Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,101)

Search Parameters:
Keywords = government factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
3 pages, 150 KB  
Proceeding Paper
Alternative Tourism, a Means to Agricultural and Rural Areas’ Sustainability: Municipality of Pella Case
by Christos Poulkas and Sofia Karampela
Proceedings 2026, 134(1), 52; https://doi.org/10.3390/proceedings2026134052 (registering DOI) - 19 Jan 2026
Abstract
This study explores the development potential of thematic tourism in the Municipality of Pella, Northern Greece. It examines local residents’ perceptions regarding tourism as a growth strategy, evaluates current informational and promotional efforts by the local government, and assesses the public’s willingness to [...] Read more.
This study explores the development potential of thematic tourism in the Municipality of Pella, Northern Greece. It examines local residents’ perceptions regarding tourism as a growth strategy, evaluates current informational and promotional efforts by the local government, and assesses the public’s willingness to participate in tourism activities. A structured questionnaire was distributed to a representative sample of residents that was given both in person and via the internet. Quantitative analysis revealed that while respondents generally support the idea of tourism development and feel moderately informed, there is a strong perception that the municipality’s efforts to promote tourism are insufficient. Key factors influencing residents’ attitudes include age, level of education, and personal involvement with tourism. The findings suggest that thematic tourism could serve as a viable development path, provided that local authorities implement targeted education, infrastructure, and promotion strategies. This study recommends enhanced cooperation between public institutions and local stakeholders to support sustainable tourism growth. It is suggested, therefore, to increase the depth of focus given in the development of an innovative agricultural area development model that will combine traditional agriculture with agritourism and the remaining types according to each place’s capabilities. Full article
27 pages, 10557 KB  
Article
Numerical and Experimental Estimation of Heat Source Strengths in Multi-Chip Modules on Printed Circuit Boards
by Cheng-Hung Huang and Hao-Wei Su
Mathematics 2026, 14(2), 327; https://doi.org/10.3390/math14020327 (registering DOI) - 18 Jan 2026
Abstract
In this study, a three-dimensional Inverse Conjugate Heat Transfer Problem (ICHTP) is numerically and experimentally investigated to estimate the heat-source strength of multiple chips mounted on a printed circuit board (PCB) using the Conjugate Gradient Method (CGM) and infrared thermography. The interfaces between [...] Read more.
In this study, a three-dimensional Inverse Conjugate Heat Transfer Problem (ICHTP) is numerically and experimentally investigated to estimate the heat-source strength of multiple chips mounted on a printed circuit board (PCB) using the Conjugate Gradient Method (CGM) and infrared thermography. The interfaces between the PCB and the surrounding air domain are assumed to exhibit perfect thermal contact, establishing a fully coupled conjugate heat transfer framework for the inverse analysis. Unlike the conventional Inverse Heat Conduction Problem (IHCP), which typically only accounts for conduction within solid domains, the present ICHTP formulation requires the simultaneous solution of the governing continuity, momentum, and energy equations in the air domain, along with the heat conduction equation in the chips and PCB. This coupling introduces substantial computational complexity due to the nonlinear interaction between convective and conductive heat transfer mechanisms, as well as the sensitivity of the inverse solution to measurement uncertainties. The numerical simulations are conducted first with error-free measurement data and an inlet velocity of uin = 4 m/s; the recovered heat-sources exhibit excellent agreement with the true values. The computed average errors for the estimated temperatures ERR1 and estimated heat sources ERR2 are as low as 0.0031% and 1.87%, respectively. The accuracy of the estimated heat sources is then experimentally validated under various prescribed inlet air velocities. During experimental verification at an inlet velocity of 4 m/s, the corresponding ERR1 and ERR2 values are obtained as 0.91% and 3.34%, while at 6 m/s, the values are 0.86% and 2.81%, respectively. Compared with the numerical results, the accuracy of the experimental estimations decreases noticeably. This discrepancy arises because the numerical simulations are free from measurement noise, whereas experimental data inherently include uncertainties due to thermal picture resolutions, environmental fluctuations, and other uncontrollable factors. These results highlight the inherent challenges associated with inverse problems and underscore the critical importance of obtaining precise and reliable temperature measurements to ensure accurate heat source estimation. Full article
Show Figures

Figure 1

12 pages, 1041 KB  
Article
Experimental Investigation of Injection Pressure and Permeability Effect on CO2 EOR for Light Oil Reservoirs
by Khaled Enab
Gases 2026, 6(1), 5; https://doi.org/10.3390/gases6010005 (registering DOI) - 17 Jan 2026
Abstract
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction [...] Read more.
