Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (128)

Search Parameters:
Keywords = gold-oxide nanostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3248 KiB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Viewed by 255
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

30 pages, 3682 KiB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 676
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

12 pages, 3717 KiB  
Article
Sustainable Eco-Friendly Synthesis of Gold Nanoparticles Anchored on Graphene Oxide: Influence of Reductant Concentration on Nanoparticle Morphology
by Mariano Palomba, Gianfranco Carotenuto, Maria Grazia Raucci, Antonio Ruotolo and Angela Longo
Materials 2025, 18(13), 3003; https://doi.org/10.3390/ma18133003 - 25 Jun 2025
Viewed by 383
Abstract
Gold nanoparticles (AuNPs) anchored on graphene oxide (GO) have had a significant interest for their unique optical, electrical, and catalytic properties. This study presents an eco-friendly and sustainable synthesis of AuNPs on GO sheets using L-ascorbic acid (L-aa) as a green reducing agent [...] Read more.
Gold nanoparticles (AuNPs) anchored on graphene oxide (GO) have had a significant interest for their unique optical, electrical, and catalytic properties. This study presents an eco-friendly and sustainable synthesis of AuNPs on GO sheets using L-ascorbic acid (L-aa) as a green reducing agent and polyvinylpyrrolidone (PVP) as a stabilizer. The effect of reductant concentration on nanoparticle morphology was systematically investigated using UV–Visible spectroscopy and transmission electron microscopy (TEM). Results indicate the formation of AuNPs anchored on GO sheets and that an increase in the L-aa amount leads to both an increase in nanoparticle size and a morphological transition from spherical to irregular structures. The simultaneous nucleation and growth processes result in the formation of multiple families of nanostructures, as confirmed by TEM analysis, which reveals two distinct size distributions. At higher L-aa concentrations, the nanoparticles shape evolves into irregular morphologies due to selective growth along a preferential facet. This approach not only enables precise control over AuNP size and shape but also aligns with green chemistry principles, making it a promising route for applications in plasmonics, sensors, and photothermal therapy. Full article
Show Figures

Figure 1

21 pages, 6541 KiB  
Article
A Sensitive Epinephrine Sensor Based on Photochemically Synthesized Gold Nanoparticles
by Eyup Metin, Gonul S. Batibay, Meral Aydin and Nergis Arsu
Chemosensors 2025, 13(7), 229; https://doi.org/10.3390/chemosensors13070229 - 23 Jun 2025
Viewed by 502
Abstract
In this study, gold nanoparticles (AuNPs) and AuNPs-graphene oxide (AuNPs@GO) nanostructures were synthesized in aqueous media using an in-situ photochemical method with bis-acyl phosphine oxide (BAPO) photoinitiator as a photoreducing agent in the presence of HAuCl4. The parameters for synthesis were [...] Read more.
In this study, gold nanoparticles (AuNPs) and AuNPs-graphene oxide (AuNPs@GO) nanostructures were synthesized in aqueous media using an in-situ photochemical method with bis-acyl phosphine oxide (BAPO) photoinitiator as a photoreducing agent in the presence of HAuCl4. The parameters for synthesis were arranged to obtain stable and reproducible dispersions with desirable chemical and optical properties. Both AuNPs and AuNPs@GO were employed as sensing platforms for the detection of epinephrine in two concentration ranges: micromolar (µM) and nanomolar (nM). Field emission scanning electron microscopy (FE-SEM), Dynamic Light Scattering (DLS), UV-Vis absorption, fluorescence emission, and Fourier Transform Infrared (FT-IR) spectroscopy techniques were used to investigate the morphological, optical, and chemical properties of the nanostructures as well as their sensing ability towards epinephrine. Fluorescence spectroscopy played a crucial role in demonstrating the high sensitivity and effectiveness of these systems, especially in the low concentration (nM) range, confirming their strong potential as fluorescence-based sensors. By constructing calibration curves on best linear subranges, limit of detection (LOD) and limit of quantification (LOQ) were calculated with two different approaches, SEintercept and Sy/x. Among all the investigated nanostructures, AuNPs@GO exhibited the highest sensitivity towards epinephrine. The efficiency and reproducibility of the in-situ photochemical AuNPs synthesis approach highlight its applicability in small-molecule detection and particularly in analytical and bio-sensing applications. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Graphical abstract

