Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = glycol chitosan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 89199 KiB  
Article
Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency
by Mishal Pokharel, Abid Neron, Amit Kumar Dey, Aishwarya Raksha Siddharthan, Menaka Konara, Md Mainuddin Sagar, Tracie Ferreira and Kihan Park
Pharmaceutics 2025, 17(8), 1007; https://doi.org/10.3390/pharmaceutics17081007 - 1 Aug 2025
Viewed by 827
Abstract
Background: A precise drug delivery system enables the optimization of treatments with minimal side effects if it can deliver medication only when activated by a specific light source. This study presents a controlled drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) [...] Read more.
Background: A precise drug delivery system enables the optimization of treatments with minimal side effects if it can deliver medication only when activated by a specific light source. This study presents a controlled drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) designed for the sustained release of vancomycin hydrochloride. Methods: The MPs were co-loaded with indocyanine green (ICG), a near-infrared (NIR) responsive agent, and fabricated via the double emulsion method.They were characterized for stability, surface modification, biocompatibility, and antibacterial efficacy. Results: Dynamic light scattering and zeta potential analyses confirmed significant increases in particle size and surface charge reversal following chitosan coating. Scanning electron microscopy revealed uniform morphology in uncoated MPs (1–10 μm) and irregular surfaces post-coating. Stability tests demonstrated drug retention for up to 180 days. Among formulations, PVI1 exhibited the highest yield (76.67 ± 1.3%) and encapsulation efficiency (56.2 ± 1.95%). NIR irradiation (808 nm) enhanced drug release kinetics, with formulation PVI4 achieving over 48.9% release, resulting in improved antibacterial activity. Chitosan-coated MPs (e.g., PVI4-C) effectively suppressed drug release without NIR light for up to 8 h, with cumulative release reaching only 10.89%. Without NIR light, bacterial colonies exceeded 1000 CFU; NIR-triggered release reduced them below 120 CFU. Drug release data fitted best with the zero-order and Korsmeyer–Peppas models, suggesting a combination of diffusion-controlled and constant-rate release behavior. Conclusions: These results demonstrate the promise of chitosan-coated NIR-responsive PLGA MPs for precise, on-demand antibiotic delivery and improved antibacterial performance. Full article
(This article belongs to the Special Issue Nano-Based Delivery Systems for Topical Applications)
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 541
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 1258 KiB  
Review
Advances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues
by Kaoutar Ziani, Laura Saenz-del-Burgo, Jose Luis Pedraz and Jesús Ciriza
Int. J. Mol. Sci. 2025, 26(14), 6908; https://doi.org/10.3390/ijms26146908 - 18 Jul 2025
Viewed by 303
Abstract
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal [...] Read more.
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

25 pages, 3886 KiB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Viewed by 380
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

19 pages, 3235 KiB  
Article
Electrochemical Detection of Bisphenol S Based on Molecularly Imprinted Polymers Grafted on Functionalized Multiwalled Carbon Nanotubes: A Facile Sensor Fabrication Approach
by Christopher Mwanza, Lin Zhao, Qing Zhang and Shou-Nian Ding
Chemosensors 2025, 13(7), 236; https://doi.org/10.3390/chemosensors13070236 - 30 Jun 2025
Viewed by 437
Abstract
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In [...] Read more.
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In this work, we present a newly engineered electrochemical sensor designed for the sensitive and selective detection of BPS using a straightforward and effective fabrication approach. The sensor was constructed by grafting molecularly imprinted polymers (MIPs) onto vinyl-functionalized multiwalled carbon nanotubes (f-MWCNTs). Ethylene glycol dimethacrylate and acrylamide were used as the cross-linker and functional monomer, respectively, in the synthesis of the MIP layer. The resulting MIP@f-MWCNT nanocomposite was characterized using Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The MIP@f-MWCNT material was then combined with chitosan, a biocompatible binder, to fabricate the final MIP@f-MWCNT/chitosan-modified glassy carbon electrode (GCE). Electrochemical evaluation showed a broad linear detection range from 1 to 60 µM (R2 = 0.992), with a sensitivity of 0.108 µA/µM and a detection limit of 2.00 µM. The sensor retained 96.0% of its response after four weeks and exhibited high selectivity against structural analogues. In spiked plastic extract samples, recoveries ranged from 95.6% to 105.0%. This robust, cost-effective, and scalable sensing platform holds strong potential for environmental monitoring, food safety applications, and real-time electrochemical detection of endocrine-disrupting compounds like BPS. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Graphical abstract

51 pages, 10069 KiB  
Review
Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering
by Abbas Fazel Anvari-Yazdi, Ildiko Badea and Xiongbiao Chen
Gels 2025, 11(6), 441; https://doi.org/10.3390/gels11060441 - 9 Jun 2025
Cited by 1 | Viewed by 3455
Abstract
Postoperative adhesions (POAs) are a common and often serious complication following abdominal and gynecologic surgeries, leading to infertility, chronic pain, and bowel obstruction. To address these outcomes, the development of anti-adhesion barriers using biocompatible materials has emerged as a key area of biomedical [...] Read more.
Postoperative adhesions (POAs) are a common and often serious complication following abdominal and gynecologic surgeries, leading to infertility, chronic pain, and bowel obstruction. To address these outcomes, the development of anti-adhesion barriers using biocompatible materials has emerged as a key area of biomedical research. This article presents a comprehensive overview of clinically relevant natural and synthetic biomaterials explored for POA prevention, emphasizing their degradation behavior, barrier integrity, and translational progress. Natural biopolymers—such as collagen, gelatin, fibrin, silk fibroin, and decellularized extracellular matrices—are discussed alongside polysaccharides, including alginate, chitosan, and carboxymethyl cellulose, focusing on their structural features and biological functionality. Synthetic polymers, including polycaprolactone (PCL), polyethylene glycol (PEG), and poly(lactic-co-glycolic acid) (PLGA), are also examined for their tunable degradation profiles (spanning days to months), mechanical robustness, and capacity for drug incorporation. Recent innovations, such as bioprinted and electrospun dual-layer membranes, are highlighted for their enhanced anti-fibrotic performance in preclinical studies. By consolidating current material strategies and fabrication techniques, this work aims to support informed material selection while also identifying key knowledge gaps—particularly the limited comparative data on degradation kinetics, inconsistent definitions of ideal mechanical properties, and the need for more research into cell-responsive barrier systems. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

25 pages, 1205 KiB  
Review
Antioxidant Naturally Occurring Pleiotropically Acting Bioactive Compounds, as Polymeric Nanotherapeutics Against Autoimmune Diseases Progression
by Panagiotis Theodosis-Nobelos, Fani-Niki Varra, Michail Varras, Georgios Papagiouvannis and Eleni A. Rekka
Curr. Issues Mol. Biol. 2025, 47(6), 411; https://doi.org/10.3390/cimb47060411 - 1 Jun 2025
Viewed by 695
Abstract
Autoimmune diseases are driven by chronic inflammation and oxidative stress, thus requiring innovative therapeutic approaches. Polymeric nanotherapeutics incorporating antioxidant bioactive compounds offer a promising strategy for immune modulation and enhanced drug delivery. This review explores the application of polymer-based nanocarriers for improving the [...] Read more.
Autoimmune diseases are driven by chronic inflammation and oxidative stress, thus requiring innovative therapeutic approaches. Polymeric nanotherapeutics incorporating antioxidant bioactive compounds offer a promising strategy for immune modulation and enhanced drug delivery. This review explores the application of polymer-based nanocarriers for improving the solubility, bioavailability, and targeted delivery of antioxidant compounds in autoimmune disease treatment. A comprehensive analysis of recent advancements in polymeric nanoformulations, including poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), chitosan, and hyaluronic acid, was conducted. The therapeutic efficacy of various antioxidant-loaded nanoparticles has been assessed in both preclinical and clinical studies. Phenolic antioxidants, such as resveratrol, curcumin, quercetin, and epigallocatechin-3-gallate, exhibit potent anti-inflammatory effects; however, their poor solubility limits their clinical application. Nanocarriers such as dendrosomes, tannic acid-based reactive oxygen species (ROS)-scavenging nanoparticles, and folic acid-functionalized systems enhance drug stability, controlled drug release, and macrophage targeting. Carotenoid and bilirubin nanoparticles further demonstrate immunomodulatory effects in multiple sclerosis, psoriasis, rheumatoid arthritis, and inflammatory bowel disease. Polymeric antioxidant nanotherapeutics provide targeted and sustained drug delivery, offering improved efficacy and reduced toxicity. Future research should focus on optimizing these nanocarriers for clinical translation and patient-centered therapeutic strategies. Full article
Show Figures

Graphical abstract

22 pages, 2468 KiB  
Article
Reinforcing Cotton Recycled Fibers for the Production of High-Quality Textile Structures
by Tiago Azevedo, Ana Catarina Silva, Gonçalo Machado, Diego Chaves, Ana Isabel Ribeiro, Raul Fangueiro and Diana P. Ferreira
Polymers 2025, 17(10), 1392; https://doi.org/10.3390/polym17101392 - 19 May 2025
Viewed by 727
Abstract
The textile industry is under increasing pressure to adopt sustainable practices due to the significant environmental impacts associated with fiber production, including high energy consumption, water usage, and substantial greenhouse gas emissions. The recycling of textile waste, particularly cotton, is a promising solution [...] Read more.
The textile industry is under increasing pressure to adopt sustainable practices due to the significant environmental impacts associated with fiber production, including high energy consumption, water usage, and substantial greenhouse gas emissions. The recycling of textile waste, particularly cotton, is a promising solution that has the potential to reduce landfill waste and decrease the demand for virgin fibers. However, mechanically recycled cotton fibers frequently demonstrate diminished mechanical properties compared to virgin fibers, which limits their potential for high-quality textile applications. This study explores the use of cross-linking agents (citric acid (CA) and sodium hypophosphite (SHP)), polymers (polyethylene glycol (PEG), chitosan (CH), carboxymethyl cellulose (CMC) and starch (ST)), and silicas (anionic (SA) and cationic (SC)) to enhance the mechanical properties of recycled cotton fibers. The treatments were then subjected to a hierarchical ranking, with the effectiveness of each treatment determined by its impact on enhancing fiber tenacity. The findings of this research indicate that the most effective treatment was starck (ST_50), which resulted in an enhancement of tenacity from 14.63 cN/tex to 15.34 cN/tex (+4.9%), closely followed by CA-SHP_110/110, which also reached 15.34 cN/tex (+4.6%). Other notable improvements were observed with CMC_50 (15.23 cN/tex), PEG_50 (14.91 cN/tex), and CA_50 (14.89 cN/tex), all in comparison to the control. In terms of yarn quality, the CA-SHP_110/110 treatment yielded the most substantial reductions in yarn irregularities, including thin places, thick places, and neps with decreases of 36%, 10%, and 7%, respectively. Furthermore, CA_50 exhibited moderate enhancements in yarn regularity, thin places (−12%), thick places (−6.1%), and neps (−8.9%). The results of this study demonstrate that combining CA with SHP, particularly when preceded by the heating of the solution before the addition of the fibers, results in a substantial enhancement of the structural integrity, strength, and overall quality of recycled cotton fibers. This approach offers a viable pathway for the improvement of the performance of recycled cotton, thereby facilitating its wider utilization in high-quality textile products. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

15 pages, 12393 KiB  
Article
Surface Modification of Gold Nanoparticle Impacts Distinct Lipid Metabolism
by Xinyu Ding, Shanshan Liang, Tingfeng Zhang, Minglu Zhang, Hao Fang, Jiale Tian, Jinke Liu, Yuyuan Peng, Lingna Zheng, Bing Wang and Weiyue Feng
Molecules 2025, 30(8), 1727; https://doi.org/10.3390/molecules30081727 - 11 Apr 2025
Cited by 2 | Viewed by 593
Abstract
Gold nanomaterials have garnered significant attention in biomedicine owing to their tunable size and morphology, facile surface modification capabilities, and distinctive optical properties. The surface functionalization of these nanoparticles can enhance their safety and efficacy in nanomedical applications. In this study, we examined [...] Read more.
Gold nanomaterials have garnered significant attention in biomedicine owing to their tunable size and morphology, facile surface modification capabilities, and distinctive optical properties. The surface functionalization of these nanoparticles can enhance their safety and efficacy in nanomedical applications. In this study, we examined the biological effects of gold nanoparticles (GNPs) with three distinct surface modifications (polyethylene glycol, chitosan, and polyethylenimine) in murine models, elucidating their mechanisms of action on hepatic tissue at both the transcriptomic and metabolomic levels. Our findings revealed that PEG-modified GNPs did not significantly alter any major metabolic pathway. In contrast, CS-GNPs markedly affected the metabolic pathways of retinol, arachidonic acid, linoleic acid, and glycerophospholipids (FDR < 0.05). Similarly, PEI-GNPs significantly influenced the metabolic pathways of retinol, arachidonic acid, linoleic acid, and sphingolipids (FDR < 0.05). Through a comprehensive analysis of the regulatory information within these pathways, we identified phosphatidylcholine compounds as potential biomarkers that may underlie the differential biological effects of the three functionalized GNPs. These findings provide valuable experimental data for evaluating the biological safety of functionalized GNPs. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