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction and the ultimate recovery factor from light oil reservoirs has not been fully investigated. To address this gap, this experimental study systematically explores the effects of CO2 injection pressure and reservoir permeability on light oil recovery. This study conducted miscible, near-miscible, and immiscible gas injection experiments on two core samples with distinct permeabilities (13.4 md and 28 md), each saturated with light oil. CO2 was injected at five different pressures, including conditions ranging from immiscible to initial reservoir pressure. The primary metrics for evaluation were the recovery factor (measured at gas breakthrough, end of injection, and abandonment pressure) and the viscosity reduction of the produced oil. The results conclusively demonstrate that CO2 injection significantly enhances light oil production. A direct proportional relationship was established between both the injection pressure and the recovery factor and between permeability and overall oil production at the gas breakthrough. However, a key finding was the inverse relationship observed between permeability and viscosity reduction: the lower-permeability sample (13.4 md) consistently exhibited a greater percentage of viscosity reduction across all injection pressures than the higher-permeability sample (28 md). This unexpected trend is aligned with the inverse relationship between the permeability and the recovery factor after the gas breakthrough. This outcome suggests that enhanced CO2 solubility, driven by higher confinement pressures within the nanopores of the lower-permeability rock, promotes a localized, near-miscible state. This effect was even evident during immiscible injection, where the low-permeability sample showed a noticeable viscosity reduction and superior long-term production. These findings highlight the critical role of pore-scale confinement in governing CO2 miscibility and its associated viscosity reduction, which should be incorporated into enhanced oil recovery design for unconventional reservoirs. Full article
38 pages, 1697 KB  
Article
Learning from Unsustainable Post-Disaster Temporary Housing Programs in Spain: Lessons from the 2011 Lorca Earthquake and the 2021 La Palma Volcano Eruption
by Pablo Bris, Félix Bendito and Daniel Martínez
Sustainability 2026, 18(2), 963; https://doi.org/10.3390/su18020963 (registering DOI) - 17 Jan 2026
Abstract
This article examines the failure of the two most recent temporary housing programs implemented in Spain following two major disasters: the 2011 Lorca earthquake and the 2021 La Palma volcanic eruption. Despite differing hazard typologies, both cases resulted in incomplete and ultimately unsuccessful [...] Read more.
This article examines the failure of the two most recent temporary housing programs implemented in Spain following two major disasters: the 2011 Lorca earthquake and the 2021 La Palma volcanic eruption. Despite differing hazard typologies, both cases resulted in incomplete and ultimately unsuccessful housing programs, with only 13 of the 60 planned units built in Lorca and 121 of the 200 planned units delivered in La Palma. Using a qualitative comparative case study approach, the research analyzes governance decisions, housing design, and implementation processes to assess their impact on the sustainability of post-disaster temporary housing. The analysis adopts the five dimensions of sustainability—environmental, economic, social, cultural, and institutional—as an integrated analytical framework for evaluating public management performance in post-disaster temporary housing. The findings show that early decision-making, shaped by political urgency, technical misjudgments, and the absence of adaptive governance, led to severe delays, cost overruns, inadequate and energy-inefficient construction, and the formation of marginalized settlements. This study concludes that the lack of regulatory frameworks, legal instruments, and operational protocols for temporary housing in Spain was a determining factor in both failures, generating vulnerability, prolonging recovery processes, and undermining sustainability across all five dimensions. By drawing lessons from these cases, this article contributes to debates on resilient and sustainable post-disaster recovery and highlights the urgent need for integrated regulatory frameworks for temporary housing in Spain. Full article
(This article belongs to the Special Issue Disaster Risk Reduction and Sustainability)
25 pages, 1153 KB  
Article
Design and Implementation of a Low-Water-Consumption Robotic System for Cleaning Residential Balcony Glass Walls
by Maria-Alexandra Mielcioiu, Petruţa Petcu, Dumitru Nedelcu, Augustin Semenescu, Narcisa Valter and Ana-Maria Nicolau
Appl. Sci. 2026, 16(2), 945; https://doi.org/10.3390/app16020945 - 16 Jan 2026
Viewed by 33
Abstract
Manual window cleaning in high-rise urban buildings is labor-intensive, risky, and resource-inefficient. This study addresses these challenges by investigating a resource-aware mechatronic architecture through the design, development, and experimental validation of a modular Automated Window Cleaning System (AWCS). Unlike conventional open-loop solutions, the [...] Read more.
Manual window cleaning in high-rise urban buildings is labor-intensive, risky, and resource-inefficient. This study addresses these challenges by investigating a resource-aware mechatronic architecture through the design, development, and experimental validation of a modular Automated Window Cleaning System (AWCS). Unlike conventional open-loop solutions, the AWCS integrates mechanical scrubbing with a closed-loop fluid management system, featuring precise dispensing and vacuum-assisted recovery. The system is governed by a deterministic finite state machine implemented on an ESP32 microcontroller, enabling low-latency IoT connectivity and autonomous operation. Two implementation variants—integrated and retrofit—were validated to ensure structural adaptability. Experimental results across 30 cycles demonstrate a cleaning efficiency of ~2 min/m2, a water consumption of <150 mL/m2 (representing a >95% reduction compared to manual methods), and an optical cleaning efficacy of 96.9% ± 1.4%. Safety protocols were substantiated through a calculated mechanical safety factor of 6.12 for retrofit applications. This research establishes the AWCS as a sustainable, safe, and scalable solution for autonomous building maintenance, contributing to the advancement of resource-circular domestic robotics and smart home automation. Full article
24 pages, 651 KB  
Article
Synergistic Enhancement of Low-Carbon City Policies and National Big Data Comprehensive Experimental Zone Policies on Green Total Factor Productivity: Evidence from Pilot Cities in China
by Yan Wang and Zhiqing Xia
Sustainability 2026, 18(2), 936; https://doi.org/10.3390/su18020936 - 16 Jan 2026
Viewed by 38
Abstract
Green total factor productivity (GTFP), as an important indicator considering both economic development and environmental protection, has prompted countries around the world to actively explore ways to improve it in the context of the global transition to a green economy. The Low-Carbon City [...] Read more.
Green total factor productivity (GTFP), as an important indicator considering both economic development and environmental protection, has prompted countries around the world to actively explore ways to improve it in the context of the global transition to a green economy. The Low-Carbon City Policy (LCCP) implemented by the Chinese government, along with the National Big Data Comprehensive Pilot Zone Policy (NBDCPZ), which serve as key carriers of green regulation and digital innovation, respectively, play an important role in improving green total factor productivity (GTFP) and achieving high-quality economic development. This study aims to deeply explore whether there is a collaborative enabling effect of the Low-Carbon City Policy (LCCP) and the National Big Data Comprehensive Pilot Zone Policy (NBDCPZ) on green total factor productivity (GTFP) and to reveal the internal mechanism by which they improve GTFP through green technological innovation and industrial agglomeration. Specifically, based on the panel data of 269 prefecture-level cities in China from 2006 to 2022, a “dual-pilot” policy is constructed through LCCP and NBDCPZ, and a multi-period difference-in-differences model (DID) is used to evaluate the collaborative effect of the “dual-pilot” policy on GTFP. The results show that the “dual-pilot” policy has a significant collaborative effect on green total factor productivity (GTFP), and its enabling effect is more obvious than that of the “single-pilot” policy. These conclusions still hold after a series of endogeneity and robustness tests. Mechanism analysis shows that the “dual-pilot” policy can also improve green total factor productivity (GTFP) through green technological innovation and industrial agglomeration. Heterogeneity analysis reveals that the collaborative enabling effect of the “dual-pilot” policy is influenced by geographical location and population density. Specifically, the “dual-pilot” policy significantly promotes green total factor productivity (GTFP) in coastal cities and those with high population density. These research results provide a scientific basis for formulating green development policies in China and other countries, as well as a direction for subsequent research on the collaborative enabling effect of multiple policies. Full article
37 pages, 4452 KB  
Article
Research on the Sustainable Development of Traditional Village Residential Dwellings in Northern Shaanxi, China
by Minglan Ge and Yanjun Li
Buildings 2026, 16(2), 380; https://doi.org/10.3390/buildings16020380 - 16 Jan 2026
Viewed by 29
Abstract
Traditional villages, protected as cultural heritage in our country, are rich in historical information, cultural landscapes, and traditional domestic architecture. This article explores the spatial distribution of traditional villages and proposes a new paradigm for the sustainable development of traditional dwellings. It addresses [...] Read more.
