Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = gonadal sex differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3642 KiB  
Article
A Novel Steroidogenic Action of Anti-Müllerian Hormone in Teleosts: Evidence from the European Sea Bass Male (Dicentrarchus labrax)
by Alessia Mascoli, Cinta Zapater, Soledad Ibañez, Mateus Contar Adolfi, Manfred Schartl and Ana Gómez
Int. J. Mol. Sci. 2025, 26(15), 7554; https://doi.org/10.3390/ijms26157554 - 5 Aug 2025
Viewed by 29
Abstract
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, [...] Read more.
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, testis differentiation, and germ cell proliferation. In adult fish, Amh supports gonad development and spermatogenesis, but its role in teleost gonadal physiology remains largely underexplored. This study reveals a novel steroidogenic function in the European sea bass (Dicentrarchus labrax) using in vitro testis culture, in vivo plasmid injection, and cell-based transactivation assays. The Amh-induced significant increase in androgen levels was also confirmed in Japanese medaka (Oryzias latipes) treated with recombinant sea bass Amh. Beyond activating the canonical Smad pathway, Amh also triggered the cAMP/PKA signalling pathway via its cognate type II receptor, Amhr2. Inhibitors of these pathways independently and synergistically counteracted Amh-induced CRE-Luc activity, indicating pathway crosstalk. Moreover, inhibition of the cAMP pathway suppressed Amh-induced androgen production in testis cultures, emphasizing the crucial role of protein kinase A in mediating Amh steroidogenic action. These findings uncover a novel steroidogenic function of Amh in teleosts and highlight its broader role in male reproductive physiology. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

16 pages, 3084 KiB  
Article
De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Mature Gonads in Megalobrama terminalis
by Yicheng Zhou, Weiqian Liang, Kaifeng Wang, Peng Zheng, Shengyue Lin, Haiying Yang, Guojun Cai, Ziyan Deng, Chong Han and Qiang Li
Animals 2025, 15(15), 2184; https://doi.org/10.3390/ani15152184 - 24 Jul 2025
Viewed by 318
Abstract
Megalobrama terminalis is a significant aquatic fish in South China, renowned for its tasty meat. Nonetheless, related studies are deficient concerning the gonadal development of M. terminalis. This paper presents the first comparative transcriptome analysis of the gonads of female and male [...] Read more.
Megalobrama terminalis is a significant aquatic fish in South China, renowned for its tasty meat. Nonetheless, related studies are deficient concerning the gonadal development of M. terminalis. This paper presents the first comparative transcriptome analysis of the gonads of female and male M. terminalis. A total of 84,886 unigenes were assembled, with 42,322 effectively annotated to the Nr, SwissProt, KEGG, KOG, and GO databases. Furthermore, comparative transcriptomic analysis of M. terminalis was conducted to examine its gonadal development. A total of 14,972 differentially expressed genes (DEGs) were discovered. In the testis, the expression of 11,928 unigenes was significantly upregulated, while 3044 were significantly downregulated. Numerous DEGs associated with steroidogenesis, gonadal differentiation and development, and gametogenesis in teleost fish were identified. The results provide empirical support for further study of genes and pathways associated with sex determination and gonadal differentiation in teleost fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 2677 KiB  
Article
Role of StAR Gene in Sex Steroid Hormone Regulation and Gonadal Development in Ark Shell Scapharca broughtonii
by Wenjing Wang, Zhihong Liu, Huaying Zhang, Zheying Gao, Sudong Xia, Xiujun Sun, Liqing Zhou, Zhuanzhuan Li, Peizhen Ma and Biao Wu
Biology 2025, 14(8), 925; https://doi.org/10.3390/biology14080925 - 23 Jul 2025
Viewed by 433
Abstract
This study elucidates the role of the steroidogenic acute regulatory protein (StAR) in sex steroid hormone dynamics and the gonadal development of the commercially important marine bivalve ark shell Scapharca broughtonii. The sequence of the StAR gene was obtained and [...] Read more.
This study elucidates the role of the steroidogenic acute regulatory protein (StAR) in sex steroid hormone dynamics and the gonadal development of the commercially important marine bivalve ark shell Scapharca broughtonii. The sequence of the StAR gene was obtained and verified from the transcriptome of ark shell, then the tissue localization and expression pattern during the gonad development of the StAR gene were detected by in situ hybridization and quantitative real-time PCR, respectively. Additionally, the concentrations of three critical sex steroid hormones (progesterone, testosterone, and estradiol) were measured throughout gonadal development using enzyme-linked immunosorbent assay (ELISA). The results showed that the length of the coding region of StAR was 1446 bp, encoding 481 amino acids. The results of qRT-PCR showed that the expression of the StAR gene varied with gonadal development, increased from the early active stage to the development stage, and decreased from the mature stage to the spent stage. Notably, the expression level in ovaries was higher than that in testes, suggesting the potential involvement of StAR in sex differentiation and gonadal development. Additionally, the results indicated that progesterone, testosterone, and estradiol accounted for 80%, 10%, and 10% of the total hormone content in the gonads, respectively. Correlation analysis revealed a highly significant strong positive correlation between progesterone/estradiol levels and StAR gene expression, demonstrating that StAR serves as a key regulator in sex steroid hormone biosynthesis. These findings provide crucial molecular evidence for StAR-mediated steroidogenesis in bivalve reproduction, offering fundamental insights into invertebrate endocrinology. Full article
Show Figures

Figure 1

18 pages, 6187 KiB  
Review
Ultrasonography Is a Valuable Tool for Assisting in Marine Fish Reproduction: Applications in Brazilian Sardine (Sardinella brasiliensis) and Lebranche Mullet (Mugil liza)
by Liseth Carolina Perenguez Riofrio, Sabrina Lara da Luz, Ingrith Mazuhy Santarosa, Maria Alcina de Castro, Everton Danilo dos Santos, Leticia Cordeiro Koppe de França, Karinne Hoffmann, Marco Shizuo Owatari, Aline Brum and Caio Magnotti
Fishes 2025, 10(7), 312; https://doi.org/10.3390/fishes10070312 - 1 Jul 2025
Viewed by 380
Abstract
Urogenital cannulation is a traditional method used in aquaculture to achieve sexual differentiation, but it is considered invasive. Ultrasonography is a valuable non-invasive tool for determining sex and gonadal development in fish species like mullet (Mugil liza) and Brazilian sardine ( [...] Read more.
Urogenital cannulation is a traditional method used in aquaculture to achieve sexual differentiation, but it is considered invasive. Ultrasonography is a valuable non-invasive tool for determining sex and gonadal development in fish species like mullet (Mugil liza) and Brazilian sardine (Sardinella brasiliensis) that lack sexual dimorphism. The methodology involves emitting high-frequency sound waves (20 MHz to 20,000 MHz) above the human hearing range. These waves interact with the tissues of the body, producing echoes that are detected by a transducer. The echoes are then processed by computer graphics to generate detailed images of the internal structures of the organism. This allows for the determination of the sex of fish based on the sonographic features of the tissues. For instance, in male fish, hypoechogenic structures reflect fewer sound waves, leading to darker images. Conversely, in female fish, hyperechogenic tissues reflect more sound waves, resulting in lighter images. It is possible to classify the gonadal maturation stage based on differences in image texture. This non-invasive method eliminates the need for specimen dissection. It is especially valuable when the goal is to preserve the spawners’ life and integrity. This review emphasizes the application of this technology in aquaculture, specifically targeting fish from the Clupeidae and Mugilidae families. Full article
Show Figures

Figure 1

16 pages, 2629 KiB  
Article
Full-Length Transcriptome of Testis and Ovary Provides Insights into Alternative Splicing During Gonadal Development in Litopenaeus vannamei
by Youyan Wang, Yang Yu, Yue Wang and Fuhua Li
Int. J. Mol. Sci. 2025, 26(12), 5863; https://doi.org/10.3390/ijms26125863 - 19 Jun 2025
Viewed by 494
Abstract
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling [...] Read more.
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling unisex breeding strategies. While previous studies have focused on gene expression differences between females and males, structural differences in transcriptomic regulation between sexes have been largely overlooked. Here, we present a comprehensive full-length transcriptome analysis of L. vannamei testis and ovary, identifying 830 and 690 novel genes, respectively, and over 6000 new isoforms. Notably, we discovered extensive alternative splicing (AS) events, with the cartilage oligomeric matrix protein-like gene exhibiting over 300 AS isoforms in the ovary compared to only 2 in the testis, suggesting a potential role in ovarian development. Furthermore, sex-determining genes such as Fem-1a, Fem-1c, and Sxl were found to produce AS isoforms exclusively in ovarian tissue. We also identified three germ cell development-associated genes—MAD2-like, RAD51-like, and Su(dx)-like—that undergo distinct AS events in gonadal tissues, leading to sex-specific structural domain alterations. These findings highlight the complexity of AS-mediated post-transcriptional regulation in L. vannamei and provide novel insights into the molecular mechanisms governing sex differentiation and gonadal development. Full article
Show Figures

Figure 1

21 pages, 768 KiB  
Review
Precocious Puberty and Benign Variants in Female Children: Etiology, Diagnostic Challenges, and Clinical Management
by Roberto Paparella, Arianna Bei, Lorenzo Brilli, Vittorio Maglione, Francesca Tarani, Marcello Niceta, Ida Pucarelli and Luigi Tarani
Endocrines 2025, 6(2), 29; https://doi.org/10.3390/endocrines6020029 - 17 Jun 2025
Viewed by 1220
Abstract
Precocious puberty, defined as the onset of secondary sexual characteristics before age 8 in girls, presents a diagnostic challenge in distinguishing between normal variants and pathological conditions requiring intervention. Central precocious puberty (CPP) results from early activation of the hypothalamic–pituitary–gonadal axis, whereas peripheral [...] Read more.
Precocious puberty, defined as the onset of secondary sexual characteristics before age 8 in girls, presents a diagnostic challenge in distinguishing between normal variants and pathological conditions requiring intervention. Central precocious puberty (CPP) results from early activation of the hypothalamic–pituitary–gonadal axis, whereas peripheral precocious puberty (PPP) arises from excess sex steroid production independent of gonadotropins. Benign variants, including premature thelarche and premature adrenarche, require careful differentiation to prevent unnecessary treatment. This review explores the physiological mechanisms governing puberty, the epidemiological trends influencing its early onset, and the genetic and environmental factors contributing to its variability in female children. A structured diagnostic approach incorporating clinical evaluation, hormone assessments, imaging studies, and genetic insights is discussed. Management strategies vary depending on the etiology, with gonadotropin-releasing hormone analogs recommended for CPP and targeted therapies for PPP. In contrast, benign variants often necessitate observation and periodic follow-up. Given the increasing prevalence of early puberty, further research is essential to refine diagnostic thresholds and optimize treatment protocols. Early and accurate identification of precocious puberty ensures appropriate intervention, mitigating potential risks associated with early maturation, including compromised adult height and psychosocial challenges. Full article
(This article belongs to the Section Pediatric Endocrinology and Growth Disorders)
Show Figures

Figure 1

13 pages, 6770 KiB  
Article
Differential Expression Characteristics of Two Isoforms nr5a2f and nr5a2m in Gonadal Differentiation of Chinese Giant Salamanders, Andrias davidianus
by Dan Hu, Guanglve Li, Guohua Zou, Jiaqing Xu, Wenyin Luo and Qiaomu Hu
Animals 2025, 15(11), 1667; https://doi.org/10.3390/ani15111667 - 5 Jun 2025
Viewed by 372
Abstract
Nr5a2 (nuclear receptor subfamily 5, group a, member 2) is involved in gonad development and sex hormone synthesis. In this study, the full length of Nr5a2f and Nr5a2m were obtained by Nr5a2 variable splicing from Andrias davidianus, and the tissue distribution was [...] Read more.
Nr5a2 (nuclear receptor subfamily 5, group a, member 2) is involved in gonad development and sex hormone synthesis. In this study, the full length of Nr5a2f and Nr5a2m were obtained by Nr5a2 variable splicing from Andrias davidianus, and the tissue distribution was detected. We identified Nr5a2f of 2455 bp and Nr5a2m of 2150 bp length, encoding 479 and 325 amino, respectively. We first characterized Nr5a2f and Nr5a2m gene expression in developing gonads. Results showed that Nr5a2f had significantly high expression in the ovary and little expression in other tissues, during the sex differentiation and sex reversal, Nr5a2f expression was gradually decreased in the ovary and the expression in the testis was significantly lower than in the ovary from 1 year to 6 year old. Significantly high expression was observed in the ovary and reversal ovary, while low expression was in the testis and reversal testis. While Nr5a2m expression exhibited the opposite profile, high expression was observed in the brain and testis. During sex differentiation and sex reversal, high expression was shown in the testis and low expression in the ovary from one year to six years old and significantly higher expression emerged in testis and reversal testis than in ovary and reversal ovary. In situ hybridization, results showed that Nr5a2f began to express in female undifferentiated gonads and the expression level increased from 48 dpf to 91, while Nr5a2m was expressed in male undifferentiated gonads. Three RNA interference sites were designed and we detected that site 293 exhibited a significant inhibitory effect in ovary cells. After Nr5a2f expression was inhibited by site 293, we observed that female-based gene Nr5a2f, foxl2 and cyp19 expression were decreased, while the male-based gene dmrt1 and cyp17 expression was increased. These results suggested that Nr5a2f and Nr5a2m exhibited different expression patterns in the process of sex differentiation, which provided a foundation for further functional characterizations. Full article
Show Figures

Figure 1

18 pages, 2450 KiB  
Article
The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus
by He Gao, Hongwei Yan, Tomomitsu Arai, Chak Aranyakanont, Shuang Li and Shigeho Ijiri
Int. J. Mol. Sci. 2025, 26(11), 5376; https://doi.org/10.3390/ijms26115376 - 4 Jun 2025
Viewed by 652
Abstract
Nile tilapia, as an ideal model for studying sex differentiation, is a popular farmed fish worldwide with a stable XX/XY sex-determination system. In tilapia, ovarian differentiation is triggered by estradiol-17β (E2) production in undifferentiated gonads. In a previous study, we suggested that follicle-stimulating [...] Read more.
Nile tilapia, as an ideal model for studying sex differentiation, is a popular farmed fish worldwide with a stable XX/XY sex-determination system. In tilapia, ovarian differentiation is triggered by estradiol-17β (E2) production in undifferentiated gonads. In a previous study, we suggested that follicle-stimulating hormone (FSH) signaling might be involved in ovarian differentiation in Nile tilapia. In this study, we further investigated the role of FSH signaling in ovarian differentiation via aromatase expression, which converts testosterone to E2. Masculinization of XX fry by aromatase inhibitor or 17α-methyltestosterone leads to suppression of fshr expression. Feminization of XY fry by E2 treatment increased fshr expression from 15 days after hatching, when E2 treatment was terminated. XX tilapia developed ovaries harboring aromatase expression if fsh and fshr were double knockdowns by morpholino-oligo injections. Finally, the transcriptional activity in the upstream region of the aromatase gene (cyp19a1a) was further increased by FSH stimulation when HEK293T cells were co-transfected with foxl2 and ad4bp/sf1. Collectively, this study suggests that the role of FSH signaling is not critical in tilapia ovarian differentiation; however, FSH signaling may have a compensatory role in ovarian differentiation by increasing cyp19a1a transcription in cooperation with foxl2 and ad4bp/sf1 in Nile tilapia. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 2170 KiB  
Article
Integrated Analysis of Differential Expression Profiles of miRNA and mRNA in Gonads of Scatophagus argus Provides New Insights into Sexually Biased Gene Expression
by Yaling Lei, Kaizhi Jiao, Yuanqing Huang, Yuwei Wu, Gang Shi, Hongjuan Shi, Huapu Chen, Siping Deng, Guangli Li, Wenjing Tao and Dongneng Jiang
Animals 2025, 15(11), 1564; https://doi.org/10.3390/ani15111564 - 27 May 2025
Viewed by 434
Abstract
The Scatophagus argus (S. argus) is a valuable aquaculture species in southern China, with females exhibiting significantly faster growth rates than males. However, the limited understanding of its sex determination and differentiation mechanisms poses challenges for sex-controlled breeding. MicroRNAs (miRNAs), key [...] Read more.
The Scatophagus argus (S. argus) is a valuable aquaculture species in southern China, with females exhibiting significantly faster growth rates than males. However, the limited understanding of its sex determination and differentiation mechanisms poses challenges for sex-controlled breeding. MicroRNAs (miRNAs), key post-transcriptional regulators, are known to modulate critical pathways governing sex determination and differentiation across several vertebrates. However, there is currently no research on miRNAs related to sex determination and differentiation in S. argus. In this study, we analyzed the expression profiles of miRNA and mRNA in the gonads of adult S. argus using high-throughput sequencing. Our analysis identified 2210 miRNAs, including 482 differentially expressed miRNAs (DEMs) between sexes. These DEMs targeted 3340 differentially expressed genes (DEGs), generating 13,773 regulatory interaction pairs. The expression of some DEGs related to sex determination and differentiation was found to be either positively or negatively correlated with expression of DEMs that might regulate them. The novel_miR_110/Foxl2, novel_miR_802/Gdf9, and novel_miR_1263/Gdf9 show opposing differential expression trends, whereas sar-miR-143-5p-4/Gsdf, sar-miR-143-5p-5/Gsdf, and novel_miR_379/Sox3 show consistent trends. The regulatory relationship between miRNA and gene in the gonads does not seem to be conserved among different fish species. This work advances our understanding of the molecular mechanisms underlying the sexual dimorphism of gonadal gene expression in S. argus. The identified miRNA–gene interactions may serve as potential targets for future sex-control strategies, contributing to advancements in aquaculture practices for this species. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

18 pages, 7688 KiB  
Article
The Function of Heat Shock Transcription Factors in Sex Differentiation in Cynoglossus semilaevis
by Zhijie Li, Xuexue Sun, Haipeng Yan, Lijun Wang, Xihong Li, Na Wang, Min Wei and Wenteng Xu
Animals 2025, 15(10), 1443; https://doi.org/10.3390/ani15101443 - 16 May 2025
Viewed by 356
Abstract
Chinese tongue sole (Cynoglossus semilaevis) is an important marine fish in China. It has sexual dimorphism. The weight and growth rate of female fish are much greater than those of male fish. However, high temperatures can induce sex reversal in genetic [...] Read more.
Chinese tongue sole (Cynoglossus semilaevis) is an important marine fish in China. It has sexual dimorphism. The weight and growth rate of female fish are much greater than those of male fish. However, high temperatures can induce sex reversal in genetic female fish (ZW) to phenotypic male fish; thus, identifying the genetic elements involved in temperature perception will provide the molecular basis for sex control. The heat shock transcription factor (hsf) is known as an important component of temperature sensing and mediates the heat shock response in fish such as Danio rerio; however, its function in C. semilaevis is unclear. In this study, five hsf genes (hsf1, hsf2, hsf4, hsf5a, and hsf5b) were identified in tongue sole and found to be expressed in the gonads at different developmental stages, peaking from 7M to 1Y. Gonadal in situ hybridization revealed that hsf gene signals were mainly localized in germ cells, e.g., sperm in the testis and all-stage oocytes in the ovary. Upon high-temperature stimulation, the expression of the hsf gene in the gonads increased gradually with increasing stimulation time, but different hsf genes presented different response patterns. After the RNA interference of hsf in the testis and ovarian cell lines, a series of sex-related genes, such as foxl2 and dmrt1, significantly changed. In vivo RNA interference had an effect on the female gonads and mainly affected neurl3 expression. On the basis of these data, we speculate that hsf responds to temperature stimulation and plays an important role in sex differentiation. This study helps elucidate the relationship between temperature sensing and sex differentiation in C. semilaevis. Full article
(This article belongs to the Special Issue Sex Determination and Differentiation in Aquatic Animals)
Show Figures

Figure 1

18 pages, 3873 KiB  
Article
Integrated Genomic and Transcriptomic Analysis Reveals a Transcription Factor Gene Set Facilitating Gonadal Differentiation in the Pacific Oyster Crassostrea gigas
by Yunwang Shen, Ziyi Wang, Yanglei Jia and Xiao Liu
Genes 2025, 16(5), 513; https://doi.org/10.3390/genes16050513 - 28 Apr 2025
Cited by 1 | Viewed by 480
Abstract
Background/Objectives: The Pacific oyster Crassostrea gigas has emerged as a promising model system for sex determination studies due to its complex reproduction strategy and sex reversal. Transcription factors (TFs) play crucial roles in sex determination and gonadal differentiation. Despite previous research revealing functions [...] Read more.
Background/Objectives: The Pacific oyster Crassostrea gigas has emerged as a promising model system for sex determination studies due to its complex reproduction strategy and sex reversal. Transcription factors (TFs) play crucial roles in sex determination and gonadal differentiation. Despite previous research revealing functions of several conserved sex-determining pathway genes, such as Dmrt1, Foxl2, and SoxH, little is known about the other essential TF regulators driving C. gigas gonadal differentiation and development. Methods: In this study, a systematic identification of TFs revealed 1167 TF genes in the C. gigas genome. Comparative transcriptome analysis of C. gigas female and male gonads demonstrated 123 differentially expressed TF genes. Results: The majority of these sex-related TF genes were up-regulated in female or male gonads from the inactive stage to the mature stage. Moreover, this TF gene set was deeply conserved and showed similar regulation in the Kumamoto oyster Crassostrea sikamea gonads, suggesting their important regulatory roles in gonadal differentiation and development in Crassostrea oysters. Furthermore, two BTB TF gene clusters were identified in the C. gigas genome, both of which were specifically expressed in the male gonad. Gene numbers of each BTB gene cluster showed significant variations among six Crassostrea species. Conclusions: To the best of our knowledge, this study provides the first report of the whole TF family in C. gigas. The sex-related TF gene set will be a valuable resource for further research aimed at uncovering TF gene regulatory networks in oyster sex determination and gonadal differentiation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 7256 KiB  
Article
Integrated Analysis of mRNA and miRNA Associated with Reproduction in Female and Male Gonads in Abalone (Haliotis discus hannai)
by Jianfang Huang, Mingcan Zhou, Zhenghan She, Jianming Chen and Caihuan Ke
Int. J. Mol. Sci. 2025, 26(7), 3235; https://doi.org/10.3390/ijms26073235 - 31 Mar 2025
Viewed by 630
Abstract
Reproduction and breeding are crucial to maintaining abalone aquaculture. Understanding the molecular underpinnings of sexual maturation is essential for advancing knowledge in reproductive biology. However, the molecular mechanisms of gonadal development in abalones remain poorly understood, particularly in microRNA (miRNA)-mediated regulation. Thus, this [...] Read more.
Reproduction and breeding are crucial to maintaining abalone aquaculture. Understanding the molecular underpinnings of sexual maturation is essential for advancing knowledge in reproductive biology. However, the molecular mechanisms of gonadal development in abalones remain poorly understood, particularly in microRNA (miRNA)-mediated regulation. Thus, this study conducted a comprehensive transcriptomic analysis of abalone Haliotis discus hannai (H. discus hannai) to identify genes and miRNAs associated with ovarian and testicular discovery. This study identified 685 differentially expressed (DE) genes between the H. discus hannai ovary (DD_ovary) and testis (DD_testis) groups, comprising 479 upregulated and 206 downregulated genes in the DD_ovary. Moreover, 137 miRNAs, including 83 novel and 54 known miRNAs, were detected, with 30 upregulated and 27 downregulated in the DD_ovary compared to the DD_testis. Bioinformatics analysis revealed that these miRNAs regulate key processes such as carbohydrate metabolic processes, kinase and hydrolase activity, and starch and sucrose metabolism, all potentially associated with reproductive traits. Further, key mRNA candidates, including Vitelline envelope sperm lysin receptor (Verl) and Testis-specific serine/threonine-protein kinase (Tssk) 1, and miRNAs such as novel_90 and novel_120, were identified as components of a functional miRNA-mRNA network associated with sexual maturity and sex determination. These key genes were verified using qRT-PCR and fluorescence in situ hybridization (FISH). These transcriptomic and miRNA datasets provide valuable resources for understanding abalone reproductive biology and may support molecular breeding strategies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1961 KiB  
Article
Molecular Mechanism of HINTW (HINT Gene in W-Chromosome)-Mediated UBE2I (Ubiquitin Conjugating Enzyme E2 I) Interaction in Female Differentiation of Chicken Embryos
by Changhua Sun, Jiuzhou Song, Malik Ahsan Ali, Hongyan Sun, Yingjie Niu, Qisheng Zuo, Wei Han, Bichun Li and Kai Jin
Genes 2025, 16(4), 366; https://doi.org/10.3390/genes16040366 - 22 Mar 2025
Viewed by 525
Abstract
Background/Objective: It has been established that HINTW plays a pivotal role in the female differentiation of chickens; nevertheless, the underlying molecular mechanism remains to be fully elucidated. Method: To investigate the role of HINTW in avian sex determination, a prokaryotic expression vector containing [...] Read more.
Background/Objective: It has been established that HINTW plays a pivotal role in the female differentiation of chickens; nevertheless, the underlying molecular mechanism remains to be fully elucidated. Method: To investigate the role of HINTW in avian sex determination, a prokaryotic expression vector containing its key structural domain was constructed, and its in vitro expression was achieved. Pull-down assays were performed to capture interacting proteins from male and female gonadal tissues, followed by a silver staining analysis to compare interaction profiles between ovaries and testes. Mass spectrometry was utilized to identify differentially bound proteins. Additionally, functional characterization and co-immunoprecipitation (Co-IP) assays were conducted to validate the interaction between HINTW and its candidate binding partner. Result: A total of 1590 differentially bound proteins were identified between ovarian and testicular tissues. Functional analysis and Co-IP assays confirmed a specific interaction between HINTW and UBE2I in the ovary, suggesting that HINTW may facilitate female differentiation in chicken embryos through its interaction with UBE2I. Conclusions: This study provides novel insights into the molecular mechanisms underlying HINTW-mediated female differentiation in chickens and contributes to a deeper understanding of avian sex determination. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3050 KiB  
Article
De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Mature Male and Female Gonads in Acrossocheilus parallens
by Weiqian Liang, Lanyuan Liu, Dingxian Chen, Kaifeng Wang, Shengyue Lin, Weijian Chen, Sixun Li, Binhua Deng, Qiang Li and Chong Han
Animals 2025, 15(6), 806; https://doi.org/10.3390/ani15060806 - 12 Mar 2025
Viewed by 580
Abstract
Acrossocheilus parallens has become an important commercial aquaculture species in southern China due to its high nutritional content and ornamental value. However, at present, there is very little research on its gonad development and reproductive regulation, which has restricted the development of its [...] Read more.
Acrossocheilus parallens has become an important commercial aquaculture species in southern China due to its high nutritional content and ornamental value. However, at present, there is very little research on its gonad development and reproductive regulation, which has restricted the development of its aquaculture industry. In this research, the gonadal transcriptome sequencing data of female and male A. parallens were first analyzed and compared. A total of 67,251 unigenes were successfully assembled and a total of 34,069 unigenes were annotated. After the comparative transcriptome analysis, a sum of 14,514 differentially expressed genes (DEGs) were identified between the male and female gonads, with 9111 having significantly high expression in the testes and 5403 having high expression in the ovaries. Additionally, 82 DEGs related to reproduction, gonad development and differentiation in the gonads were identified and the differential expression profiles of partial genes were further validated using real-time fluorescence quantitative PCR. These results provide basic data for further research on the functions of the genes and pathways related to sex differentiation and gonad development in A. parallens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5402 KiB  
Article
Comparative Transcriptomic Analysis of Male and Female Gonads in the Zig-Zag Eel (Mastacembelus armatus)
by Fangyu Cui, Yuanyuan Wang, Haiyan Liang, Yexin Yang, Zhiyong Jiang, Jiahuan Song, Chao Liu, Yuli Wu, Xidong Mu and Yi Liu
Fishes 2025, 10(3), 117; https://doi.org/10.3390/fishes10030117 - 6 Mar 2025
Viewed by 566
Abstract
The zig-zag eel (Mastacembelus armatus) is a unique economic fish species in China and exhibits significant dimorphism of male and female phenotypes. Cultivating all-male seedlings can significantly improve production efficiency. To investigate sex differentiation and gonadal development in M. armatus, [...] Read more.
The zig-zag eel (Mastacembelus armatus) is a unique economic fish species in China and exhibits significant dimorphism of male and female phenotypes. Cultivating all-male seedlings can significantly improve production efficiency. To investigate sex differentiation and gonadal development in M. armatus, high-throughput sequencing technology was used to analyze the transcriptomes of male and female gonads at different developmental stages, both before and after sex differentiation. We identified key genes involved in sex differentiation, male-specific differentially expressed genes (DEGs), including dmrt1, amh, sox9, gsdf, and dmrt2b, and female-biased DEGs, including foxl2, rspo1, gdf9, bmp15, and wnt4. GO and KEGG enrichment analyses revealed that signaling pathways such as MAPK, Wnt, and TGF-β play significant roles in sex differentiation in M. armatus. The expression levels of 13 sex-related genes, including dmrt1, sox9, amh, foxl2, rspo1, and wnt4, were determined by RT–qPCR in addition to RNA sequencing. RT-qPCR validation results were consistent with the transcriptomic data, confirming the reliability of our findings. This research provides valuable insights into the mechanisms of sex differentiation in M. armatus and lays a foundation for developing all-male populations in aquaculture. Full article
(This article belongs to the Special Issue Genetics and Breeding in Aquaculture)
Show Figures

Figure 1

Back to TopTop