22 pages, 3529 KiB  
Article
Chitosan-Folic Acid-Coated Quercetin-Loaded PLGA Nanoparticles for Hepatic Carcinoma Treatment
by Anil Kumar Sahdev, Chaitany Jayprakash Raorane, Mohammad Ajmal Ali, Khalid Mashay Al-Anazi, Ranjith Kumar Manoharan, Vinit Raj and Anita Singh
Polymers 2025, 17(7), 955; https://doi.org/10.3390/polym17070955 - 31 Mar 2025
Cited by 1 | Viewed by 813
Abstract
Hepatocellular carcinoma (HCC) causes the third highest mortality worldwide. Liver ablation, surgery, and embolization are conventional methods for treatment. However, these methods have limitations. To overcome these issues, nanomedicines have potential due to their high stability, high drug load capacity, and controlled release. [...] Read more.
Hepatocellular carcinoma (HCC) causes the third highest mortality worldwide. Liver ablation, surgery, and embolization are conventional methods for treatment. However, these methods have limitations. To overcome these issues, nanomedicines have potential due to their high stability, high drug load capacity, and controlled release. Thus, we prepared quercetin-loaded polylactic-co-glycolic acid (PLGA) nanoparticles coated with folic acid-chitosan (QPCF-NPs) to improve drug delivery and targetability applications of quercetin for the treatment of HCC. We prepared QPCF-NPs by solvent evaporation and coated them with chitosan-folic acid (CS-FA). QPCF-NPs were examined using Fourier-Transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In addition, the drug release rate and cytotoxicity were studied. Moreover, in vivo HCC studies such as histopathology and biochemical parameters were conducted. Subsequently, QPCF-NPs with a spherical shape and an average size of 200–290 nm have been demonstrated to have formed by FTIR, XRD, SEM, and TEM. Further, we observed sustained drug release from QPCF-NPs compared to quercetin. Cellular cytotoxicity showed significant inhibition in the HEPG2-cell line with QPCF-NPs treatment. Biochemical estimate and oxidative stress regulation were considerably more regulated in the treatment groups than the HCC group in a dose-dependent way after subcutaneous administration of QPCF-NPs. ELISA of interleukin and caspase-3 demonstrated the anticipated results in comparison to the carcinogen control group. Compared to earlier preparations, the QPCF-NPs generated demonstrated better drug targetability and potency for treating HCC. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 4834 KiB  
Article
Synthesis and Evaluation of a Chitosan-Based Cationic Hydrogel with Strong Antifungal and Antibiofilm Activities Against Clinical Isolates of Candida auris
by Muhammad Kamran, Maryam Aftab, Afreenish Amir, Fatima Javed, Amtul Quddos Latif, Kausar Abbas Saldera, Abdul Ahad, Yousef A. Bin Jardan, Louise Ann Walker, Kiran Nisa, Faheem Ullah and Naseer Ali Shah
Pharmaceuticals 2025, 18(4), 506; https://doi.org/10.3390/ph18040506 - 31 Mar 2025
Viewed by 1101
Abstract
Background: Candida auris is a significant global health concern, due to its rapid transmission, high mortality rate, and resistance to commonly available antifungal drugs. Methodology: During the current study, a cationic polymeric hydrogel was developed using chitosan (CS), polyethylene glycol (PEG), and methacrylic [...] Read more.
Background: Candida auris is a significant global health concern, due to its rapid transmission, high mortality rate, and resistance to commonly available antifungal drugs. Methodology: During the current study, a cationic polymeric hydrogel was developed using chitosan (CS), polyethylene glycol (PEG), and methacrylic acid (MAA). The respective solutions were mixed in a volumetric ratio of 2:1:1. After characterization, the hydrogel was assessed using antifungal, antibiofilm, and hemocompatibility assays. Results: The hydrodynamic radius of 554.7 ± 90.1 nm and zeta potential of 15.6 ± 1.09 mV indicate the ideal size and charge for topical applications and in vivo studies, respectively. The formulation exhibited improved thermal stability, enhanced swelling, and a drug release profile for non-Fickian diffusion. The hydrogel effectively inhibited fungal growth in agar plates (42 ± 7.31 mm zone of inhibition), with a mean IC50 of 15.17 ± 4.01 μg/mL and MIC of 29.30 ± 11.72 μg/mL. Calcofluor white (CFW) staining showed diffuse irregular yeast cells, suggesting increased membrane permeability, eventually leading to cell death. The hemocompatibility assay revealed no visible agglutination or hemolysis at the MIC value. The formulation exhibited significantly reduced biofilm formation compared to the growth control (p < 0.05). Additionally, in silico analysis revealed that MAA showed superior oral bioavailability, no inhibitory activity on cytochrome P450 enzymes, and low potential for toxicity through nuclear receptor signaling pathways. Conclusions: Cationic hydrogels show promise as potential antifungal treatments. The development of cost-effective and improved therapeutic methods is crucial to combat this deadly pathogen and to improve patient outcomes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 6558 KiB  
Article
Simvastatin-Loaded Chitosan-Functionalized PLGA Nanoparticles: Characterization and Use in Intimal Hyperplasia Therapy
by Ashley A. Peters, Chanpreet Kaur, Maleen Cabe, Kelly A. Langert, Kristopher Maier and Vivian Gahtan
Pharmaceutics 2025, 17(3), 391; https://doi.org/10.3390/pharmaceutics17030391 - 20 Mar 2025
Viewed by 722
Abstract
Background: Statins have beneficial pleiotropic effects, including reducing intimal hyperplasia (IH), but off-target effects remain a concern. Here, we tested the hypothesis that chitosan-functionalized polymeric nanoparticles (NPs) loaded with simvastatin (SL-cNPs) would (1) readily associate with endothelial cells (ECs) and vascular smooth [...] Read more.
Background: Statins have beneficial pleiotropic effects, including reducing intimal hyperplasia (IH), but off-target effects remain a concern. Here, we tested the hypothesis that chitosan-functionalized polymeric nanoparticles (NPs) loaded with simvastatin (SL-cNPs) would (1) readily associate with endothelial cells (ECs) and vascular smooth muscle cells (VSMCs); (2) affect EC and VSMC function; and (3) reduce IH compared to systemic simvastatin. Methods: Human aortic ECs and VSMCs were cultured with fluorescently labeled SL-cNPs. The association of SL-cNPs was assessed by immunostaining and flow cytometry. The effect of SL-cNPs, empty cNPs (E-cNPs), and free simvastatin on cells was determined using qRT-PCR for RhoA and RhoB. Carotid artery balloon-injured rats were treated intraoperatively with intraluminal saline, E-cNPs, low- or high-dose SL-cNPs, periadventitial high-dose SL-cNPs, or with pre- and post-operative oral simvastatin plus intraoperative intraluminal saline or low-dose SL-cNPs. Rats were euthanized (day 14) and IH was quantified. Results: SL-cNPs readily associated with ECs and VSMCs. Low- and high-dose SL-cNPs induced significant increases in EC and VSMC RhoA gene expression. High-dose SL-cNPs induced a significant increase in EC RhoB expression, while free simvastatin and low- and high-dose SL-cNPs significantly increased RhoB expression in VSMCs. In vivo, oral simvastatin plus intraluminal SL-cNPs significantly reduced IH compared to controls. Conclusions: cNPs can be used as a vehicle to locally deliver statins to vascular cells. However, other NP formulations may be preferential for IH reduction given only the combination of oral simvastatin and SL-cNPs effectively reduced IH. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

