Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = glycolic acid production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 339
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

20 pages, 1892 KiB  
Article
Effect of Slurry Acidification In-House by a Dynamic Spraying System on Ammonia and Greenhouse Gas Emissions from Pig-Fattening Farms in Hot Summer Climates
by Gema Montalvo, María Rodríguez, Carlos Piñeiro, Paloma Garcia-Rebollar and María J. Sanz
Environments 2025, 12(7), 243; https://doi.org/10.3390/environments12070243 - 16 Jul 2025
Viewed by 499
Abstract
Animal production generates gas emissions. It is imperative to reduce them as projections suggest that emissions will continue to increase with rising temperatures, alongside the intensification of agriculture to meet global food demand. Slurry acidification in-house can reduce these emissions. In this study, [...] Read more.
Animal production generates gas emissions. It is imperative to reduce them as projections suggest that emissions will continue to increase with rising temperatures, alongside the intensification of agriculture to meet global food demand. Slurry acidification in-house can reduce these emissions. In this study, an acidification technology was installed in a pig-fattening barn to evaluate the influence of the addition of a mixture of organic acids, mainly lactic acid and glycolic acid, on NH3 and GHG emissions. A total of 384 pigs were allocated to four experimental rooms, two with additive applied to the slurry pits by a spraying system and two as a control. In high-temperature conditions, the spraying system discharged additive over the slurry which, in contrast with other systems, was stored inside the rooms during the whole trial. The concentration of NH3 and GHG, the temperature, and the air extraction rate were measured continuously. A significant reduction in the emissions of the gases evaluated was achieved. NH3 emissions were reduced by 26.8%, CH4 by 23.6%, N2O by 25.0%, and CO2 by 28.7%. The role of the dynamic spraying system is considered essential to prevent the acidification effect being reversed by the buffering effect of the slurry itself. Full article
Show Figures

Figure 1

18 pages, 2954 KiB  
Article
Characterization of Carboxylated Cellulose Nanocrystals Isolated Through Oxalic Acid Hydrolysis from Solid Residues of Softwood-Derived Glycol Lignin Production
by Thi Thi Nge and Tatsuhiko Yamada
Molecules 2025, 30(14), 2922; https://doi.org/10.3390/molecules30142922 - 10 Jul 2025
Viewed by 332
Abstract
The efficient use of renewable lignocellulosic biomass has attracted wide interest, as it promises to reduce the environmental impact of fossil fuel consumption. A recently developed batch-scale process, which produces glycol lignin (GL) from softwood biomass, generates a considerable amount of cellulose-rich solid [...] Read more.
The efficient use of renewable lignocellulosic biomass has attracted wide interest, as it promises to reduce the environmental impact of fossil fuel consumption. A recently developed batch-scale process, which produces glycol lignin (GL) from softwood biomass, generates a considerable amount of cellulose-rich solid residues (SRs) as a byproduct. In this study, usable cellulose was isolated from SRs in the form of carboxylated cellulose nanocrystals (O-CNCs). The properties of O-CNCs were investigated to establish a possible integrated biomass utilization system based on the GL production technology. Three different forms of purified SRs—never-dried (N-Cel), freeze-dried (F-Cel), and vacuum-dried (V-Cel) cellulose—were subjected to oxalic acid (OA) hydrolysis at 95 °C for 4 h. The average length of O-CNCs ranged from 90 to 120 nm and the height ranged from 3 to 6 nm for separate particles and from 8 to 20 nm for aggregates. The carboxyl group content was 0.11–0.23 mmol/g O-CNCs. The overall results indicated that the yields, dimensions, surface charges, and thermal stability of the O-CNCs were largely influenced by the nature of the starting cellulose. In addition, O-CNCs prepared from recycled OA exhibited similar properties to those prepared from fresh OA. Full article
Show Figures

Graphical abstract

28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1138
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