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1090
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

20 pages, 34413 KiB  
Article
Fabrication of a Novel Silica–Alumina-Based Photocatalyst Incorporating Carbon Nanotubes and Nanofiber Nanostructures Using an Unconventional Technique for Light-Driven Water Purification
by Osama Saber, Abdullah Alshehab, Nagih M. Shaalan, Asmaa M. Hegazy, Fatimah K. Aljasem and Aya Osama
Catalysts 2025, 15(5), 452; https://doi.org/10.3390/catal15050452 - 6 May 2025
Viewed by 523
Abstract
The advancement of optical materials has garnered significant interest from the global scientific community in the pursuit of efficient photocatalysts for the purification of water using light. This challenge, which cannot be addressed using traditional methods, is tackled in the present study utilizing [...] Read more.
The advancement of optical materials has garnered significant interest from the global scientific community in the pursuit of efficient photocatalysts for the purification of water using light. This challenge, which cannot be addressed using traditional methods, is tackled in the present study utilizing unconventional approaches. This study presents the fabrication of an effective photocatalyst using an unconventional approach that employs explosive reactions. This method successfully produces 3D nanostructures composed of carbon nanotubes (CNTs), carbon nanofibers (CNFs), and silica–alumina nanoparticles at temperatures below 270 °C. Gold-supported silica–alumina–CNT–CNF nanostructures were synthesized and characterized using XRD, TEM, SEM, and EDX, in addition to mapping images. To study and determine the photoactivity of these produced nanostructures, two well-known photocatalysts—titanium dioxide and zinc oxide—were synthesized at the nanoscale for comparison. The results showed that the presence of CNTs and CNFs significantly reduced the band gap energy from 5.5 eV to 1.65 eV and 3.65 eV, respectively, after modifying the silica–alumina structure. In addition, complete degradation of green dye was achieved after 35 min of light exposure using the modified silica–alumina structure. Additionally, the surface properties of the modified silica–alumina had a positive role in accelerating the photocatalytic decomposition of the green dye NGB. A kinetic study confirmed that the modified silica–alumina functions as a promising additive for optical applications, accelerating the photocatalytic degradation of NGB to a rate three times faster than that of the prepared titanium dioxide and six times that of the prepared zinc oxide. Full article
Show Figures

Figure 1

17 pages, 8911 KiB  
Article
Study on Hybrid Assemblies of Graphene and Conducting Polymers with Embedded Gold Nanoparticles for Potential Electrode Purposes
by Alexandru F. Trandabat, Oliver Daniel Schreiner, Thomas Gabriel Schreiner, Olga Plopa and Romeo Cristian Ciobanu
Chemosensors 2025, 13(4), 130; https://doi.org/10.3390/chemosensors13040130 - 4 Apr 2025
Viewed by 776
Abstract
This article outlines the method of creating electrodes for electrochemical sensors using hybrid nanostructures composed of graphene and conducting polymers with insertion of gold nanoparticles. The technology employed for graphene dispersion and support stabilization was based on the chemical vapor deposition technique followed [...] Read more.
This article outlines the method of creating electrodes for electrochemical sensors using hybrid nanostructures composed of graphene and conducting polymers with insertion of gold nanoparticles. The technology employed for graphene dispersion and support stabilization was based on the chemical vapor deposition technique followed by electrochemical delamination. The method used to obtain hybrid nanostructures from graphene and conductive polymers was drop-casting, utilizing solutions of P3HT, PANI-EB, and F8T2. Additionally, the insertion of gold nanoparticles utilized an innovative dip-coating technique, with the graphene-conducting polymer frameworks submerged in a HAuCl4/2-propanol solution and subsequently subjected to controlled heating. The integration of gold nanoparticles differs notably, with P3HT showing the least adhesion of gold nanoparticles, while PANI-EB exhibits the highest. An inkjet printer was employed to create electrodes with metallization accomplished through the use of commercial silver ink. Notable variations in roughness (grain size) result in unique behaviors of these structures, and therefore, any potential differences in the sensitivity of the generated sensing structures can be more thoroughly understood through this spatial arrangement. The electrochemical experiments utilized a diluted sulfuric acid solution at three different scan rates. The oxidation and reduction potentials of the structures seem fairly alike. Nevertheless, a notable difference is seen in the anodic and cathodic current densities, which appear to be largely influenced by the active surface of gold nanoparticles linked to the polymeric grains. The graphene–PANI-EB structure with Au nanoparticles showed the highest responsiveness and will be further evaluated for biomedical applications. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

