Multivariate Machine Learning Framework for Predicting Electrical Resistivity of Concrete Using Degree of Saturation and Pore-Structure Parameters
Abstract
Share and Cite
Kim, Y.; Kee, S.-H.; Monjardin, C.E.F.; Robles, K.P.V. Multivariate Machine Learning Framework for Predicting Electrical Resistivity of Concrete Using Degree of Saturation and Pore-Structure Parameters. Materials 2026, 19, 349. https://doi.org/10.3390/ma19020349
Kim Y, Kee S-H, Monjardin CEF, Robles KPV. Multivariate Machine Learning Framework for Predicting Electrical Resistivity of Concrete Using Degree of Saturation and Pore-Structure Parameters. Materials. 2026; 19(2):349. https://doi.org/10.3390/ma19020349
Chicago/Turabian StyleKim, Youngdae, Seong-Hoon Kee, Cris Edward F. Monjardin, and Kevin Paolo V. Robles. 2026. "Multivariate Machine Learning Framework for Predicting Electrical Resistivity of Concrete Using Degree of Saturation and Pore-Structure Parameters" Materials 19, no. 2: 349. https://doi.org/10.3390/ma19020349
APA StyleKim, Y., Kee, S.-H., Monjardin, C. E. F., & Robles, K. P. V. (2026). Multivariate Machine Learning Framework for Predicting Electrical Resistivity of Concrete Using Degree of Saturation and Pore-Structure Parameters. Materials, 19(2), 349. https://doi.org/10.3390/ma19020349