25 pages, 10277 KiB  
Article
Comparative Study of Free and Encapsulated Hypocrellin B on Photophysical-Chemical Properties, Cellular Uptake, Subcellular Distribution, and Phototoxicity
by Weiyan Kang, Feng Zhao, Jixing Cheng, Kaijie Feng, Liang Yan, Yue You, Jinxia Li and Jing Meng
Nanomaterials 2025, 15(12), 889; https://doi.org/10.3390/nano15120889 - 9 Jun 2025
Viewed by 549
Abstract
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted [...] Read more.
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted no obvious influence on the photophysical-chemical properties of HB, including UV-visible absorbance, fluorescence spectra, singlet oxygen (1O2) production capacity, and photostability. Free and encapsulated HB revealed some disparities in cellular uptake and subcellular localization patterns. In 2D-cultured B16 cells and tumor spheroids, free HB exhibited the fastest cellular uptake, while HB@PLGA had the lowest, as evidenced. Subcellular localization analysis first revealed a significant colocalization of free HB, HB@Lipo, and HB@PLGA within lipid droplets, with minimal colocalization in mitochondria and the endoplasmic reticulum. Unlike free HB and HB@Lipo, HB@PLGA exhibited strong lysosomal colocalization, indicating a unique intracellular trafficking pathway for PLGA-encapsulated HB. Upon laser irradiation, both free and encapsulated HB induced pronounced phototoxicity with substantial ROS production, confirming the robust PDT effect of HB. The photodynamic killing effect correlated with the intracellular HB content. These findings highlighted the impact of nanoformulation on HB’s cellular behavior and therapeutic performance. Full article
Show Figures

Graphical abstract

20 pages, 2984 KiB  
Article
Comparative LCA Analysis of Selected Recycling Methods for Carbon Fibers and Socio-Economic Analysis
by Nikolina Poranek, Krzysztof Pikoń, Natalia Generowicz-Caba, Maciej Mańka, Joanna Kulczycka, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Anna Lewandowska, Marcin Sajdak, Sebastian Werle and Szymon Sobek
Materials 2025, 18(11), 2660; https://doi.org/10.3390/ma18112660 - 5 Jun 2025
Viewed by 497
Abstract
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the [...] Read more.
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the method have been established and environmentally compared with a primary production version. Methods: The life cycle assessment methodology has been used to assess and quantify the environmental impacts. The cradle to gate analysis was performed with the functional unit defined as a production of 1 kg of carbon fiber. Results: The best environmental option turned out to be a developed chemical recycling technology named Scenario 1. It is a solvolysis performed using an ambient-pressure-operated batch reactor connected to a reflux condenser and an inert gas supply tank, using an ethylene glycol and potassium hydroxide solution. The worst case appeared to be the second variant of the chemical recycling, named Scenario 2 (plasma-enhanced nitric acid solvolysis). Conclusions: In Scenario 1, a production of the ethylene glycol was recognized as a key environmental driver, while in Scenarios 2 and 3 the energy-related impact was the most influential. Full article
(This article belongs to the Special Issue Advances in Waste Materials’ Valorization)
Show Figures

Figure 1

17 pages, 4513 KiB  
Article
Physicochemical Investigations on Samples Composed of a Mixture of Plant Extracts and Biopolymers in the Broad Context of Further Pharmaceutical Development
by Andreea Roxana Ungureanu, Adina Magdalena Musuc, Emma Adriana Ozon, Mihai Anastasescu, Irina Atkinson, Raul-Augustin Mitran, Adriana Rusu, Emanuela-Alice Luță, Carmen Lidia Chițescu and Cerasela Elena Gîrd
Polymers 2025, 17(11), 1499; https://doi.org/10.3390/polym17111499 - 28 May 2025
Viewed by 475
Abstract
Vegetal sources are a continuous research field and different types of extracts have been obtained over time. The most challenging part is compounding them in a pharmaceutical product. This study aimed to integrate a mixture (EX) of four extracts (SE-Sophorae flos, [...] Read more.
Vegetal sources are a continuous research field and different types of extracts have been obtained over time. The most challenging part is compounding them in a pharmaceutical product. This study aimed to integrate a mixture (EX) of four extracts (SE-Sophorae flos, GE-Ginkgo bilobae folium, ME-Meliloti herba, CE-Calendulae flos) in formulations with polymers (polyhydroxybutyrate, polylactic-co-glycolic acid) and their physicochemical profiling. The resulting samples consist of particle suspensions, which were subjected to Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy analysis. When compared to single-extract formulations spectra, they revealed band changes, depending on the complex interactions. Using X-ray Diffractometry, the partially crystalline phase was highlighted for EX-PLGA, while the others were amorphous. Moreover, Atomic Force Microscopy pointed out the nanoscale particles and the topography of the samples, and the outstanding roughness belonging to EX-PHB-PLGA. A 30 min period of immersion was enough for the formulations to spread on the surface of the compression stockings material (CS) and after drying, it became a polymeric film. TGA analysis was performed, which evaluated the impregnated content: 5.9% CS-EX-PHB, 6.4% CS-EX-PLGA, and 7.5% CS-EX-PHB-PLGA. In conclusion, the extract’s phytochemicals and the interactions established with the polymers or with the other extracts from the mixture have a significant impact on the physicochemical properties of the obtained formulations, which are particularly important in pharmaceutical product development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 5139 KiB  
Article
Cryopreservation and Maturation Media Optimization for Enhanced Somatic Embryogenesis in Masson Pine (Pinus massoniana)
by Qian Yang, Ying Lin, You-Mei Chen, Qi Fei, Jian-Ren Ye and Li-Hua Zhu
Plants 2025, 14(11), 1569; https://doi.org/10.3390/plants14111569 - 22 May 2025
Viewed by 402
Abstract
Pinus massoniana Lamb. (masson pine) is a critical species for afforestation in southern China but faces severe threats from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus. To accelerate disease-resistant breeding, this study investigated the effects of cryopreservation on the embryonic capacity [...] Read more.
Pinus massoniana Lamb. (masson pine) is a critical species for afforestation in southern China but faces severe threats from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus. To accelerate disease-resistant breeding, this study investigated the effects of cryopreservation on the embryonic capacity of the embryogenic callus as well as the effects of abscisic acid (ABA), polyethylene glycol 8000 (PEG 8000) and phytagel concentration on the somatic embryo’s maturation and germination. Furthermore, the impact of transplanting substrates on the survival and growth of regenerated plantlets were evaluated. The results showed that cryopreservation at −196 °C effectively maintained the embryogenic potential of the callus, with post-thaw tissues exhibiting superior somatic embryo maturation capacity compared to the long-term subcultured callus (38.4 vs. 13.2 embryos/mL). Key maturation parameters were systematically optimized: ABA concentration at 6 mg/L in the suspension culture maximized embryo yield of 24.1 somatic embryos/mL, while PEG 8000 at 130 g/L in solid medium achieved peak embryo production of 38.4 somatic embryos/mL, and the maximum of 26.6 somatic embryos/mL when the concentration of phytagel was 3.5 g/L. The highest germination rate of 29.8% was observed with 130 g/L PEG in the maturation medium. The highest survival rate (56.5%) and maximum plant height (22.3 cm) after 12 months of transplantation were achieved in substrates consisting of soil and vermiculite, which outperformed those containing varying proportions of mushroom residue. This study establishes a scalable protocol for the mass propagation of PWD-resistant P. massoniana, integrating cryopreservation and maturation media optimization, which offers dual benefits for disease-resistant breeding and sustainable germplasm conservation. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

22 pages, 2468 KiB  
Article
Reinforcing Cotton Recycled Fibers for the Production of High-Quality Textile Structures
by Tiago Azevedo, Ana Catarina Silva, Gonçalo Machado, Diego Chaves, Ana Isabel Ribeiro, Raul Fangueiro and Diana P. Ferreira
Polymers 2025, 17(10), 1392; https://doi.org/10.3390/polym17101392 - 19 May 2025
Viewed by 726
Abstract
The textile industry is under increasing pressure to adopt sustainable practices due to the significant environmental impacts associated with fiber production, including high energy consumption, water usage, and substantial greenhouse gas emissions. The recycling of textile waste, particularly cotton, is a promising solution [...] Read more.
The textile industry is under increasing pressure to adopt sustainable practices due to the significant environmental impacts associated with fiber production, including high energy consumption, water usage, and substantial greenhouse gas emissions. The recycling of textile waste, particularly cotton, is a promising solution that has the potential to reduce landfill waste and decrease the demand for virgin fibers. However, mechanically recycled cotton fibers frequently demonstrate diminished mechanical properties compared to virgin fibers, which limits their potential for high-quality textile applications. This study explores the use of cross-linking agents (citric acid (CA) and sodium hypophosphite (SHP)), polymers (polyethylene glycol (PEG), chitosan (CH), carboxymethyl cellulose (CMC) and starch (ST)), and silicas (anionic (SA) and cationic (SC)) to enhance the mechanical properties of recycled cotton fibers. The treatments were then subjected to a hierarchical ranking, with the effectiveness of each treatment determined by its impact on enhancing fiber tenacity. The findings of this research indicate that the most effective treatment was starck (ST_50), which resulted in an enhancement of tenacity from 14.63 cN/tex to 15.34 cN/tex (+4.9%), closely followed by CA-SHP_110/110, which also reached 15.34 cN/tex (+4.6%). Other notable improvements were observed with CMC_50 (15.23 cN/tex), PEG_50 (14.91 cN/tex), and CA_50 (14.89 cN/tex), all in comparison to the control. In terms of yarn quality, the CA-SHP_110/110 treatment yielded the most substantial reductions in yarn irregularities, including thin places, thick places, and neps with decreases of 36%, 10%, and 7%, respectively. Furthermore, CA_50 exhibited moderate enhancements in yarn regularity, thin places (−12%), thick places (−6.1%), and neps (−8.9%). The results of this study demonstrate that combining CA with SHP, particularly when preceded by the heating of the solution before the addition of the fibers, results in a substantial enhancement of the structural integrity, strength, and overall quality of recycled cotton fibers. This approach offers a viable pathway for the improvement of the performance of recycled cotton, thereby facilitating its wider utilization in high-quality textile products. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

24 pages, 13260 KiB  
Article
Upcycling of Cupric Chloride Waste Solution from PCB Manufacturing for Antibacterial Copper Nanoparticles
by Tapany Patcharawit, Chatisa Kansomket, Napat Mahiwan, Sumita Chailoi, Thanapon Chandakhiaw, Tanongsak Yingnakorn, Teerawut Tunnukij and Sakhob Khumkoa
Recycling 2025, 10(3), 97; https://doi.org/10.3390/recycling10030097 - 14 May 2025
Viewed by 903
Abstract
Issues encompassing hazardous waste management face challenges, particularly those involving the manufacture of electronic devices such as PCBs that are in high demand with continual growth. Therefore, upcycling to create new products viable for highly valued markets emphasizes alternative solutions towards the circular [...] Read more.
Issues encompassing hazardous waste management face challenges, particularly those involving the manufacture of electronic devices such as PCBs that are in high demand with continual growth. Therefore, upcycling to create new products viable for highly valued markets emphasizes alternative solutions towards the circular economy. This research highlights the advantages of copper sulfate recovery from the cupric chloride etching waste solution from PCB manufacturing, combined with the synthesis of copper nanoparticles for antibacterial application. First, aluminium cementation, sulfuric acid leaching, and crystallization were incorporated in the recovery step to ensure a high purity of 99.95% and a recovery of 94.76%. Aluminium cementation selectively offered copper-containing precipitates suitable for leaching to gain high-purity recovered products. In the second step, copper nanoparticles were synthesized using 0.01–0.20 M copper sulfate precursors via sonochemical reduction. In total, 1–5 mL of hydrazine and 5–30 mL of 0.01 M ethylene glycol were added into a 50 mL precursor as reducing and capping agents, respectively. Hydrazine addition under high pH played a key role in controlling the shape, size, and purity of the copper nanoparticles, required for their antibacterial properties. The optimum condition gave spherical or polygonal copper nanoparticles of 54.54 nm at 99.95% purity and >92% recovery. The antibacterial test of the synthesized copper nanoparticles using E. coli via agar well diffusion exhibited a zone of inhibition (ZOI) of 50 mm at 127 mg/mL, similar to the antibiotic-controlled condition, proving their antibacterial potential. Along with process effectiveness, a feasibility study of the inventing process confirmed the environmental and economic impacts of minimizing energy consumption and processing time, which are competitive with respect to the existing recycling technologies. Full article
Show Figures

Graphical abstract

47 pages, 2636 KiB  
Review
Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care
by HariPriya Koppisetti, Sadikalmahdi Abdella, Deepa D. Nakmode, Fatima Abid, Franklin Afinjuomo, Sangseo Kim, Yunmei Song and Sanjay Garg
Pharmaceutics 2025, 17(5), 626; https://doi.org/10.3390/pharmaceutics17050626 - 8 May 2025
Cited by 1 | Viewed by 1684
Abstract
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers [...] Read more.
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) have been approved by the USFDA and are widely employed in the development of various LAIs, offering controlled drug release and minimizing the side effects. Various classes of veterinary medicines, including non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, and reproductive hormones, have been successfully formulated as LAIs. Some remarkable LAI products, such as ProHeart® (moxidectin), Excede® (ceftiofur), and POSILACTM (recombinant bovine somatotropin), show clinical relevance and commercial success. This review provides comprehensive information on the formulation strategies currently being used and the emerging technologies in LAIs for veterinary purposes. Additionally, challenges in characterization, in vitro testing, in vitro in vivo correlation (IVIVC), and safety concerns regarding biocompatibility are discussed, along with the prospects for next-generation LAIs. Continued advancement in the field of LAI in veterinary medicine is essential for improving animal health. Full article
(This article belongs to the Special Issue Long Acting Drug Delivery Formulations)
Show Figures

Figure 1

15 pages, 1971 KiB  
Article
The Potential of Apricot Tree Resin as a Viable Feedstock for High-Value Chemicals via Hydrothermal Gasification
by Dilek Selvi Gökkaya
Catalysts 2025, 15(5), 425; https://doi.org/10.3390/catal15050425 - 27 Apr 2025
Viewed by 501
Abstract
This study investigates the hydrothermal gasification (HTG) of apricot tree resin, focusing on the yield and chemical composition of the resulting gas and aqueous phases. K2CO3 and KOH were used as catalysts within a temperature range of 300–600 °C, with [...] Read more.
This study investigates the hydrothermal gasification (HTG) of apricot tree resin, focusing on the yield and chemical composition of the resulting gas and aqueous phases. K2CO3 and KOH were used as catalysts within a temperature range of 300–600 °C, with a constant reaction time of 60 min. The results show that temperature and catalyst choice significantly influence gas yield, liquid composition, and solid residue formation. Higher temperatures increased the gas yield while decreasing aqueous and solid residues. The catalytic effect of K2CO3 and KOH enhanced the gaseous product conversion, with KOH achieving the highest gas yield and lowest residue formation at 600 °C. Among the liquid-phase compounds, carboxylic acids and 5-methyl furfural were the most abundant, reaching peak concentrations at 300 °C in the presence of K2CO3. The addition of alkali catalysts reduced key acidic intermediates such as glycolic, acetic, and formic acids. The inverse relationship between temperature and liquid/solid product formation underscores the importance of optimizing reaction conditions for efficient biomass conversion. These findings contribute to the growing field of biomass valorization by highlighting the potential of underutilized tree resins in sustainable biofuel production, advancing knowledge in renewable hydrogen production, and supporting the broader development of bio-based energy solutions. Full article
(This article belongs to the Special Issue Catalytic Gasification)
Show Figures

Figure 1

20 pages, 5006 KiB  
Article
Enhancing Salt Tolerance in Tomato Plants Through PEG6000 Seed Priming: Inducing Antioxidant Activity and Mitigating Oxidative Stress
by Nasratullah Habibi, Shafiqullah Aryan, Naveedullah Sediqui, Naoki Terada, Atsushi Sanada, Atsushi Kamata and Kaihei Koshio
Plants 2025, 14(9), 1296; https://doi.org/10.3390/plants14091296 - 25 Apr 2025
Cited by 2 | Viewed by 2019
Abstract
Salt stress is a major constraint to crop productivity, negatively affecting plant physiology and fruit quality. This study hypothesized that seed priming with polyethylene glycol (PEG6000) might enhance antioxidant activity by mitigating oxidative stress in Solanum lycopersicum ‘Micro-Tom’ under salt stress. Seeds primed [...] Read more.
Salt stress is a major constraint to crop productivity, negatively affecting plant physiology and fruit quality. This study hypothesized that seed priming with polyethylene glycol (PEG6000) might enhance antioxidant activity by mitigating oxidative stress in Solanum lycopersicum ‘Micro-Tom’ under salt stress. Seeds primed with –1.2 MPa PEG6000 were grown in Rockwool and treated with 0, 50, 100, 150, and 200 mM NaCl. Primed plants showed a 32% increase in leaf potassium (K+) and a 28% decrease in sodium (Na+) accumulation compared to non-primed plants under 150 mM NaCl. Glucose, fructose, and sucrose contents increased by 25%, 22%, and 19%, respectively, in primed fruits, while citric acid decreased by 15%. Malondialdehyde (MDA) and electrolyte leakage were reduced by 35% and 29%, respectively, in primed plants under moderate salinity. Antioxidant enzyme activities—SOD, POD, CAT, and APX were enhanced by 30–45% in primed plants under 100 and 150 mM NaCl, compared to non-primed controls. Abscisic acid (ABA) levels increased by 40% in primed roots under salt stress. Activities of polyamine-related enzymes (DAO, PAO, and ADC) also rose significantly. Priming improved protein content by 20% and relative water content by 18%. These results suggest that PEG6000 seed priming enhances salt tolerance by boosting antioxidant defense, regulating osmotic balance, and improving ion homeostasis, offering a viable strategy for sustaining tomato productivity under salinity. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

17 pages, 6225 KiB  
Article
RF Sputtering of Gold Nanoparticles in Liquid and Direct Transfer to Nafion Membrane for PEM Water Electrolysis
by Chandrakanth Reddy Chandraiahgari, Gloria Gottardi, Giorgio Speranza, Beatrice Muzzi, Domenico Dalessandro, Andrea Pedrielli, Victor Micheli, Ruben Bartali, Nadhira Bensaada Laidani and Matteo Testi
Membranes 2025, 15(4), 115; https://doi.org/10.3390/membranes15040115 - 7 Apr 2025
Viewed by 1059
Abstract
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency [...] Read more.
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency (RF) magnetron sputtering and by subsequently transferring them to Nafion ionomer, fabricating a catalyst-coated membrane (CCM), an essential component of the proton exchange membrane water electrolyzer (PEMWE). The samples were systematically characterized at different stages of process development. The innovative transfer process resulted in a monodispersed homogeneous distribution of catalyst particles inside CCM while retaining their nascent nanoscale topography. The chemical analysis confirmed the complete removal of the trapped PEG through the process optimization. The electrochemical catalytic activity of the optimized CCM was verified, and the hydrogen evolution reaction (HER) in acidic media appeared outstanding, a vital step in water electrolysis toward H2 production. Therefore, this first study highlights the advantages of RF sputtering in liquid for nanoparticle synthesis and its direct application in preparing CCM, paving the way for the development of innovative membrane preparation techniques for water electrolysis. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

15 pages, 1857 KiB  
Article
Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation
by Mayra Carranza-Gomez, Salvador Valle-Guadarrama, Ricardo Domínguez-Puerto, Ofelia Sandoval-Castilla and Diana Guerra-Ramírez
Processes 2025, 13(4), 1072; https://doi.org/10.3390/pr13041072 - 3 Apr 2025
Cited by 1 | Viewed by 403
Abstract
The blueberry fruit (Vaccinium corymbosum L.) exhibits a high content of bioactive compounds, including anthocyanins, that can be used as pigmenting agents, but they are mixed with sugars, which can hinder their utilization. The objective was to evaluate the use of aqueous [...] Read more.
The blueberry fruit (Vaccinium corymbosum L.) exhibits a high content of bioactive compounds, including anthocyanins, that can be used as pigmenting agents, but they are mixed with sugars, which can hinder their utilization. The objective was to evaluate the use of aqueous two-phase extraction aided by centrifugation to separate bioactive compounds, particularly anthocyanins, from blueberry fruits, considering the reduction of sugars, for their use as pigmenting agents in a food product. A mixture of trisodium citrate (Na3C3H5O(COO)3; Na3Cit) and polyethylene glycol ([HO-(CH2CH2O)n-CH2OH]; poly (ethane-1,2-diol); PEG) with a molecular weight of 4 kDa was used. Based on the cloud point method, a binodal diagram was developed. After the evaluation of several systems with composition located on a tie line, conditions were identified to form biphasic systems with phases of equal volume. Passive sedimentation for 0, 15, and 30 min, followed by centrifugation and also passive sedimentation for 24 h without centrifugation, were evaluated. A system with 17.73% Na3Cit, 21.33% PEG, 30 min of passive sedimentation, and 15 min of centrifugation at 2940× g produced an extract with a high concentration of soluble phenols (0.353 mg/mL) and anthocyanins (0.202 mg/mL) and, likewise, high antioxidant activity (910.0 mmol gallic acid equivalents per mL), with reduced sugar content, which demonstrated to have the potential to pigment food beverages with a reddish tone. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

Back to TopTop