22 pages, 5578 KiB  
Article
Optimized and Functionalized Carvacrol-Loaded Nanostructured Lipid Carriers for Enhanced Cytotoxicity in Breast Cancer Cells
by Ana F. C. Uchôa, Allessya L. D. Formiga, Anny L. M. R. Cardoso, Graziela M. A. Pereira, Lucas M. M. Carvalho, Pedro H. O. Souza, Anauara L. Silva, Ramon R. M. Souza, Marianna V. Sobral, Marcelo S. Silva, José M. Barbosa-Filho and Francisco H. Xavier-Júnior
Pharmaceutics 2025, 17(3), 363; https://doi.org/10.3390/pharmaceutics17030363 - 13 Mar 2025
Viewed by 1005
Abstract
Background/Objectives: Carvacrol, a monoterpenoid phenol found in essential oils, exhibits many biological activities, including anticancer properties through mechanisms such as induction of apoptosis. These properties can be enhanced if encapsulated within nanoparticles. This study focuses on producing functionalized carvacrol-loaded nanostructured lipid carriers [...] Read more.
Background/Objectives: Carvacrol, a monoterpenoid phenol found in essential oils, exhibits many biological activities, including anticancer properties through mechanisms such as induction of apoptosis. These properties can be enhanced if encapsulated within nanoparticles. This study focuses on producing functionalized carvacrol-loaded nanostructured lipid carriers (NLCs) applied to the treatment of breast cancer. Methods: NLCs were produced by hot emulsification with the sonication method and optimized by the Box–Behnken design, considering Precirol® (1, 4, 7%), carvacrol (1, 5, 9%), and Tween® (0.1, 0.5, 0.9%) as independent variables. Results: The optimized NLC containing 2% carvacrol had a particle size of 111 ± 2 nm, PdI of 0.26 ± 0.01, and zeta potential of −24 ± 0.8 mV. The solid lipid (Precirol®) was the variable that most influenced particle size. NLCs were functionalized with Pluronic® F68, cholesterol, chitosan, and polyethylene glycol (0.05–0.2%), with oNLC-Chol presenting the most promising results, with no significant increase in particle size (±12 nm) and high encapsulation efficiency (98%). Infrared spectra confirm effective carvacrol encapsulation, and stability tests showed no significant physicochemical changes for 120 days of storage at 4 °C. When incubated with albumin (5 mg/mL), NLCs showed overall good stability over 24 h, except for oNLC-Chol, which increased slightly in size after 24 h. In addition, oNLC increased the cytotoxic effect of carvacrol by 12-fold, resulting in an IC50 of 7 ± 1 μg/mL. Conclusions: Therefore, it was possible to produce stable, homogeneous NLCs with nanometric sizes containing 2% carvacrol that displayed improved anticancer efficacy, indicating their potential as a delivery system. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

31 pages, 1762 KiB  
Review
Pharmaceutical 3D Printing Technology Integrating Nanomaterials and Nanodevices for Precision Neurological Therapies
by Jurga Bernatoniene, Mindaugas Plieskis and Kestutis Petrikonis
Pharmaceutics 2025, 17(3), 352; https://doi.org/10.3390/pharmaceutics17030352 - 9 Mar 2025
Cited by 2 | Viewed by 1645
Abstract
Pharmaceutical 3D printing, combined with nanomaterials and nanodevices, presents a transformative approach to precision medicine for treating neurological diseases. This technology enables the creation of tailored dosage forms with controlled release profiles, enhancing drug delivery across the blood−brain barrier (BBB). The integration of [...] Read more.
Pharmaceutical 3D printing, combined with nanomaterials and nanodevices, presents a transformative approach to precision medicine for treating neurological diseases. This technology enables the creation of tailored dosage forms with controlled release profiles, enhancing drug delivery across the blood−brain barrier (BBB). The integration of nanoparticles, such as poly lactic-co-glycolic acid (PLGA), chitosan, and metallic nanomaterials, into 3D-printed scaffolds improves treatment efficacy by providing targeted and prolonged drug release. Recent advances have demonstrated the potential of these systems in treating conditions like Parkinson’s disease, epilepsy, and brain tumors. Moreover, 3D printing allows for multi-drug combinations and personalized formulations that adapt to individual patient needs. Novel drug delivery approaches, including stimuli-responsive systems, on-demand dosing, and theragnostics, provide new possibilities for the real-time monitoring and treatment of neurological disorders. Despite these innovations, challenges remain in terms of scalability, regulatory approval, and long-term safety. The future perspectives of this technology suggest its potential to revolutionize neurological treatments by offering patient-specific therapies, improved drug penetration, and enhanced treatment outcomes. This review discusses the current state, applications, and transformative potential of 3D printing and nanotechnology in neurological treatment, highlighting the need for further research to overcome the existing challenges. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Drug Delivery and Drug Release)
Show Figures

Figure 1

26 pages, 6313 KiB  
Article
New Three Dimensional-Printed Polyethylene Terephthalate Glycol Liners for Hip Joint Endoprostheses: A Bioactive Platform for Bone Regeneration
by Gheorghe Iosub, Ioana-Alexandra Lungescu, Alexandra Cătălina Bîrcă, Adelina-Gabriela Niculescu, Paul Catalin Balaure, Sorin Constantinescu, Bogdan Mihaiescu, Dragoș Mihai Rădulescu, Alexandru Mihai Grumezescu, Ariana Hudiță, Ionela Andreea Neacșu and Adrian Radu Rădulescu
Materials 2025, 18(6), 1206; https://doi.org/10.3390/ma18061206 - 8 Mar 2025
Viewed by 1057
Abstract
Osteoporosis and bone defects are commonly observed in postmenopausal women, often linked to decreased folic acid levels, which play a crucial role in bone metabolism and regeneration. This study investigates 3D-printed polyethylene terephthalate glycol (PETG)-based porous scaffolds impregnated with chitosan (CS), hydroxyapatite (HAp), [...] Read more.
Osteoporosis and bone defects are commonly observed in postmenopausal women, often linked to decreased folic acid levels, which play a crucial role in bone metabolism and regeneration. This study investigates 3D-printed polyethylene terephthalate glycol (PETG)-based porous scaffolds impregnated with chitosan (CS), hydroxyapatite (HAp), and folic acid (FA) for bone tissue engineering applications. The PETG-CS scaffold serves as the primary structural framework, with HAp incorporated to enhance bioactivity through its osteoconductive and osteoinductive properties. FA was included to address potential deficiencies in bone quality and to stimulate cellular differentiation. The scaffolds were fabricated using precise 3D printing techniques, yielding structures with controlled porosity. Physicochemical analyses confirmed the successful integration of HAp and FA into the PETG-CS matrix. Biological evaluations using preosteoblast cell lines demonstrated enhanced cell viability, proliferation, and biocompatibility of the scaffolds. These findings highlight the promising applications of PETG-CS-HAp-FA scaffolds in bone tissue engineering, providing a platform for future investigations into personalized regenerative therapies. Full article
Show Figures

Figure 1

Back to TopTop