.
Hypersonic morphing vehicles (HMVs), renowned for their adaptive structural reconfiguration and cross-domain maneuverability, confront formidable reentry guidance challenges under multiple no-fly zones, stringent path constraints, and nonlinear dynamics exacerbated by morphing-induced aerodynamic uncertainties. To address these issues, this study proposes a hierarchical framework integrating an A-based energy-optimal waypoint planner, a deep deterministic policy gradient (DDPG)-driven morphing policy network, and a quasi-equilibrium glide condition (QEGC) guidance law with continuous sliding mode control. The A* algorithm generates heuristic trajectories circumventing no-fly zones, reducing the evaluation function by 6.2% compared to greedy methods, while DDPG optimizes sweep angles to minimize velocity loss and terminal errors (0.09 km position, 0.01 m/s velocity). The QEGC law ensures robust longitudinal-lateral tracking via smooth hyperbolic tangent switching. Simulations demonstrate generalization across diverse targets (terminal errors < 0.24 km) and robustness under Monte Carlo deviations (0.263 ± 0.184 km range, −12.7 ± 42.93 m/s velocity). This work bridges global trajectory planning with real-time morphing adaptation, advancing intelligent HMV control. Future research will extend this framework to ascent/dive phases and optimize its computational efficiency for onboard deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop