Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Aqueous Two-Phase Systems
2.3. Separation of Bioactive Compounds
2.4. Total Soluble Phenols Content
2.5. Total Anthocyanin Content
2.6. Total Sugar Content
2.7. Antioxidant Activity
2.8. Pigmenting Potential
2.9. Data Analysis
3. Results and Discussion
3.1. Formation of Aqueous Biphasic Systems
3.2. Aqueous Two-Phase Extraction Assisted with Centrifugation
3.3. Separation of Bioactive Compounds
3.4. Evaluation of Potential Pigmenting
3.5. Pigmentation Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Aqueous biphasic systems |
ATPE | Aqueous two-phase extraction |
FPA | Pigmenting agent in fluid form |
FRAP | Ferric reducing antioxidant power |
LPA | Pigmenting agent in lyophilized form |
Na3Cit | Trisodium citrate (Na3C3H5O(COO)3 |
PA | Pigmenting agent |
PEG 4000 | Polyethylene glycol (HO-(CH2CH2O)n-CH2OH) |
References
- Klavins, L.; Puzule, E.P.; Kviesis, J.; Klavins, M. Optimisation of Blueberry (Vaccinium corymbosum L.) Press Residue Extraction Using a Combination of Pectolytic Enzyme and Ultrasound Treatments. J. Berry Res. 2022, 12, 41–57. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Ścibisz, I.; Gniewosz, M.; Mitek, M.; Pobiega, K.; Cendrowski, A. Effect of Pullulan Coating on Postharvest Quality and Shelf-Life of Highbush Blueberry (Vaccinium corymbosum L.). Materials 2017, 10, 965. [Google Scholar] [CrossRef] [PubMed]
- Varo, M.Á.; Martín-Gómez, J.; Mérida, J.; Serratosa, M.P. Bioactive Compounds and Antioxidant Activity of Highbush Blueberry (Vaccinium corymbosum) Grown in Southern Spain. Eur. Food Res. Technol. 2021, 247, 1199–1208. [Google Scholar] [CrossRef]
- Seeram, N.P. Berry Fruits: Compositional Elements, Biochemical Activities, and the Impact of Their Intake on Human Health, Performance, and Disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Varo, M.A.; Serratosa, M.P.; Martín-Gómez, J.; Moyano, L.; Mérida, J. Influence of Fermentation Time on the Phenolic Compounds, Vitamin C, Color and Antioxidant Activity in the Winemaking Process of Blueberry (Vaccinium corymbosum) Wine Obtained by Maceration. Molecules 2022, 27, 7744. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry Leaf Extracts Incorporated Chitosan Coatings for Preserving Postharvest Quality of Fresh Blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Cvetković, M.; Kočić, M.; Dabić Zagorac, D.; Ćirić, I.; Natić, M.; Hajder, Đ.; Životić, A.; Fotirić Akšić, M. When Is the Right Moment to Pick Blueberries? Variation in Agronomic and Chemical Properties of Blueberry (Vaccinium corymbosum) Cultivars at Different Harvest Times. Metabolites 2022, 12, 798. [Google Scholar] [CrossRef]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; Shi, W.; Gong, Z.; Chen, L.; Hou, Z. Transcriptional Activation of Anthocyanin Biosynthesis in Developing Fruit of Blueberries (Vaccinium corymbosum L.) by Preharvest and Postharvest UV Irradiation. J. Agric. Food Chem. 2018, 66, 10931–10942. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural Colorants from Plant Pigments and Their Encapsulation: An Emerging Window for the Food Industry. LWT 2022, 153, 112527. [Google Scholar] [CrossRef]
- Mohammad Azmin, S.N.H.; Sulaiman, N.S.; Mat Nor, M.S.; Abdullah, P.S.; Abdul Kari, Z.; Pati, S. A Review on Recent Advances on Natural Plant Pigments in Foods: Functions, Extraction, Importance and Challenges. Appl. Biochem. Biotechnol. 2022, 194, 4655–4672. [Google Scholar] [CrossRef]
- Vergel-Alfonso, A.A.; Arias-Avelenda, R.; Casariego-Año, A.; Giménez, M.J.; Ruíz-Cruz, S.; López-Corona, B.E.; Del-Toro-Sánchez, C.L.; Gonzalez-Bravo, A.L.; Plascencia-Jatomea, M.; Menchaca-Armenta, M.; et al. Development and Characterization of Pectin and Beeswax-Based Coatings Enhanced with Anthocyanins and Its Antioxidant and Antifungal Properties. Processes 2025, 13, 542. [Google Scholar] [CrossRef]
- Cortés-Avendaño, P.; Macavilca, E.A.; Ponce-Rosas, F.C.; Murillo-Baca, S.M.; Quispe-Neyra, J.; Alvarado-Zambrano, F.; Condezo-Hoyos, L. Microfluidic Paper-Based Analytical Device for Measurement of PH Using as Sensor Red Cabbage Anthocyanins and Gum Arabic. Food Chem. 2025, 462, 140964. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Maté, J.I. Color Stability and PH-Indicator Ability of Curcumin, Anthocyanin and Betanin Containing Colorants under Different Storage Conditions for Intelligent Packaging Development. Food Control 2021, 121, 107645. [Google Scholar] [CrossRef]
- Li, Y.; Wu, K.; Wang, B.; Li, X. Colorimetric Indicator Based on Purple Tomato Anthocyanins and Chitosan for Application in Intelligent Packaging. Int. J. Biol. Macromol. 2021, 174, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, J.; Zheng, L.; Zhang, J.; Liu, D.; Nie, G. A Novel Signal-on Photoelectrochemical Immunosensor Based on Anthocyanin-Sensitized Poly(Indole-5-Carboxylic Acid) for Ultrasensitive Detection of CEA. Sensors Actuators B Chem. 2025, 422, 136681. [Google Scholar] [CrossRef]
- FDA. FDA to Revoke Authorization for the Use of Red No. 3 in Food and Ingested Drugs; Food and Drug Administration: Silver Spring, MD, USA, 2025. [Google Scholar]
- Wu, H.-Y.; Yang, K.-M.; Chiang, P.-Y. Roselle Anthocyanins: Antioxidant Properties and Stability to Heat and PH. Molecules 2018, 23, 1357. [Google Scholar] [CrossRef]
- Bani, O.; Taslim; Iriany; Sinaga, M.; Violleta, S. Extraction, Concentration, and Storage of Butterfly Pea Anthocyanin for Commercialization. Case Stud. Chem. Environ. Eng. 2024, 10, 100860. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Extraction Kinetic Modelling of Total Polyphenols and Total Anthocyanins from Saffron Floral Bio-Residues: Comparison of Extraction Methods. Food Chem. 2018, 258, 137–143. [Google Scholar] [CrossRef]
- Romero-Díez, R.; Matos, M.; Rodrigues, L.; Bronze, M.R.; Rodríguez-Rojo, S.; Cocero, M.J.; Matias, A.A. Microwave and Ultrasound Pre-Treatments to Enhance Anthocyanins Extraction from Different Wine Lees. Food Chem. 2019, 272, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Pinedo Montoya, S.K. Caracterización Fisicoquímica y Organoléptica de Variedades Comerciales de Arándano y Otras Especies Del Genero Vaccinium. Rev. Científica UNTRM Cienc. Nat. Ing. 2018, 1, 52–58. [Google Scholar] [CrossRef]
- Forney, C.F.; Kalt, W.; Jordan, M.A.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.E. Blueberry and Cranberry Fruit Composition during Development. J. Berry Res. 2012, 2, 169–177. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Lv, R.; Zhan, K.; Chang, X.; Zhang, C. Sugar Reduction Process of Purple Sweet Potato Concentrated Juice by Microbial Fermentation for Improved Performance of Natural Pigments. Biochem. Eng. J. 2023, 191, 108781. [Google Scholar] [CrossRef]
- Martín, J.; Díaz-Montaña, E.J.; Asuero, A.G. Recovery of Anthocyanins Using Membrane Technologies: A Review. Crit. Rev. Anal. Chem. 2018, 48, 143–175. [Google Scholar] [CrossRef] [PubMed]
- Sabanci, S.; Icier, F. Enhancement of the Performance of Sour Cherry Juice Concentration Process in Vacuum Evaporator by Assisting Ohmic Heating Source. Food Bioprod. Process. 2020, 122, 269–279. [Google Scholar] [CrossRef]
- Miyawaki, O.; Inakuma, T. Development of Progressive Freeze Concentration and Its Application: A Review. Food Bioprocess Technol. 2021, 14, 39–51. [Google Scholar] [CrossRef]
- Sandate-Flores, L.; Rodríguez-Rodríguez, J.; Velázquez, G.; Mayolo-Deloisa, K.; Rito-Palomares, M.; Torres, J.A.; Parra-Saldívar, R. Low-Sugar Content Betaxanthins Extracts from Yellow Pitaya (Stenocereus pruinosus). Food Bioprod. Process. 2020, 121, 178–185. [Google Scholar] [CrossRef]
- Rodríguez-Herrera, V.V.; García-Cruz, L.; Valle-Guadarrama, S. Aqueous Two-Phase Extraction: A Non-Thermal Technique to Separate and Concentrate Betalains from Bougainvillea Glabra Choisy Bracts. Ind. Crops Prod. 2023, 193, 116245. [Google Scholar] [CrossRef]
- Rosa, P.A.J.; Ferreira, I.F.; Azevedo, A.M.; Aires-Barros, M.R. Aqueous Two-Phase Systems: A Viable Platform in the Manufacturing of Biopharmaceuticals. J. Chromatogr. A 2010, 1217, 2296–2305. [Google Scholar] [CrossRef]
- García-Cruz, L.; Valle-Guadarrama, S.; Soto-Hernández, R.M.; Guerra-Ramírez, D.; Zuleta-Prada, H.; Martínez-Damián, M.T.; Ramírez-Valencia, Y.D. Separation of Pitaya (Stenocereus pruinosus) Betaxanthins, Betacyanins, and Soluble Phenols Through Multistage Aqueous Two-Phase Systems. Food Bioprocess Technol. 2021, 14, 1791–1804. [Google Scholar] [CrossRef]
- Rodríguez-Salazar, N.; Valle-Guadarrama, S. Separation of Phenolic Compounds from Roselle (Hibiscus sabdariffa) Calyces with Aqueous Two-Phase Extraction Based on Sodium Citrate and Polyethylene Glycol or Acetone. Sep. Sci. Technol. 2020, 55, 2313–2324. [Google Scholar] [CrossRef]
- Pimentel, J.G.; Bicalho, S.F.; Gandolfi, O.R.R.; Verissimo, L.A.A.; Castro, S.d.S.; Souza, E.A.; Veloso, C.M.; Fontan, R.d.C.I.; Sampaio, V.S.; Bonomo, R.C.F. Fluid Phase Equilibria Evaluation of Salting-out Effect in the Liquid e Liquid Equilibrium of Aqueous Two-Phase Systems Composed of 2-Propanol and Na2SO4/MgSO4 at Different Temperatures. Fluid Phase Equilibria 2017, 450, 184–193. [Google Scholar] [CrossRef]
- Jiménez-Velázquez, P.; Valle-Guadarrama, S.; Alia-Tejacal, I.; Salinas-Moreno, Y.; García-Cruz, L.; Pérez-López, A.; Guerra-Ramírez, D. Separation of Bioactive Compounds from Epicarp of ‘Hass’ Avocado Fruit through Aqueous Two-Phase Systems. Food Bioprod. Process. 2020, 123, 238–250. [Google Scholar] [CrossRef]
- Banipal, T.S.; Kaur, H.; Kaur, A.; Banipal, P.K. Effect of Tartarate and Citrate Based Food Additives on the Micellar Properties of Sodium Dodecylsulfate for Prospective Use as Food Emulsifier. Food Chem. 2016, 190, 599–606. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO CODEX Alimentarius. Norma General Para Los Aditivos Alimentarios. Codex Stan 192-1995 Adoptado En 1995. Revisión 1997, 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019. 1995. Available online: https://www.fao.org/gsfaonline/docs/CXS_192s.pdf (accessed on 19 November 2024).
- Hamzehzadeh, S.; Zafarani-Moattar, M.T. Phase Separation in Aqueous Solutions of Polypropylene Glycol and Sodium Citrate: Effects of Temperature and PH. Fluid Phase Equilibria 2015, 385, 37–47. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; E Wrolstad, R.; Collaborators; Eisele, T.; Giusti, M.M.; Hofsommer, H.; Koswig, S.; A Krueger, D.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar]
- Merchuk, J.C.; Andrews, B.A.; Asenjo, J.A. Aqueous Two-Phase Systems for Protein Separation Studies on Phase Inversion. J. Chromatogr. B 1998, 711, 285–293. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, G.; Valle-Guadarrama, S.; Guerra-Ramírez, D.; Domínguez-Puerto, R.; López-Cruz, I.L. Anthocyanins of Ardisia spp. Fruits Separated with PH Driven-Aqueous Biphasic Systems. Sep. Sci. Technol. 2025, 60, 426–437. [Google Scholar] [CrossRef]
- Williamson, J.C. Liquid–Liquid Demonstrations: Phase Equilibria and the Lever Rule. J. Chem. Educ. 2021, 98, 2356–2363. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Nowotny, A. Carbohydrate Determination by Phenol-Sulfuric Acid. In Basic Exercises in Immunochemistry; Springer: Berlin/Heidelberg, Germany, 1979; pp. 171–173. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- SPSS, I. Sigma Plot 2000 User’s Guide; SPSS Inc.: Chicago, IL, USA, 2000. [Google Scholar]
- Valle-Guadarrama, S.; Saucedo-Veloz, C.; Peña-Valdivia, C.B.; Corrales-García, J.J.E.; Chávez-Franco, S.H.; Espinosa-Solares, T. Skin Permeance and Internal Gas Composition in `Hass’ Avocado (Persea americana Mill.) Fruits. Food Sci. Technol. Int. 2002, 8, 365–373. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiologys, 4th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2006. [Google Scholar]
- Nthimole, C.T.; Kaseke, T.; Fawole, O.A. Exploring the Extraction and Application of Anthocyanins in Food Systems. Processes 2024, 12, 2444. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
Treatment | pH | Ant | TSP | Aox | TS |
---|---|---|---|---|---|
Top Phase | |||||
S15C | 6.84 (0.01) | 0.182 a (0.008) | 0.345 a (0.008) | 848.026 b (6.848) | 6.383 d (0.206) |
S30C | 6.83 (0.01) | 0.202 a (0.011) | 0.353 a (0.019) | 910.950 a (12.596) | 5.528 d (0.136) |
S24H | 6.57 (0.02) | 0.150 b (0.021) | 0.293 b (0.118) | 896.570 a (4.097) | 10.512 c (0.357) |
Bottom Phase | |||||
S15C | 6.18 (0.01) | 0.000 c (0.001) | 0.008 c (0.001) | 19.314 c (1.074) | 19.555 a (1.028) |
S30C | 6.17 (0.02) | 0.000 c (0.001) | 0.0090 c (0.032) | 11.957 c (0.041) | 12.554 b (0.498) |
S24H | 6.26 (0.02) | 0.001 c (0.001) | 0.007 c (0.001) | 21.688 c (1.328) | 15.990 b (0.616) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carranza-Gomez, M.; Valle-Guadarrama, S.; Domínguez-Puerto, R.; Sandoval-Castilla, O.; Guerra-Ramírez, D. Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation. Processes 2025, 13, 1072. https://doi.org/10.3390/pr13041072
Carranza-Gomez M, Valle-Guadarrama S, Domínguez-Puerto R, Sandoval-Castilla O, Guerra-Ramírez D. Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation. Processes. 2025; 13(4):1072. https://doi.org/10.3390/pr13041072
Chicago/Turabian StyleCarranza-Gomez, Mayra, Salvador Valle-Guadarrama, Ricardo Domínguez-Puerto, Ofelia Sandoval-Castilla, and Diana Guerra-Ramírez. 2025. "Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation" Processes 13, no. 4: 1072. https://doi.org/10.3390/pr13041072
APA StyleCarranza-Gomez, M., Valle-Guadarrama, S., Domínguez-Puerto, R., Sandoval-Castilla, O., & Guerra-Ramírez, D. (2025). Bioactive Compounds and Pigmenting Potential of Vaccinium corymbosum Extracts Separated with Aqueous Biphasic Systems Aided by Centrifugation. Processes, 13(4), 1072. https://doi.org/10.3390/pr13041072