Traditional villages, protected as cultural heritage in our country, are rich in historical information, cultural landscapes, and traditional domestic architecture. This article explores the spatial distribution of traditional villages and proposes a new paradigm for the sustainable development of traditional dwellings. It addresses the challenges these villages face, such as natural, social, and inherent issues, arising from rapid socioeconomic development and urbanization. This study analyzes the spatial distribution and architectural features of traditional villages and dwellings in Northern Shaanxi based on 179 national and provincial villages. Using ArcGIS 10.1, the geographic concentration index, kernel density analysis, and the analytic hierarchy process, this study applied both macro and micro level perspectives. The research shows that: (1) The traditional villages in northern Shaanxi exhibit a spatial distribution pattern of “overall aggregation, local dispersion, and uneven distribution.” This pattern is influenced by interactions between natural and human factors. (2) Traditional dwellings in these villages are primarily cave dwellings and courtyard buildings, each reflecting unique architectural features in terms of floor plan layout, facade form, structure, materials, and decoration. (3) Traditional village dwellings in northern Shaanxi face practical challenges related to protection, development, and governance. The top three challenges, based on weighted indicators, are issues related to inheritance, an imperfect protection mechanism, and inherent shortcomings of the buildings. Based on these findings, this study proposes three practical suggestions for the sustainable development of traditional village dwellings in Northern Shaanxi. These suggestions aim to enhance the comprehensive and multi-dimensional sustainable development of traditional village dwellings. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
32 pages, 107231 KB  
Article
Simulation and Experimental Study of Vessel-Borne Active Motion Compensated Gangway for Offshore Wind Operation and Maintenance
by Hongyan Mu, Ting Zhou, Binbin Li and Kun Liu
J. Mar. Sci. Eng. 2026, 14(2), 187; https://doi.org/10.3390/jmse14020187 - 16 Jan 2026
Viewed by 146
Abstract
Driven by global initiatives to mitigate climate change, the offshore wind power industry is experiencing rapid growth. Personnel transfer between service operation vessels (SOVs) and offshore wind turbines under complex sea conditions remains a critical factor governing the safety and efficiency of operation [...] Read more.
Driven by global initiatives to mitigate climate change, the offshore wind power industry is experiencing rapid growth. Personnel transfer between service operation vessels (SOVs) and offshore wind turbines under complex sea conditions remains a critical factor governing the safety and efficiency of operation and maintenance (O&M) activities. This study establishes a fully coupled dynamic response and control simulation framework for an SOV equipped with an active motion-compensated gangway. A numerical model of the SOV is first developed using potential flow theory and frequency-domain multi-body hydrodynamics to predict realistic vessel motions, which serve as excitation inputs to a co-simulation environment (MATLAB/Simulink coupled with MSC Adams) representing the Stewart platform-based gangway. To address system nonlinearity and coupling, a composite control strategy integrating velocity and dynamic feedforward with three-loop PID feedback is proposed. Simulation results demonstrate that the composite strategy achieves an average disturbance isolation degree of 21.81 dB, significantly outperforming traditional PID control. Validation is conducted using a ship motion simulation platform and a combined wind–wave basin with a 1:10 scaled prototype. Experimental results confirm high compensation accuracy, with heave variation maintained within 1.6 cm and a relative error between simulation and experiment of approximately 18.2%. These findings demonstrate the framework’s capability to ensure safe personnel transfer by effectively isolating complex vessel motions and validate the reliability of the coupled dynamic model for offshore operational forecasting. Full article
Show Figures

Figure 1

29 pages, 4949 KB  
Article
Multivariate Statistical Insights into Copper Adsorption by Graphene Oxide-Based Adsorbents
by Jovana Pešić Bajić, Marko Šolić, Jasmina Nikić, Branko Kordić, Tamara Apostolović and Malcolm Watson
Processes 2026, 14(2), 315; https://doi.org/10.3390/pr14020315 - 16 Jan 2026
Viewed by 132
Abstract
Copper contamination in aquatic environments poses significant ecological and health risks, necessitating efficient and resilient treatment strategies. In this study, graphene oxide (GO) and magnetic graphene oxide (MGO) were synthesized and comprehensively evaluated for Cu(II) removal using an integrated multivariate approach combining kinetic [...] Read more.