11 pages, 6125 KiB  
Communication
Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials
by Grazia Giuseppina Politano
Photonics 2025, 12(2), 121; https://doi.org/10.3390/photonics12020121 - 29 Jan 2025
Cited by 2 | Viewed by 960
Abstract
Graphene oxide (GO) has emerged as a carbon-based nanomaterial providing a different pathway to graphene. One of its most notable features is the ability to partially reduce it, resulting in graphene-like sheets through the elimination of oxygen-including functional groups. In this paper, the [...] Read more.
Graphene oxide (GO) has emerged as a carbon-based nanomaterial providing a different pathway to graphene. One of its most notable features is the ability to partially reduce it, resulting in graphene-like sheets through the elimination of oxygen-including functional groups. In this paper, the effect of localized interactions in an Ag/GO/Au multilayer system was studied to explore its potential for photonic applications. GO was dip-coated onto magnetron-sputtered silver, followed by the deposition of a thin gold film to form an Ag/GO/Au structure. Micro-Raman Spectroscopy, SEM and Variable Angle Ellipsometry (VASE) measurements were performed on the Ag/GO/Au structure. An interesting behavior of the GO deposited on magnetron-sputtered silver with the formation of Ag nanostructures on top of the GO layer is reported. In addition to typical GO bands, Micro-Raman analysis reveals peaks such as the 1478 cm−1 band, indicating a transition from sp3 to sp2 hybridization, confirming the partial reduction of GO. Additionally, calculations based on effective medium theory (EMT) highlight the potential of Ag/GO structures in hyperbolic metamaterials for photonics. The medium exhibits dielectric behavior up to 323 nm, transitions to type I HMM between 323 and 400 nm and undergoes an Epsilon Near Zero and Pole (ENZP) transition at 400 nm, followed by type II HMM behavior. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

15 pages, 3125 KiB  
Article
The Graphene Oxide/Gold Nanoparticles Hybrid Layers for Hydrogen Peroxide Sensing—Effect of the Nanoparticles Shape and Importance of the Graphene Oxide Defects for the Sensitivity
by Krystian Pupel, Kacper Jędrzejewski, Sylwia Zoladek, Marcin Palys and Barbara Palys
Molecules 2025, 30(3), 533; https://doi.org/10.3390/molecules30030533 - 24 Jan 2025
Cited by 2 | Viewed by 1011
Abstract
Graphene oxide (GO) and reduced graphene oxides (RGOs) show intrinsic electrocatalytic activity towards the electrocatalytic reduction of H2O2. Combining these materials with gold nanoparticles results in highly sensitive electrodes, with sensitivity in the nanomolar range because the electrocatalytic properties [...] Read more.
Graphene oxide (GO) and reduced graphene oxides (RGOs) show intrinsic electrocatalytic activity towards the electrocatalytic reduction of H2O2. Combining these materials with gold nanoparticles results in highly sensitive electrodes, with sensitivity in the nanomolar range because the electrocatalytic properties of GO and nanoparticles are synergistically enhanced. Understanding the factors influencing such synergy is crucial to designing novel catalytically active materials. In this contribution, we study gold nanostructures having shapes of nanospheres (AuNSs), nanourchins (AuNUs), and nanobowls (AuNBs) combined with GO or electrochemically reduced graphene oxide (ERGO). We investigate the amperometric responses of the hybrid layers to H2O2. The AuNUs show the highest sensitivity compared to AuNBs and AuNSs. All materials are characterized by electron microscopy and Raman spectroscopy. Raman spectra are deconvoluted by fitting them with five components in the 1000–1800 cm−1 range (D*, D, D”, G, and D′). The interaction between nanoparticles and GO is visualized by the relative intensities of Raman bands (ID/IG) and other parameters in the Raman spectra, like various D”, D* band positions and intensities. The ID/IG parameter is linearly correlated with the sensitivity (R2 = 0.97), suggesting that defects in the graphene structure are significant factors influencing the electrocatalytic H2O2 reduction. Full article
(This article belongs to the Special Issue Advances in Electrochemical Nanocomposites)
Show Figures

Figure 1

16 pages, 34624 KiB  
Article
Controlling the Carbon Species to Design Effective Photocatalysts Based on Explosive Reactions for Purifying Water by Light
by Osama Saber, Chawki Awada, Asmaa M. Hegazy, Aya Osama, Nagih M. Shaalan, Adil Alshoaibi and Mostafa Osama
Catalysts 2025, 15(1), 96; https://doi.org/10.3390/catal15010096 - 20 Jan 2025
Viewed by 889
Abstract
The international challenges of water directed the scientists to face the environment-related problems because of the high concentrations of industrial pollutants. In this direction, the present study focuses on designing effective photocatalysts by explosive technique to use light as a driving force for [...] Read more.
The international challenges of water directed the scientists to face the environment-related problems because of the high concentrations of industrial pollutants. In this direction, the present study focuses on designing effective photocatalysts by explosive technique to use light as a driving force for removing industrial pollutants from water. These photocatalysts consist of gold, carbon species (nanotubes, nanofibers, and nanoparticles), and aluminum oxides. By controlling the explosive processes, two photocatalysts were prepared; one was based on carbon nanotubes and nanofibers combined with aluminum oxide, and the other contained the nanoparticles of both carbon and aluminum oxides. The Raman spectra, transmission electronic microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and mapping images confirmed the presence of these nanostructures in homogenous nanocomposites. The optical properties of the prepared nanocomposites were evaluated by UV–Vis absorbance, band gap energy, and photoluminescence (PL) measurements. The experimental results indicated that the presence of CNTs and CNFs led to a lowering of the band gap energy of the prepared nanocomposite to 2.3 eV. This band gap energy is suitable for obtaining an effective photocatalyst. This speculation was confirmed through photocatalytic degradation of the green dyes. The prepared photocatalyst caused a complete removal of the dyes from water after 21 min of light radiation. PL measurement indicated that the CNTs and CNFs have important roles in accelerating the photocatalytic degradation of the pollutants. A kinetic study confirmed that carbon nanotubes boosted the efficiency of the photocatalyst to accelerate the reaction rate of the photocatalytic decomposition of the green dyes more than four times faster than the photocatalyst based on the carbon nanoparticles. Finally, this study concluded that CNTs and CNFs are more favorable than carbon nanoparticles for designing effective photocatalysts to meet the special requirements of the markets of pollutant removal and water purification. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

23 pages, 2695 KiB  
Review
Lipidic and Inorganic Nanoparticles for Targeted Glioblastoma Multiforme Therapy: Advances and Strategies
by Ewelina Musielak and Violetta Krajka-Kuźniak
Micro 2025, 5(1), 2; https://doi.org/10.3390/micro5010002 - 3 Jan 2025
Cited by 8 | Viewed by 2528
Abstract
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems [...] Read more.
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems hold great potential to revolutionize drug delivery. Glioblastoma multiforme (GBM) is one of the most common and lethal brain tumors, and its heterogeneous and aggressive nature complicates current treatments, which primarily rely on surgery. One of the significant obstacles to effective treatment is the poor penetration of drugs across the BBB. Moreover, GBM is often referred to as a “cold” tumor, characterized by an immunosuppressive tumor microenvironment (TME) and minimal immune cell infiltration, which limits the effectiveness of immunotherapies. Therefore, developing novel, more effective treatments is critical to improving the survival rate of GBM patients. Current strategies for enhancing treatment outcomes focus on the controlled, targeted delivery of chemotherapeutic agents to GBM cells across the BBB using nanoparticles. These therapies must be designed to engage specialized transport systems, allowing for efficient BBB penetration, improved therapeutic efficacy, and reduced systemic toxicity and drug degradation. Lipid and inorganic nanoparticles can enhance brain delivery while minimizing side effects. These formulations may include epitopes—small antigen fragments that bind directly to free antibodies, B cell receptors, or T cell receptors—that interact with transport systems and enable BBB crossing, thereby boosting therapeutic efficacy. Lipid-based nanoparticles (LNPs), such as liposomes, niosomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), are among the most promising delivery systems due to their unique properties, including their size, surface modification capabilities, and proven biosafety. Additionally, inorganic nanoparticles such as gold nanoparticles, mesoporous silica, superparamagnetic iron oxide nanoparticles, and dendrimers offer promising alternatives. Inorganic nanoparticles (INPs) can be easily engineered, and their surfaces can be modified with various elements or biological ligands to enhance BBB penetration, targeted delivery, and biocompatibility. Strategies such as surface engineering and functionalization have been employed to ensure biocompatibility and reduce cytotoxicity, making these nanoparticles safer for clinical applications. The use of INPs in GBM treatment has shown promise in improving the efficacy of traditional therapies like chemotherapy, radiotherapy, and gene therapy, as well as advancing newer treatment strategies, including immunotherapy, photothermal and photodynamic therapies, and magnetic hyperthermia. This article reviews the latest research on lipid and inorganic nanoparticles in treating GBM, focusing on active and passive targeting approaches. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

13 pages, 14616 KiB  
Article
Impedance Spectroscopy Study of Charge Transfer in the Bulk and Across the Interface in Networked SnO2/Ga2O3 Core–Shell Nanobelts in Ambient Air
by Maciej Krawczyk, Ryszard Korbutowicz and Patrycja Suchorska-Woźniak
Sensors 2024, 24(19), 6173; https://doi.org/10.3390/s24196173 - 24 Sep 2024
Viewed by 1137
Abstract
Metal oxide core–shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence [...] Read more.
Metal oxide core–shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence of the shell material on the transportation of the electric charge carriers along these structures is still not very well understood. This is due to homo-, hetero- and metal/semiconductor junctions, which make it difficult to investigate the electric charge transfer using direct current methods. However, in order to improve the gas-sensing properties of these complex structures, it is necessary to first establish a good understanding of the electric charge transfer in ambient air. In this article, we present an impedance spectroscopy study of networked SnO2/Ga2O3 core–shell nanobelts in ambient air. Tin dioxide nanobelts were grown directly on interdigitated gold electrodes, using the thermal sublimation method, via the vapor–liquid–solid (VLS) mechanism. Two forms of a gallium oxide shell of varying thickness were prepared via halide vapor-phase epitaxy (HVPE), and the impedance spectra were measured at 189–768 °C. The bulk resistance of the core–shell nanobelts was found to be reduced due to the formation of an electron accumulation layer in the SnO2 core. At temperatures above 530 °C, the thermal reduction of SnO2 and the associated decrease in its work function caused electrons to flow from the accumulation layer into the Ga2O3 shell, which resulted in an increase in bulk resistance. The junction resistance of said core–shell nanostructures was comparable to that of SnO2 nanobelts, as both structures are likely connected through existing SnO2/SnO2 homojunctions comprising thin amorphous layers. Full article
Show Figures

Figure 1

12 pages, 14201 KiB  
Article
Development of Novel Surface-Enhanced Raman Spectroscopy-Based Biosensors by Controlling the Roughness of Gold/Alumina Platforms for Highly Sensitive Detection of Pyocyanin Secreted from Pseudomonas aeruginosa
by Waleed A. El-Said, Tamer S. Saleh, Abdullah Saad Al-Bogami, Mohmmad Younus Wani and Jeong-woo Choi
Biosensors 2024, 14(8), 399; https://doi.org/10.3390/bios14080399 - 19 Aug 2024
Cited by 3 | Viewed by 1776
Abstract
Pyocyanin is considered a maker of Pseudomonas aeruginosa (P. aeruginosa) infection. Pyocyanin is among the toxins released by the P. aeruginosa bacteria. Therefore, the development of a direct detection of PYO is crucial due to its importance. Among the different optical [...] Read more.
Pyocyanin is considered a maker of Pseudomonas aeruginosa (P. aeruginosa) infection. Pyocyanin is among the toxins released by the P. aeruginosa bacteria. Therefore, the development of a direct detection of PYO is crucial due to its importance. Among the different optical techniques, the Raman technique showed unique advantages because of its fingerprint data, no sample preparation, and high sensitivity besides its ease of use. Noble metal nanostructures were used to improve the Raman response based on the surface-enhanced Raman scattering (SERS) technique. Anodic metal oxide attracts much interest due to its unique morphology and applications. The porous metal structure provides a large surface area that could be used as a hard template for periodic nanostructure array fabrication. Porous shapes and sizes could be controlled by controlling the anodization parameters, including the anodization voltage, current, temperature, and time, besides the metal purity and the electrolyte type/concentration. The anodization of aluminum foil results in anodic aluminum oxide (AAO) formation with different roughness. Here, we will use the roughness as hotspot centers to enhance the Raman signals. Firstly, a thin film of gold was deposited to develop gold/alumina (Au/AAO) platforms and then applied as SERS-active surfaces. The morphology and roughness of the developed substrates were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The Au/AAO substrates were used for monitoring pyocyanin secreted from Pseudomonas aeruginosa microorganisms based on the SERS technique. The results showed that the roughness degree affects the enhancement efficiency of this sensor. The high enhancement was obtained in the case of depositing a 30 nm layer of gold onto the second anodized substrates. The developed sensor showed high sensitivity toward pyocyanin with a limit of detection of 96 nM with a linear response over a dynamic range from 1 µM to 9 µM. Full article
(This article belongs to the Special Issue The Emerging Techniques in Biosensors and Bioelectronics)
Show Figures

