Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = glued wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6838 KiB  
Article
Preparation and Bonding Properties of Fabric Veneer Plywood
by Ziyi Yuan, Limei Cheng, Chengsheng Gui and Lu Fang
Coatings 2025, 15(8), 864; https://doi.org/10.3390/coatings15080864 - 23 Jul 2025
Viewed by 304
Abstract
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were [...] Read more.
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were objectively analyzed by bending and draping, compression, and surface roughness, and subjectively evaluated by establishing seven levels of semantic differences. ESEM, surface adhesive properties, and peel resistance tests were used to characterize the microstructure and physical–mechanical properties of the composites. The results show that cotton and linen fabrics and corduroy fabrics are superior to other fabrics in performance, and they are suitable for decorative materials. Because the fibers of the doupioni silk fabric are too thin, and the fibers of felt fabric are randomly staggered, they are not suitable for the surface decoration materials of man-made panels. The acetate veneer surface gluing performance was 1.31 MPa, and the longitudinal peel resistance was 20.98 N, significantly exceeding that of other fabric veneers. Through the subjective and objective analysis of fabrics and gluing performance tests, it was concluded that, compared with fabrics made of natural fibers, man-made fiber fabrics are more suitable for use as surface finishing materials for wood-based panels. The results of this study provide a theoretical basis and process reference for the development of environmentally friendly decorative panels, which can be expanded and applied to furniture, interior decoration, and other fields. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

16 pages, 2608 KiB  
Article
Analysis of the Properties of Upcycled Wood Waste for Sustainable Furniture Production
by Małgorzata Grotowska, Sylwia Olenska, Joanna Gruszczynska and Piotr Beer
Sustainability 2025, 17(14), 6368; https://doi.org/10.3390/su17146368 - 11 Jul 2025
Viewed by 264
Abstract
Although linear overproduction and overconsumption have benefited businesses, they have created an unsustainable society. Converting wood waste into construction material can support the transition to a circular economy. The mechanical properties of beams constructed from wood waste were measured. Squares with 50, 60, [...] Read more.
Although linear overproduction and overconsumption have benefited businesses, they have created an unsustainable society. Converting wood waste into construction material can support the transition to a circular economy. The mechanical properties of beams constructed from wood waste were measured. Squares with 50, 60, and 70 mm side lengths were glued to create beams, to which the three-point test method was applied parallel to the fibres. The stiffness and moduli of elasticity and rupture were analysed with standard industrial statistical techniques. Specifically, a two-stage analysis was performed using the normal distribution and Shewhart control charts. Changes of 100 mm in width and height and 200 mm in length caused a change of 200–400 N/mm2 in elasticity and 500–1300 MNmm2 in stiffness. Modulus of rupture values were relatively comparable, as they were determined by the properties of oak wood, from which the beams were made. The observed differences in the tested mechanical parameters will be useful in the optimisation of furniture construction, with our research suggesting that it is possible to predict mechanical properties from the dimensions of the waste-wood pieces. Ultimately, this should help to design sustainable furniture that is aesthetic, functional, and safe. Full article
Show Figures

Figure 1

20 pages, 5375 KiB  
Article
Quality of Plywood Bonded with Nanolignin-Enriched Cardanol-Formaldehyde Adhesive
by Maria Rita Ramos Magalhães, Felipe Gomes Batista, Ana Carolina Corrêa Furtini, Mário Vanoli Scatolino, Flávia Maria Silva Brito, Lourival Marin Mendes, Thiago de Paula Protásio and José Benedito Guimarães Junior
Fibers 2025, 13(7), 95; https://doi.org/10.3390/fib13070095 - 10 Jul 2025
Viewed by 189
Abstract
Cardanol is a derivative of cashew nut shell liquid (CNSL) and has the potential to be used when developing adhesives for wood boards. Adding nanostructures to adhesive can increase its bonding and reduce formaldehyde emission. Therefore, this study aimed to evaluate the different [...] Read more.
Cardanol is a derivative of cashew nut shell liquid (CNSL) and has the potential to be used when developing adhesives for wood boards. Adding nanostructures to adhesive can increase its bonding and reduce formaldehyde emission. Therefore, this study aimed to evaluate the different concentrations of nanolignin (1, 2, and 3%) added to the cardanol-formaldehyde adhesive for gluing plywood, in comparison to the cardanol-formaldehyde adhesive without nanolignin (0%). The plywood’s physical, mechanical, and formaldehyde emission properties were assessed. Plywoods with nanolignin showed shear strength increases of around 160% in the wet condition. With the addition of nanolignin, the modulus of rupture and of elasticity increased by approximately 150% and up to 400% in the parallel direction, respectively. The resistance to combustion also significantly improved. Physical properties did not show statistically significant differences with the percentages of nanolignin. Despite the increase in formaldehyde emission with nanolignin, all treatments met the marketing requirements (≤80 mg of formaldehyde/kg), demonstrating the adhesive potential for indoor use in plywood industries. Natural adhesives using cardanol and nanolignin are an innovative and ecological alternative, combining sustainability and high potential to reduce environmental impacts, which is aligned with at least four sustainable development goals (SDGs). Full article
Show Figures

Figure 1

17 pages, 1090 KiB  
Review
Overview and Evaluation of Chemicals and Methods for Flame Retardancy in Glued Laminated Wood Systems
by Ewelina Depczynska and Izabela Burawska
Polymers 2025, 17(11), 1459; https://doi.org/10.3390/polym17111459 - 24 May 2025
Viewed by 669
Abstract
Due to the development of wooden construction as an ecological alternative to brick construction with a high carbon footprint, there is increasing interest in materials such as plywood and LVL (Laminated Veneer Lumber). These engineered wood products have many advantages compared to wood, [...] Read more.
Due to the development of wooden construction as an ecological alternative to brick construction with a high carbon footprint, there is increasing interest in materials such as plywood and LVL (Laminated Veneer Lumber). These engineered wood products have many advantages compared to wood, such as a more uniform distribution of bending, shear, tensile, and compressive strength. However, they require improvements in fire and biological resistance. The flammability of wood and wood composites is a challenge that will allow these materials to stand out as structural or finishing materials. During combustion, toxic gases may be released, which can be harmful to people and the environment. Therefore, it is crucial to clarify whether fire-resistant wood materials are truly resistant to fire and non-toxic in fire conditions. On the other hand, flame retardants should not reduce the mechanical parameters of panels. This work analyses the current requirements (standards) regarding plywood intended for construction and the existing flame retardants for plywood and LVL based on the latest reports in the literature. We then propose an original method for evaluating future chemicals. Additionally, methods for assessing the flame retardancy of plywood and LVL based on the latest reports in the literature are described, and an original method for assessing flame retardancy methods is proposed. Full article
Show Figures

Figure 1

21 pages, 3530 KiB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 390
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 2909 KiB  
Article
Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production
by Rafał Czarnecki, Dorota Dukarska, Jakub Kawalerczyk and Arkadiusz Filipski
Materials 2025, 18(5), 1140; https://doi.org/10.3390/ma18051140 - 4 Mar 2025
Cited by 1 | Viewed by 975
Abstract
This study investigated the effect of using juvenile pine and birch wood for the production of particleboards with lowered density, glued with urea-formaldehyde (UF) resin. The wood used was characterized by a number of annual rings ranging from 5 to 13, which ensured [...] Read more.
This study investigated the effect of using juvenile pine and birch wood for the production of particleboards with lowered density, glued with urea-formaldehyde (UF) resin. The wood used was characterized by a number of annual rings ranging from 5 to 13, which ensured that only juvenile wood was used in the study. In addition to the basic characteristics of the wood particles obtained from this type of raw material, the density profiles of the manufactured particleboards, the internal bond, bending strength, modulus of elasticity, swelling, and water absorption after short-term water exposure (2 h) were also investigated. The results were compared to particleboards made from industrial wood particles from mature wood. It was found that particleboards made from juvenile pine wood exhibited higher internal bond than those made from juvenile birch wood. The bending strength of boards made from both types of juvenile wood was comparable to that of industrial particleboards; however, the modulus of elasticity of the particleboards made from juvenile pine was lower, which indicates reduced stiffness. These particleboards also showed higher swelling and water absorption, which may limit their durability under humid conditions. In contrast, birch boards exhibited lower internal bond, but their bending strength and modulus of elasticity were similar to those of industrial particles-based particleboards. Birch boards also showed slightly better water resistance than pine particleboards made from juvenile wood. However, their swelling remained higher than that of industrial particleboards. Overall, particleboards made from juvenile wood, especially birch, show good potential for further research. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Figure 1