Copper contamination in aquatic environments poses significant ecological and health risks, necessitating efficient and resilient treatment strategies. In this study, graphene oxide (GO) and magnetic graphene oxide (MGO) were synthesized and comprehensively evaluated for Cu(II) removal using an integrated multivariate approach combining kinetic and isotherm modelling, Response Surface Methodology (RSM), and advanced statistical analyses. Both adsorbents achieved high removal efficiencies (>90%) under optimized conditions, with Langmuir capacities of 59.2 mg g−1 for GO and 40.1 mg g−1 for MGO. Kinetic modelling confirmed reaction-controlled adsorption, while Freundlich isotherms highlighted heterogeneous surface binding. RSM identified pH as the dominant factor governing removal efficiency, with significant interactions among pH, Cu(II), and DOC reflecting competitive matrix effects. Principal Component Analysis (PCA) revealed that GO performance is strongly influenced by solution chemistry, whereas MGO exhibits reduced sensitivity due to modified physicochemical properties. FTIR analysis confirmed that adsorption proceeds primarily through electrostatic attraction and inner-sphere complexation, with Fe–O sites contributing to MGO’s enhanced affinity. Regeneration studies demonstrated superior reusability of MGO, which retained ~64% efficiency after five cycles compared to ~52% for GO. Collectively, these multivariate and mechanistic insights identify MGO as a more robust, versatile, and regenerable sorbent for Cu(II) removal under realistic water-matrix conditions. Full article
Show Figures

Graphical abstract

20 pages, 8754 KB  
Article
Landscape Pattern Evolution in the Source Region of the Chishui River
by Yanzhao Gong, Xiaotao Huang, Jiaojiao Li, Ju Zhao, Dianji Fu and Geping Luo
Sustainability 2026, 18(2), 914; https://doi.org/10.3390/su18020914 - 15 Jan 2026
Viewed by 124
Abstract
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To [...] Read more.
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To address this gap, the current study used 2000–2020 land-use, geography, and socio-economic data, integrating landscape pattern indices, land-use transfer matrices, dynamic degree, the GeoDetector model, and the PLUS model. Results revealed that forest and cropland remained the prevailing land-use types throughout 2000–2020, comprising over 85% of the landscape. Grassland had the highest dynamic degree (1.58%), and landscape evolution during the study period was characterized by increased fragmentation, enhanced diversity, and stable dominance of major forms of land use. Anthropogenic influence on different landscape types followed the order: construction land > cropland > grassland > forest > water bodies. Land-use change in this region is a complex process governed by the interrelationships among various factors. Scenario-based predictions demonstrate pronounced variability in various land types. These findings provided a more comprehensive understanding of landscape patterns in karst river source regions, provided evidence-based support for regional planning, and offered guidance for ecological management of similar global river sources. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

17 pages, 697 KB  
Article
Experiences of Minibus Taxi Drivers in Transporting People with Disabilities in Rural Areas of South Africa
by Babra Duri
Disabilities 2026, 6(1), 9; https://doi.org/10.3390/disabilities6010009 - 15 Jan 2026
Viewed by 188
Abstract
Rural transport remains a critical factor of social inclusion in South Africa, particularly for people with disabilities who rely on public transport. This study explores the experiences of minibus taxi drivers in transporting passengers with disabilities in Mt Elias, a rural community in [...] Read more.