Graphical abstract

15 pages, 13318 KiB  
Article
Fabrication of Nanostructures Consisting of Composite Nanoparticles by Open-Air PLD
by Anna Og Dikovska, Daniela Karashanova, Genoveva Atanasova, Georgi Avdeev, Petar Atanasov and Nikolay N. Nedyalkov
Coatings 2024, 14(5), 527; https://doi.org/10.3390/coatings14050527 - 24 Apr 2024
Viewed by 1726
Abstract
We present a two-step physical method for the fabrication of composite nanoparticle-based nanostructures. The proposed method is based on the pulsed laser deposition (PLD) technique performed sequentially in vacuum and in air. As a first step, thin-alloyed films of iron with noble metal [...] Read more.
We present a two-step physical method for the fabrication of composite nanoparticle-based nanostructures. The proposed method is based on the pulsed laser deposition (PLD) technique performed sequentially in vacuum and in air. As a first step, thin-alloyed films of iron with noble metal were deposited by PLD in vacuum. The films were prepared by ablation of a mosaic target formed by equal iron and gold sectors. As a second step, the as-prepared alloyed films were ablated in air at atmospheric pressure as the laser beam scanned their surface. Two sets of experiments were performed in the second step, namely, by applying nanosecond (ns) and picosecond (ps) laser pulses for ablation. The structure, microstructure, morphology, and optical properties of the samples obtained were studied with respect to the laser ablation regime applied. The implementation of the ablation process in open air resulted in the formation of nanoparticle and/or nanoparticle aggregates in the plasma plume regardless of the ablation regime applied. These nanoparticles and/or nanoaggregates deposited on the substrate formed a complex porous structure. It was found that ablating FeAu films in air by ns pulses resulted in the fabrication of alloyed nanoparticles, while ablation by ps laser pulses results in separation of the metals in the alloy and further oxidation of Fe. In the latter case, the as-deposited structures also contain core–shell type nanoparticles, with the shell consisting of Fe-oxide phase. The obtained structures, regardless of the ablation regime applied, demonstrate a red-shifted plasmon resonance with respect to the plasmon resonance of pure Au nanoparticles. Full article
Show Figures

Figure 1

16 pages, 4004 KiB  
Article
Merging of Bi-Modality of Ultrafast Laser Processing: Heating of Si/Au Nanocomposite Solutions with Controlled Chemical Content
by Yury V. Ryabchikov, Inam Mirza, Miroslava Flimelová, Antonin Kana and Oleksandr Romanyuk
Nanomaterials 2024, 14(4), 321; https://doi.org/10.3390/nano14040321 - 6 Feb 2024
Cited by 3 | Viewed by 1743
Abstract
Ultrafast laser processing possesses unique outlooks for the synthesis of novel nanoarchitectures and their further applications in the field of life science. It allows not only the formation of multi-element nanostructures with tuneable performance but also provides various non-invasive laser-stimulated modalities. In this [...] Read more.
Ultrafast laser processing possesses unique outlooks for the synthesis of novel nanoarchitectures and their further applications in the field of life science. It allows not only the formation of multi-element nanostructures with tuneable performance but also provides various non-invasive laser-stimulated modalities. In this work, we employed ultrafast laser processing for the manufacturing of silicon–gold nanocomposites (Si/Au NCs) with the Au mass fraction variable from 15% (0.5 min ablation time) to 79% (10 min) which increased their plasmonic efficiency by six times and narrowed the bandgap from 1.55 eV to 1.23 eV. These nanostructures demonstrated a considerable fs laser-stimulated hyperthermia with a Au-dependent heating efficiency (~10–20 °C). The prepared surfactant-free colloidal solutions showed good chemical stability with a decrease (i) of zeta (ξ) potential (from −46 mV to −30 mV) and (ii) of the hydrodynamic size of the nanoparticles (from 104 nm to 52 nm) due to the increase in the laser ablation time from 0.5 min to 10 min. The electrical conductivity of NCs revealed a minimum value (~1.53 µS/cm) at 2 min ablation time while their increasing concentration was saturated (~1012 NPs/mL) at 7 min ablation duration. The formed NCs demonstrated a polycrystalline Au nature regardless of the laser ablation time accompanied with the coexistence of oxidized Au and oxidized Si as well as gold silicide phases at a shorter laser ablation time (<1 min) and the formation of a pristine Au at a longer irradiation. Our findings demonstrate the merged employment of ultrafast laser processing for the design of multi-element NCs with tuneable properties reveal efficient composition-sensitive photo-thermal therapy modality. Full article
(This article belongs to the Special Issue Innovative Biomedical Applications of Laser-Generated Colloids)
Show Figures

Figure 1

Back to TopTop