17 pages, 6738 KiB  
Article
Structural Yield of Fast-Growing Hardwood vs. Softwood Glulam Beams
by Vanesa Baño, Carolina Pérez-Gomar, Daniel Godoy and Laura Moya
Forests 2025, 16(1), 8; https://doi.org/10.3390/f16010008 - 24 Dec 2024
Cited by 1 | Viewed by 1279
Abstract
This paper focuses on analysing the structural performance of fast-grown hardwood versus softwood glued laminated timber (GLT or glulam) beams with the aim to evaluate the potential structural use of the two main species planted in the country. In Uruguay, the first forest [...] Read more.
This paper focuses on analysing the structural performance of fast-grown hardwood versus softwood glued laminated timber (GLT or glulam) beams with the aim to evaluate the potential structural use of the two main species planted in the country. In Uruguay, the first forest plantations date from the 1990s and are comprised mainly of Eucalyptus ssp. and Pinus spp. No one species were planted for a specific industrial purpose. However, while eucalyptus was primarily destined for the pulp industry, pine, which is now reaching its forest rotation, had no specific industrial destination. Timber construction worldwide is mainly focused on softwood species with medium and long forest rotation. The objective of the present work is, therefore, to analyse and compare the potential of eucalyptus (Eucalyptus grandis) and loblolly/slash pine (Pinus elliottii/taeda) to produce glulam beams for structural purposes. Experimental tests were made on sawn timber and GLT beams manufactured under laboratory conditions for both species. The relationship between the physical and mechanical properties of sawn timber showed that, for similar characteristic values of density (365 kg/m3 for pine and 385 kg/m3 for eucalyptus), and similar years of forest rotation (20–25 years for pine and around 20 years for eucalyptus) and growth rates, the structural yield of eucalyptus was higher compared to that of pine. The superior values of modulus of elasticity found in the hardwood species explained this result. Since there is no strength classes system for South American wood species, the European system was the basis for estimating and assigning theoretical strength classes from the visual grades of Uruguayan timbers. For sawn timber, a C14 strength class for pine and C20 for eucalyptus were assigned. Results showed that pine GLT could be assigned to a strength class GL20h, and eucalyptus glulam to GL24h and GL28h, demonstrating the potential of both species for producing glulam beams. Even though eucalyptus showed a better yield than pine, the technological process of manufacturing eucalyptus glulam was more challenging in terms of drying time and gluing than in the case of pine, which derivates in higher economic costs. Full article
(This article belongs to the Special Issue Emerging Potential of Hardwood Resources for Innovative Uses)
Show Figures

Figure 1

25 pages, 8116 KiB  
Article
Study on Structural Fire Protection and Fire Resistance of Glued Laminated Timber Columns
by Dmitrii A. Korolchenko and Fedor A. Portnov
Buildings 2024, 14(12), 4049; https://doi.org/10.3390/buildings14124049 - 20 Dec 2024
Viewed by 1348
Abstract
Glued wood is one of the most commonly used materials made of wood. Glued wood has many advantages related to its strength characteristics and operation. Nevertheless, due to the use of an adhesive base, it becomes necessary to carefully approach the issue of [...] Read more.
Glued wood is one of the most commonly used materials made of wood. Glued wood has many advantages related to its strength characteristics and operation. Nevertheless, due to the use of an adhesive base, it becomes necessary to carefully approach the issue of the fire resistance of building structures made of glued wood. The purpose of this study was to assess the effect of structural fire protection on the fire resistance of glued laminated timber columns; the task of developing methods for experimental and analytical assessments of the fire resistance of glued laminated timber columns, with the possibility of assessing the temperature of the wood under a layer of fire protection, was set, and an analysis of the effectiveness of these methods for assessing the fire resistance of such structures was conducted. The experimental assessment of fire resistance was based on the combined effects of fire and force on structures. The analytical assessment of the fire resistance was carried out using two methods, each of which estimated the time of the beginning of the ignition of the wood, as well as its combustion before the limit state of the structure was reached, but did not ascertain the acting force. As a result of evaluating the effect of structural fire protection on the fire resistance of glued wood columns, data on the heating of wood under a layer of fire protection were obtained, and the relationship between the deformation of the sample and the heating of the layers of fire protection was revealed, consisting of an increase in the ignition time of the wood with an increase in the thickness of the fire protection. Full article
(This article belongs to the Collection Buildings and Fire Safety)
Show Figures