Rural transport remains a critical factor of social inclusion in South Africa, particularly for people with disabilities who rely on public transport. This study explores the experiences of minibus taxi drivers in transporting passengers with disabilities in Mt Elias, a rural community in the KwaZulu-Natal province. A qualitative research design was adopted, involving semi-structured interviews with 15 drivers operating between Dalton and Mt Elias route. Thematic analysis was conducted using ATLAS.ti to identify key patterns and relationships across the dataset. The four key themes that emerged from the dataset are: infrastructure and environmental challenges, accessibility and support for passengers, operational and economic constraints, and human interactions and attitudes. Findings reveal that drivers face multiple barriers, including poor road conditions, limited vehicle space, and a lack of formal training, yet many demonstrate empathy and commitment to assisting passengers with disabilities. The study highlights the need for targeted policy interventions to improve road infrastructure, provide disability awareness training for drivers, and redesign vehicles for accessibility. Promoting inclusive rural transport requires coordinated action among government spheres, taxi associations, and disability advocacy groups. This research contributes new insights into the lived realities of rural drivers and promotes the importance of inclusive mobility as a component of social justice. Full article
Show Figures

Figure 1

28 pages, 322 KB  
Article
Capital Factor Market Integration and Corporate ESG Performance: Evidence from China
by Hao Liu and Zhanyu Ying
Sustainability 2026, 18(2), 906; https://doi.org/10.3390/su18020906 - 15 Jan 2026
Viewed by 81
Abstract
This study investigates the impact of city-level capital factor market integration on corporate ESG performance, using a sample of Chinese A-share listed companies from 2010 to 2024. We find that greater capital factor market integration significantly improves firms’ overall ESG performance. Mechanism analysis [...] Read more.
This study investigates the impact of city-level capital factor market integration on corporate ESG performance, using a sample of Chinese A-share listed companies from 2010 to 2024. We find that greater capital factor market integration significantly improves firms’ overall ESG performance. Mechanism analysis reveals that capital factor market integration operates through three channels: market competition, technological advancement, and attention reconstruction, enhancing both firms’ capabilities and incentives to engage in ESG activities. The positive effect is stronger for state-owned enterprises, firms in less polluting industries, and those in regions with high government environmental attention. Further analysis indicates that capital factor market integration suppresses corporate greenwashing behavior and reduces discrepancies across ESG rating agencies. Moreover, capital factor market integration exhibits asymmetric effects across ESG sub-dimensions, significantly improving environmental and governance performance while weakening social responsibility performance. This reflects firms’ preference, under competitive pressure, for environmental and governance domains characterized by shorter payback periods and more readily quantifiable outcomes, as well as their cautious stance toward the social responsibility domain where effects take considerably longer to materialize. This study contributes to understanding the micro-level mechanisms through which capital factor market integration influences corporate sustainable development, providing empirical evidence for China’s construction of a unified national market and the advancement of sustainable development strategies. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
24 pages, 8302 KB  
Article
Characteristics of Four Co-Occurring Tree Species Sap Flow in the Karst Returning Farmland to Forest Area of Southwest China and Their Responses to Environmental Factors
by Yongyan Yang, Zhirong Feng, Liang Qin, Hua Zhou and Zhaohui Ren
Sustainability 2026, 18(2), 900; https://doi.org/10.3390/su18020900 - 15 Jan 2026
Viewed by 100
Abstract
Monitoring stem sap flow is essential for understanding plant water-use strategies and eco-physiological processes in the ecologically fragile karst region. In the study, we continuously monitored four co-occurring species—Cryptomeria japonica var. sinensis (LS), Liquidambar formosana (FX), Camptotheca acuminata (XS), and Melia azedarach [...] Read more.
