The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus
Abstract
1. Introduction
2. Results
2.1. Effects of AI and MT on the Expression Profiles of fshr and lhr mRNA in XX Fry Gonads
2.2. Effects of E2 on the Expression Profiles of fshr and lhr mRNA in XY Fry Gonads
2.3. Specific Depletion of a Targeted Protein in Nile Tilapia Using MO
2.4. Effect of MO Injection on the Expression of Aromatase and gsdf in XX Gonads and Ovarian Differentiation
2.5. FSH Signaling Alone Did Not Activate cyp19a1a Expression in HEK293T
2.6. FSH Signaling Interacts with foxl2 and ad4bp/sf1 to Activate cyp19a1a Expression in HEK293T
3. Discussion
4. Materials and Methods
4.1. Experimental Fish
4.2. Treatment of XX Fry with AI or MT
4.3. Immersive Treatment of XY Fry with E2
4.4. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
4.5. MO Injections
4.6. Tissue Collection and Immunohistochemistry
4.7. Construction of Nile Tilapia cyp19a1a Promoter Reporter Plasmid and Expression Plasmids for Nile Tilapia foxl2 and ad4bp/sf1
4.8. Cell Culture, Transfection, and cyp19a1a Promoter Assay by Dual-Luciferase Assay
4.9. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
E2 | estradiol-17β |
FSH | follicle-stimulating hormone |
FSHR | FSH receptor |
LH | luteinizing hormone |
LHR | LH receptor |
GTHs | gonadotropic hormones |
GTHRs | GTH receptors |
AI | aromatase inhibitor |
MT | 17α-methyltestosterone |
dah | days after hatching |
MO | morpholino |
cAMP | cyclic adenosine monophosphate |
cyp19a1a | ovary-type aromatase gene |
foxl2 | forkhead box L2 |
ad4bp/sf1 | nuclear receptor subfamily 5, group A, member 1, nr5a1 |
gsdf | gonadal soma-derived factor |
dmrt1 | doublesex and mab-3 related transcription factor 1 |
rFsh | Nile tilapia specific recombinant Fsh protein |
References
- Ijiri, S.; Kaneko, H.; Kobayashi, T.; Wang, D.-S.; Sakai, F.; Paul-Prasanth, B.; Nakamura, M.; Nagahama, Y. Sexual Dimorphic Expression of Genes in Gonads During Early Differentiation of a Teleost Fish, the Nile tilapia Oreochromis niloticus. Biol. Reprod. 2008, 78, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Khaw, H.L.; Ponzoni, R.W.; Hamzah, A.; Abu-Bakar, K.R.; Bijma, P. Genotype by Production Environment Interaction in the GIFT Strain of Nile tilapia (Oreochromis niloticus). Aquaculture 2012, 326–329, 53–60. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Zhou, L.; Wang, D. Tilapia, a Good Model for Studying Reproductive Endocrinology. Gen. Comp. Endocrinol. 2024, 345, 114395. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Kobayashi, T.; Chang, X.-T.; Nagahama, Y. Gonadal Sex Differentiation in Teleost Fish. J. Exp. Zool. 1998, 281, 362–372. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kajiura-Kobayashi, H.; Nagahama, Y. Differential Expression of Vasa Homologue Gene in the Germ Cells during Oogenesis and Spermatogenesis in a Teleost Fish, Tilapia, Oreochromis niloticus. Mech. Dev. 2000, 99, 139–142. [Google Scholar] [CrossRef]
- Wang, D.-S.; Kobayashi, T.; Zhou, L.-Y.; Paul-Prasanth, B.; Ijiri, S.; Sakai, F.; Okubo, K.; Morohashi, K.; Nagahama, Y. Foxl2 Up-Regulates Aromatase Gene Transcription in a Female-Specific Manner by Binding to the Promoter as Well as Interacting with Ad4 Binding Protein/Steroidogenic Factor. Mol. Endocrinol. 2007, 21, 712–725. [Google Scholar] [CrossRef]
- Kaneko, H.; Ijiri, S.; Kobayashi, T.; Izumi, H.; Kuramochi, Y.; Wang, D.-S.; Mizuno, S.; Nagahama, Y. Gonadal Soma-Derived Factor (Gsdf), a TGF-Beta Superfamily Gene, Induces Testis Differentiation in the Teleost Fish Oreochromis niloticus. Mol. Cell. Endocrinol. 2015, 415, 87–99. [Google Scholar] [CrossRef]
- Pieau, C.; Dorizzi, M. Oestrogens and Temperature-Dependent Sex Determination in Reptiles: All Is in the Gonads. J. Endocrinol. 2004, 181, 367–377. [Google Scholar] [CrossRef]
- Villalpando, I.; Sánchez-Bringas, G.; Sánchez-Vargas, I.; Pedernera, E.; Villafán-Monroy, H. The P450 Aromatase (P450 Arom) Gene Is Asymmetrically Expressed in a Critical Period for Gonadal Sexual Differentiation in the Chick. Gen. Comp. Endocrinol. 2000, 117, 325–334. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kajiura-Kobayashi, H.; Nagahama, Y. Induction of XY Sex Reversal by Estrogen Involves Altered Gene Expression in a Teleost, Tilapia. Cytogenet. Genome. Res. 2003, 101, 289–294. [Google Scholar] [CrossRef]
- Nagahama, Y. Gonadal Steroid Hormones: Major Regulators of Gonadal Sex Differentiation and Gametogenesis in Fish. In Proceedings of the 6th International Symposium on Reproductive Physiology of Fish; Norberg, B., Kjesbu, O.S., Taranger, G.L., Andersson, E., Stefansson, S.O., Eds.; Institute of Marine Research and University of Bergen: Bergen, Norway, 2000; pp. 211–222. [Google Scholar]
- Nagahama, Y.; Nakamura, M.; Kitano, T.; Tokumoto, T. Sexual Plasticity in Fish: A Possible Target of Endocrine Disruptor Action. Environ. Sci. 2004, 11, 73–82. [Google Scholar] [PubMed]
- Yoshiura, Y.; Senthilkumaran, B.; Watanabe, M.; Oba, Y.; Kobayashi, T.; Nagahama, Y. Synergistic Expression of Ad4BP/SF-1 and Cytochrome P-450 Aromatase (Ovarian Type) in the Ovary of Nile tilapia, Oreochromis niloticus, During Vitellogenesis Suggests Transcriptional Interaction. Biol. Reprod. 2003, 68, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Steinkampf, M.P.; Mendelson, C.R.; Simpson, E.R. Regulation by Follicle-Stimulating Hormone of the Synthesis of Aromatase Cytochrome P-450 in Human Granulosa Cells. Mol. Endocrinol. 1987, 1, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, S.L.; Richards, J.S. Regulation of Cytochrome P450 Aromatase Messenger Ribonucleic Acid and Activity by Steroids and Gonadotropins in Rat Granulosa Cells. Endocrinology 1991, 129, 1452–1462. [Google Scholar] [CrossRef]
- Campbell, B.K.; Scaramuzzi, R.J.; Webb, R. Induction and Maintenance of Oestradiol and Immunoreactive Inhibin Production with FSH by Ovine Granulosa Cells Cultured in Serum-Free Media. J. Reprod. Fertil. 1996, 106, 7–16. [Google Scholar] [CrossRef]
- Gutiérrez, C.G.; Campbell, B.K.; Webb, R. Development of a Long-Term Bovine Granulosa Cell Culture System: Induction and Maintenance of Estradiol Production, Response to Follicle-Stimulating Hormone, and Morphological Characteristics. Biol. Reprod. 1997, 56, 608–616. [Google Scholar] [CrossRef]
- Suda, M.; Kodama, M.; Oshima, Y.; Yamamoto, K.; Nakamura, Y.; Tanaka, S.; Kikuyama, S.; Nakamura, M. Up-Regulation of FSHR Expression during Gonadal Sex Determination in the Frog Rana rugosa. Gen. Comp. Endocrinol. 2011, 172, 475–486. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yamaguchi, S.; Hirai, T.; Kitano, T. Follicle-Stimulating Hormone Signaling and Foxl2 Are Involved in Transcriptional Regulation of Aromatase Gene during Gonadal Sex Differentiation in Japanese flounder, Paralichthys olivaceus. Biochem. Biophys. Res. Commun. 2007, 359, 935–940. [Google Scholar] [CrossRef]
- Yan, H.; Ijiri, S.; Wu, Q.; Kobayashi, T.; Li, S.; Nakaseko, T.; Adachi, S.; Nagahama, Y. Expression Patterns of Gonadotropin Hormones and Their Receptors During Early Sexual Differentiation in Nile tilapia Oreochromis niloticus. Biol. Reprod. 2012, 87, 116. [Google Scholar] [CrossRef]
- Dierich, A.; Sairam, M.R.; Monaco, L.; Fimia, G.M.; Gansmuller, A.; LeMeur, M.; Sassone-Corsi, P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc. Natl. Acad. Sci. USA 1998, 95, 13612–13617. [Google Scholar] [CrossRef]
- Ohta, T.; Miyake, H.; Miura, C.; Kamei, H.; Aida, K.; Miura, T. Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica. Biol. Reprod. 2007, 77, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Nijenhuis, W.; Male, R.; Swanson, P.; Bogerd, J.; Taranger, G.L.; Schulz, R.W. Pharmacological characterization, localization and quantification of expression of gonadotropin receptors in Atlantic salmon (Salmo salar L.) ovaries. Gen. Comp. Endocrinol. 2009, 163, 329–339. [Google Scholar] [CrossRef] [PubMed]
- García-López, A.; Bogerd, J.; Granneman, J.C.M.; Van Dijk, W.; Trant, J.M.; Taranger, G.L.; Schulz, R.W. Leydig cells express follicle-stimulating hormone receptors in African catfish. Endocrinology 2009, 150, 357–365. [Google Scholar] [CrossRef] [PubMed]
- García-López, A.; de Jonge, H.; Nóbrega, R.H.; de Waal, P.P.; van Dijk, W.; Hemrika, W.; Taranger, G.L.; Bogerd, J.; Schulz, R.W. Studies in zebrafish reveal unusual cellular expression patterns of gonadotropin receptor messenger ribonucleic acids in the testis and unexpected functional differentiation of the gonadotropins. Endocrinology 2010, 151, 2349–2360. [Google Scholar] [CrossRef]
- Kitano, T.; Takenaka, T.; Takagi, H.; Yoshiura, Y.; Kazeto, Y.; Hirai, T.; Mukai, K.; Nozu, R. Roles of Gonadotropin Receptors in Sexual Development of Medaka. Cells 2022, 11, 387. [Google Scholar] [CrossRef]
- Nagahama, Y.; Yamashita, M. Regulation of oocyte maturation in fish. Dev. Growth Differ. 2008, 50, S195–S219. [Google Scholar] [CrossRef]
- Li, J.; Chu, L.; Sun, X.; Liu, Y.; Cheng, C.H. IGFs mediate the action of LH on oocyte maturation in zebrafish. Mol. Endocrinol. 2015, 29, 373–383. [Google Scholar] [CrossRef]
- Wassermann, G.J.; Afonso, L.O.B. Sex Reversal in Nile tilapia (Oreochromis niloticus linnaeus) by Androgen Immersion. Aquac. Res. 2003, 34, 65–71. [Google Scholar] [CrossRef]
- Afonso, L.O.B.; Wassermann, G.J.; Terezinha de Oliveira, R. Sex Reversal in Nile tilapia (Oreochromis niloticus) Using a Nonsteroidal Aromatase Inhibitor. J. Exp. Zool. 2001, 290, 177–181. [Google Scholar] [CrossRef]
- Bhandari, R.K.; Nakamura, M.; Kobayashi, T.; Nagahama, Y. Suppression of Steroidogenic Enzyme Expression during Androgen-Induced Sex Reversal in Nile tilapia (Oreochromis niloticus). Gen. Comp. Endocrinol. 2006, 145, 20–24. [Google Scholar] [CrossRef]
- Vizziano-Cantonnet, D.; Baron, D.; Mahè, S.; Cauty, C.; Fostier, A.; Guiguen, Y. Estrogen Treatment Up-Regulates Female Genes but Does Not Suppress All Early Testicular Markers during Rainbow trout Male-to-Female Gonadal Trans differentiation. J. Mol. Endocrinol. 2008, 41, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Carlone, D.L.; Richards, J.S. Functional Interactions, Phosphorylation, and Levels of 3′,5′-Cyclic Adenosine Monophosphate-Regulatory Element Binding Protein and Steroidogenic Factor-1 Mediate Hormone-Regulated and Constitutive Expression of Aromatase in Gonadal Cells. Mol. Endocrinol. 1997, 11, 292–304. [Google Scholar] [PubMed]
- Young, M.; McPhaul, M.J. A Steroidogenic Factor-1-Binding Site and Cyclic Adenosine 3′,5′-Monophosphate Response Element-Like Elements Are Required for the Activity of the Rat Aromatase Promoter in Rat Leydig Tumor Cell Lines. Endocrinology 1998, 139, 5082–5093. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Yang, H.; Li, M.; Shi, H.; Zhang, X.; Wang, D. Gsdf Is a Downstream Gene of Dmrt1 That Functions in the Male Sex Determination Pathway of the Nile tilapia. Mol. Reprod. Dev. 2016, 83, 497–508. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Zhao, J.; Shi, H.; Zeng, S.; Ye, K.; Jiang, D.; Zhou, L.; Sun, L.; Tao, W.; et al. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile tilapia, Oreochromis niloticus. PLoS Genet. 2015, 11, e1005678. [Google Scholar] [CrossRef]
- Gao, H.; Arai, T.; Aranyakanont, C.; Li, D.; Tada, M.; Ijiri, S. Role of Follicle-Stimulating Hormone in Gonadal Sex Differentiation via Expression of Steroidogenic Enzymes in Nile tilapia, Oreochromis niloticus. Fish. Sci. 2025, 91, 13–23. [Google Scholar] [CrossRef]
- Kumar, T.R.; Wang, Y.; Lu, N.; Matzuk, M.M. Follicle Stimulating Hormone Is Required for Ovarian Follicle Maturation but Not Male Fertility. Nature Genet. 1997, 15, 201–204. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Y.; Matzuk, M.M.; Kumar, T.R. Targeted Disruption of Luteinizing Hormone β-Subunit Leads to Hypogonadism, Defects in Gonadal Steroidogenesis, and Infertility. Proc. Natl. Acad. Sci. USA 2004, 101, 17294–17299. [Google Scholar] [CrossRef]
- Danilovich, N.; Babu, P.S.; Xing, W.; Gerdes, M.; Krishnamurthy, H.; Sairam, M.R. Estrogen Deficiency, Obesity, and Skeletal Abnormalities in Follicle-Stimulating Hormone Receptor Knockout (FORKO) Female Mice. Endocrinology 2000, 141, 4295–4308. [Google Scholar] [CrossRef]
- Murozumi, N.; Nakashima, R.; Hirai, T.; Kamei, Y.; Ishikawa-Fujiwara, T.; Todo, T.; Kitano, T. Loss of Follicle-Stimulating Hormone Receptor Function Causes Masculinization and Suppression of Ovarian Development in Genetically Female Medaka. Endocrinology 2014, 155, 3136–3145. [Google Scholar] [CrossRef]
- Zhang, Z.; Lau, S.-W.; Zhang, L.; Ge, W. Disruption of Zebrafish Follicle-Stimulating Hormone Receptor (fshr) But Not Luteinizing Hormone Receptor (lhcgr) Gene by TALEN Leads to Failed Follicle Activation in Females Followed by Sexual Reversal to Males. Endocrinology 2015, 156, 3747–3762. [Google Scholar] [CrossRef]
Experiment | Name | Sequence |
---|---|---|
qPCR | fshr-sense | 5′-CGGGCTGAGGATTTTTCCA-3′ |
fshr-antisense | 5′-TGTTGTCCTGAAGATCCAGCAG-3′ | |
lhr-sense | 5′-CAGTGCAGAATATCAACAGCCTGA-3′ | |
lhr-antisense | 5′-TGTTAGAGATGCTCAAATATTCCAGCTT-3′ | |
cyp19a1a promoter assay | cyp19a1a promoter fragment-sense | 5′-TACGCGTGCTAGCCCCACAGCCTCCATTCACCA-3′ |
cyp19a1a promoter fragment-antisense | 5′-GCAGATCTCGAGCCCGAGAAGGGTGATGATGTAGAAC-3′ | |
foxl2-ORF-sense | 5′-TAGGCTAGCCTCGAGATGATGGCCACTTACCAAAAC-3′ | |
foxl2-ORF-antisense | 5′-TACCACGCGTGAATTTCAAATATCAATCCTCGTGTGTAAC-3′ | |
ad4bp/sf1-ORF-sense | 5′-TAGGCTAGCCTCGAGATGTTGGGAGACAAGGCTCA-3′ | |
ad4bp/sf1-ORF-antisense | 5′-TACCACGCGTGAATTTCACACACACGCCCTCTTAG-3′ | |
MO-knock down | fshr-MO | 5′-GTGTCATTACCAGCATCATTTCAGT-3′ |
fshr-MO control | 5′-GTcTgATTACgAGCATCATTTgAcT-3′ | |
fsh-MO | 5′-ATCCTCTGCCGGATGCACTACACGC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Yan, H.; Arai, T.; Aranyakanont, C.; Li, S.; Ijiri, S. The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus. Int. J. Mol. Sci. 2025, 26, 5376. https://doi.org/10.3390/ijms26115376
Gao H, Yan H, Arai T, Aranyakanont C, Li S, Ijiri S. The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus. International Journal of Molecular Sciences. 2025; 26(11):5376. https://doi.org/10.3390/ijms26115376
Chicago/Turabian StyleGao, He, Hongwei Yan, Tomomitsu Arai, Chak Aranyakanont, Shuang Li, and Shigeho Ijiri. 2025. "The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus" International Journal of Molecular Sciences 26, no. 11: 5376. https://doi.org/10.3390/ijms26115376
APA StyleGao, H., Yan, H., Arai, T., Aranyakanont, C., Li, S., & Ijiri, S. (2025). The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus. International Journal of Molecular Sciences, 26(11), 5376. https://doi.org/10.3390/ijms26115376