Figure 1

18 pages, 6323 KiB  
Article
Embedment Performance of Glued Laminated Bamboo and Timber Composite Joints
by Zheng Chen, Hao Du, Libin Wang and Xiang Ding
Buildings 2024, 14(12), 4043; https://doi.org/10.3390/buildings14124043 - 20 Dec 2024
Viewed by 832
Abstract
Dowel connectors are extensively utilized to establish joint connections in timber constructions. This study investigated the embedment performance of glued laminated bamboo and timber composite joints through half-hole tests, focusing on the effects of dowel diameter, loading direction, contact condition, combination method, and [...] Read more.
Dowel connectors are extensively utilized to establish joint connections in timber constructions. This study investigated the embedment performance of glued laminated bamboo and timber composite joints through half-hole tests, focusing on the effects of dowel diameter, loading direction, contact condition, combination method, and moisture content. The experimental results indicated that the embedment strength of the specimens decreased progressively with an increase in dowel diameter. For wood–bamboo–wood (WBW) specimens, the embedment strength in the longitudinal to the grain was 18% higher than in the transverse direction. For bamboo–wood–bamboo (BWB), the embedment strength in the longitudinal to grain was 71% higher than in the transverse to grain. However, the compression direction to the grain had no observable impact on the embedment stiffness. The embedment capacity varied with different combination methods of bamboo and wood materials, and BWB specimens exhibited greater strength than WBW specimens. For WBW specimens, the embedment strength under smooth contact conditions was 61% higher than that under threaded contact conditions. Similarly, for BWB specimens, the embedment strength under smooth contact conditions was 73% higher than that under threaded contact conditions. After 3 days of water immersion, the embedment strength of glued laminated bamboo and timber composite specimens decreased to about 45% of the original strength. After 6 days of water immersion, the embedment strength of glued laminated bamboo and timber composite specimens fell to about 15% of the original strength. Based on the test results, this paper proposed calculation methods for predicting the embedment strength and stiffness of glued laminated bamboo and timber composite joints. Full article
Show Figures

Figure 1

23 pages, 10301 KiB  
Article
Nanocellulose-Based Films for Surface Protection of Wooden Artefacts
by Paulina Kryg, Bartłomiej Mazela, Waldemar Perdoch, Mariusz Jancelewicz and Magdalena Broda
Int. J. Mol. Sci. 2024, 25(24), 13333; https://doi.org/10.3390/ijms252413333 - 12 Dec 2024
Cited by 1 | Viewed by 1616
Abstract
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose [...] Read more.
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose nanopapers (CNPs) had a homogeneous and compact structure but were very brittle, stiff, and wavy. Functionalisation with silanes made their structure more packed and reduced their equilibrium moisture content by 87–96%, depending on the type and concentration of the silane. Silane functionalisation also slightly improved nanopapers’ resistance to moulds. Plasticisation with glycerol provided CNPs with higher flexibility and resistance to fracture and made them flatter and smoother, reducing the wettability of their surfaces but increasing their hygroscopicity (EMC values increased 1.7–3.5 times for pure CNPs and 5–33 times for functionalised CNPs) and vulnerability to mould infestation. All prepared nanopapers can be easily glued to the wood surface and colour-matched using a nitro wood stain, oil paint or waterborne acrylic paint. The research showed that cellulose nanopapers modified with silanes and plasticised with glycerol seem to be a promising solution for protecting the cracked surface of wooden artefacts against further degradation due to external conditions. Full article
(This article belongs to the Special Issue Nanocellulose: Recent Advances and Green Applications)
Show Figures

Graphical abstract

24 pages, 6889 KiB  
Article
Study on the Smart Dyeing and Performance of Poplar Veneers Modified by Deep Eutectic Solvents
by Yadong Liu and Kuiyan Song
Forests 2024, 15(12), 2120; https://doi.org/10.3390/f15122120 - 30 Nov 2024
Cited by 1 | Viewed by 1291
Abstract
Imitation precious wood materials have become a research focus due to their good quality, high safety level, excellent performance, rich color, varied textures, and high utilization rates. However, their uneven dyeing, poor color stability, and lack of durability limit their further application. This [...] Read more.
Imitation precious wood materials have become a research focus due to their good quality, high safety level, excellent performance, rich color, varied textures, and high utilization rates. However, their uneven dyeing, poor color stability, and lack of durability limit their further application. This study utilized a neural network model optimized with the Gray Wolf Algorithm (GWA) for color matching, using acidic dyes as raw materials and deep eutectic solvents (DESs) for modification. Functional reagents like nano tungsten trioxide (WO3) and titanium dioxide (TiO2) were introduced alongside polyvinyl alcohol (PVA) as a modifier. A dyeing-enhancement modification process was employed to create a poplar veneer that exhibited uniform and stable color performance with a smooth surface, mimicking that of precious wood. Computerized color matching was used to adjust the dye formulation for staining, ensuring stable colorimetric values on the veneer surface, which closely resembled natural precious wood. The average mean squared error in dye concentration prediction, after processing with the Gray Wolf Algorithm and a basic neural network algorithm, decreased from 0.13 to 0.006, ensuring repeatability and consistency in wood dyeing. Analysis and characterization using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and permeability testing revealed that nano TiO2 and WO3 particles were uniformly distributed within the wood cell lumens and firmly bonded. Mechanical testing on PVA-glued veneers showed that compared to untreated poplar veneers, the tensile strength of the imitation wood increased by approximately 62.5%, and the bending strength reached 809.09 MPa, significantly improving the flexibility and tensile properties of the poplar veneer. This study is the first to adopt a DES-modified dyeing-enhancement modification process to improve the dyeing performance, uniformity, durability, and structural stability of wood, showcasing its great potential in architectural decoration, high-end furniture, and artisanal crafts. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 1542 KiB  
Article
The Optimization of the Strength of Wood Adhesive Joints Supported by Steel Fasteners in Furniture Components
by Witold Jarecki, Bartosz Pałubicki, Marcin Wołpiuk, Adrian Trociński, Dariusz Orlikowski and Marek Wieruszewski
Forests 2024, 15(11), 1953; https://doi.org/10.3390/f15111953 - 7 Nov 2024
Viewed by 1392
Abstract
The strength properties of softwood components with bonded joints reinforced with fasteners were investigated and compared. Initial tests of the strength of the glue joints were carried out, with a change in the type of adhesive used. The application method significantly influenced the [...] Read more.
The strength properties of softwood components with bonded joints reinforced with fasteners were investigated and compared. Initial tests of the strength of the glue joints were carried out, with a change in the type of adhesive used. The application method significantly influenced the shear strength of the joint. With the adhesive and pre-bonding systems used, the shear strength of the adhesive joint of pine wood (Pinus silvestris L.) with PUR and PVAC resin was determined. The industrial results were 31% lower than in the shear test of the wooden joint bonded with PVAC glue. In terms of transverse shear force with staples, the joint has a transverse holding force that is higher than components connected with screws or nails. As the number of glue sticks increased, the shear strength of the pine wood increased. The strengths of the joined components in the glue roller method had an intermediate value. They did not differ significantly between the two-row gluing systems used. An increase in the force required to shear the bonded joint was observed for the different adhesive systems, the fasteners used, and their density. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

13 pages, 8500 KiB  
Article
A Study on the Charring Properties of Glued Laminated Korean Larch Timber Columns
by Yunjeong Choi, Kwonhyuk Baik, Suho Kim and Jaehong An
Sustainability 2024, 16(20), 9130; https://doi.org/10.3390/su16209130 - 21 Oct 2024
Cited by 1 | Viewed by 1293
Abstract
As the carbon storage capacity of timber is recognized, there is growing interest in timber and wooden structures as a solution to various environmental problems. The use of Korean timber with substantial carbon storage capacity is required to reduce Korean carbon emissions and [...] Read more.
As the carbon storage capacity of timber is recognized, there is growing interest in timber and wooden structures as a solution to various environmental problems. The use of Korean timber with substantial carbon storage capacity is required to reduce Korean carbon emissions and circulate timber resources. In this study, fire tests were conducted to investigate the charring properties of glued laminated timber columns made of Korean larch. The fire tests were conducted under both load-bearing and non-load-bearing conditions. The fire test results showed that the charring depth was affected by the corners of the section and that the load ratio had an insignificant influence on the charring depth when the load ratio was 0.9 or less. This study provides data that can be used to compare the charring properties of laminated wood produced using South Korean larch with the charring properties of foreign standards. This research provides reference data for developing fire-resistant design standards for timber structures made from South Korean timber. Full article
Show Figures

Figure 1

13 pages, 5329 KiB  
Article
Preliminary Study on the Bending Behavior of Solid Timber Beams Reinforced with Basalt Fiber-Reinforced Polymer Bars
by Justyna Dygas, Michał Marcin Bakalarz and Paweł Grzegorz Kossakowski
Appl. Sci. 2024, 14(20), 9558; https://doi.org/10.3390/app14209558 - 19 Oct 2024
Viewed by 1324
Abstract
The purpose of this work is to test the effectiveness of strengthening timber structures by means of composite bars. This article presents the results of preliminary tests carried out on solid beams made of fir wood. The test specimens, which are classified as [...] Read more.
The purpose of this work is to test the effectiveness of strengthening timber structures by means of composite bars. This article presents the results of preliminary tests carried out on solid beams made of fir wood. The test specimens, which are classified as strength class C24, had dimensions of 7 × 17 × 330 cm. Beams were reinforced with 8 mm diameter basalt fiber-reinforced polymer (BFRP) bars. The bars were glued into grooved channels along the bottom surface. Epoxy resin was used as an adhesive. The strength tests were conducted in accordance with the requirements of EN 408+A1:2012. The four-point bending scheme was adopted. The tests were conducted in the following two series: unreinforced beams (A) and beams reinforced with composites (B). Five elements were tested in each series. The reinforcement resulted in an average increase in the bending moment value of 8.41%. The deflection value at failure increased by 19.77%. The work also includes an analysis of the failure mode and a ductility analysis. Further tests should be carried out using a higher reinforcement ratio. A higher reinforcement ratio should make the presented reinforcement configuration more effective. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 4225 KiB  
Review
A Review on the Effect of Wood Surface Modification on Paint Film Adhesion Properties
by Jingyi Hang, Xiaoxing Yan and Jun Li
Coatings 2024, 14(10), 1313; https://doi.org/10.3390/coatings14101313 - 14 Oct 2024
Cited by 10 | Viewed by 2619
Abstract
Wood surface treatment aims to improve or reduce the surface activity of wood by physical treatment, chemical treatment, biological activation treatment or other methods to achieve the purpose of surface modification. After wood surface modification, the paint film adhesion performance, gluing performance, surface [...] Read more.
Wood surface treatment aims to improve or reduce the surface activity of wood by physical treatment, chemical treatment, biological activation treatment or other methods to achieve the purpose of surface modification. After wood surface modification, the paint film adhesion performance, gluing performance, surface wettability, surface free energy and surface visual properties would be affected. This article aims to explore the effects of different modification methods on the adhesion of wood coating films. Modification of the wood surface significantly improves the adhesion properties of the paint film, thereby extending the service life of the coating. Research showed that physical external force modification improved the hydrophilicity and wettability of wood by changing its surface structure and texture, thus enhancing the adhesion of the coating. Additionally, high-temperature heat treatment modification reduced the risk of coating cracking and peeling by eliminating stress and moisture within the wood. Chemical impregnation modification utilized the different properties of organic and inorganic substances to improve the stability and durability of wood. Organic impregnation effectively filled the wood cell wall and increased its density, while inorganic impregnation enhanced the adhesion of the coating by forming stable chemical bonds. Composite modification methods combined the advantages of the above technologies and significantly improved the comprehensive properties of wood through multiple modification treatments, showing superior adhesion and durability. Comprehensive analysis indicated that selecting the appropriate modification method was key for different wood types and application environments. Full article
Show Figures

Figure 1

Back to TopTop