Monitoring stem sap flow is essential for understanding plant water-use strategies and eco-physiological processes in the ecologically fragile karst region. In the study, we continuously monitored four co-occurring species—Cryptomeria japonica var. sinensis (LS), Liquidambar formosana (FX), Camptotheca acuminata (XS), and Melia azedarach (KL)—using the thermal dissipation probe method in a karst farmland-to-forest restoration area. We analyzed diurnal and nocturnal sap flow variations across different growth periods and their responses to environmental factors at an hourly scale. The results showed (1) A “high daytime, low nighttime” sap flow pattern during the growing season for all species. (2) The proportion of nocturnal sap flow was significantly lower in the growing than in the non-growing season. (3) Daytime sap flow was primarily driven by photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) during the growing season. In the non-growing season, daytime drivers were species-specific: relative humidity (RH, 39.39%) for LS; air temperature (Ta, 23.14%) for FX; PAR (33.03%) for XS; and soil moisture at a 10 cm depth (SM1, 25.2%) for KL. Nocturnal flow was governed by VPD and RH during the growing season versus soil moisture (SM1 and SM2) and RH in the non-growing season. These findings reveal interspecific differences in water-use strategies and provide a scientific basis for species selection and afforestation management in the karst ecological restoration of this research area. Full article
Show Figures

Figure 1

27 pages, 2933 KB  
Article
A Fractal-Enhanced Mohr–Coulomb (FEMC)Model for Strength Prediction in Rough Rock Discontinuities
by Dina Kon, Sage Ngoie, Jisen Shu, Yadah Mbuyu and Dave Mbako
Fractal Fract. 2026, 10(1), 61; https://doi.org/10.3390/fractalfract10010061 - 15 Jan 2026
Viewed by 81
Abstract
Accurate prediction of the shear strength of rock discontinuities requires accounting for surface roughness, which is a factor neglected in the classical Mohr–Coulomb criterion. This study proposes a fractal-enhanced Mohr–Coulomb model that incorporates the surface fractal dimension Ds as a geometric state variable [...] Read more.
Accurate prediction of the shear strength of rock discontinuities requires accounting for surface roughness, which is a factor neglected in the classical Mohr–Coulomb criterion. This study proposes a fractal-enhanced Mohr–Coulomb model that incorporates the surface fractal dimension Ds as a geometric state variable governing both the cohesion and internal friction angle. The fractal dimension is treated as an objective, scale-invariant descriptor, computable via established methods, such as box-counting and power spectral density analysis, which are known to yield consistent results when applied to joint topography. The model predicts a nonlinear increase in shear strength with Ds, producing a dynamically adjustable failure envelope that can exceed the classical Mohr–Coulomb estimates by 25–40% for rough joints, which is consistent with trends observed in experimental shear tests. By linking strength parameters directly to measurable surface geometry, the framework provides a physically interpretable bridge between micro-scale roughness and macro-scale mechanical response. Although the current formulation assumes monotonic, dry, and quasi-static conditions, the explicit dependence on Ds offers a foundation for future extensions that incorporate anisotropy, damage evolution, and hydro-mechanical coupling. Full article
(This article belongs to the Special Issue Applications of Fractal Dimensions in Rock Mechanics and Geomechanics)
25 pages, 3191 KB  
Article
Multivariate Machine Learning Framework for Predicting Electrical Resistivity of Concrete Using Degree of Saturation and Pore-Structure Parameters
by Youngdae Kim, Seong-Hoon Kee, Cris Edward F. Monjardin and Kevin Paolo V. Robles
Materials 2026, 19(2), 349; https://doi.org/10.3390/ma19020349 - 15 Jan 2026
Viewed by 94
Abstract
This study investigates the relationship between apparent electrical resistivity (ER) and key material parameters governing moisture and pore-structure characteristics of concrete. An experimental program was conducted using six concrete mix designs, where ER was continuously measured under controlled wetting and drying cycles to [...] Read more.
This study investigates the relationship between apparent electrical resistivity (ER) and key material parameters governing moisture and pore-structure characteristics of concrete. An experimental program was conducted using six concrete mix designs, where ER was continuously measured under controlled wetting and drying cycles to characterize its dependence on the degree of saturation (DS). Results confirmed that ER decreases exponentially with increasing DS across all mixtures, with R2 values between 0.896 and 0.997, establishing DS as the dominant factor affecting electrical conduction. To incorporate additional pore-structure parameters, eight input combinations consisting of DS, porosity (P), water–cement ratio (WCR), and compressive strength (f′c) were evaluated using five machine learning models. Gaussian Process Regression and Neural Networks achieved the highest accuracy, particularly when all parameters were included. SHAP analysis revealed that DS accounts for the majority of predictive influence, while porosity and WCR provide secondary but meaningful contributions to ER behavior. Guided by these insights, nonlinear multivariate regression models were formulated, with the exponential model yielding the strongest predictive capability (R2 = 0.96). The integrated experimental–computational approach demonstrates that ER is governed by moisture dynamics and pore-structure refinement, offering a physically interpretable and statistically robust framework for nondestructive durability assessment of concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop