Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = globe artichoke by-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1097 KB  
Article
Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)
by Marco Zuccolo, Angela Bassoli, Annamaria Giorgi, Luca Giupponi, Stefania Mazzini and Gigliola Borgonovo
Molecules 2025, 30(12), 2649; https://doi.org/10.3390/molecules30122649 - 19 Jun 2025
Viewed by 512
Abstract
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization [...] Read more.
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization of the residual leaves of Carciofo di Malegno, an Alpine artichoke landrace. Comparative analysis was conducted against leaves from two commercial cultivars and a commercial herbal tea product. HPLC analysis revealed that Carciofo di Malegno exhibited the lowest levels of secondary metabolites. Cynaropicrin content was 0.52 ± 0.03 mg/g, lower than in the commercial samples, while the phenolic compounds were below the quantification limit. Proximate analysis indicated a distinctive nutritional profile, with significantly higher ash (8.01 ± 0.04%) and crude fiber (35.75 ± 0.29%) contents compared to all reference samples. These findings highlight the potential of Carciofo di Malegno residual leaves as a sustainable source of nutrients for functional food and nutraceutical applications. Their low content of bitter sesquiterpene lactones may enhance palatability, supporting their valorisation within circular economy frameworks. Moreover, their use may contribute to the in situ conservation of this landrace, reinforcing the link between agrobiodiversity preservation and the sustainable exploitation of agricultural by-products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

30 pages, 1623 KB  
Article
The Role of Extracts of Edible Parts and Production Wastes of Globe Artichoke (Cynara cardunculus L. var. scolymus (L.)) in Counteracting Oxidative Stress
by Valentina Laghezza Masci, Irene Mezzani, Enrica Alicandri, William Tomassi, Anna Rita Paolacci, Stefano Covino, Vittorio Vinciguerra, Elisabetta Catalani, Davide Cervia, Mario Ciaffi, Stefania Garzoli and Elisa Ovidi
Antioxidants 2025, 14(1), 116; https://doi.org/10.3390/antiox14010116 - 20 Jan 2025
Cited by 5 | Viewed by 1543
Abstract
In addition to the immature edible flower heads, the cultivation of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) generates substantial quantities of by-products, including leaves, stems, and roots, which constitute potential sources of bioactive compounds and prebiotic dietary fiber. Preserving [...] Read more.
In addition to the immature edible flower heads, the cultivation of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) generates substantial quantities of by-products, including leaves, stems, and roots, which constitute potential sources of bioactive compounds and prebiotic dietary fiber. Preserving agricultural biodiversity and promoting socioeconomic development are essential for enhancing domestic production and fostering innovation. In the search for new biomolecules with antioxidant properties, this research focused on a globe artichoke landrace at risk of genetic erosion, still cultivated in the northern part of the Lazio region, known as the “Carciofo Ortano”. To investigate the antioxidant properties of various globe artichoke tissues from the “Carciofo Ortano” landrace, methanolic extracts were prepared from the immature main and secondary flower heads, stems, and leaves of representative genotypes of this landrace. Additionally, extracts were obtained from the same tissues of four landraces/clones included in the varietal platform of the PGI “Carciofo Romanesco del Lazio”, which served as reference genotypes: Campagnano, Castellammare, C3, and Grato 1. The antioxidant properties of these extracts were assessed using FRAP, ABTS, DPPH assays, and total phenolic content (TPC). The stem and secondary flower head extracts of two representative “Carciofo Ortano” genotypes and the Grato 1 clone, which have higher phenolic content, demonstrated the highest antioxidant activity. These extracts were therefore studied for their chemical profile using HPLC-DAD and SPME-GC/MS analysis. Additionally, the same extracts were investigated in vitro for their antioxidant capacity in differentiated SH-SY5Y cells, assessing their effects on ROS levels and the restoration of GSH levels. Furthermore, the in vivo beneficial effects of counteracting oxidative stress were evaluated in high sucrose-fed Drosophila melanogaster, as oxidative stress is a typical hallmark of hyperglycemic status. Overall, the results indicated that the edible immature inflorescences of the “Carciofo Ortano” landrace, along with the byproducts of its cultivation, are sources of raw materials containing biomolecules whose properties can be exploited for further applications in the pharmaceutical and medical sectors. Full article
(This article belongs to the Special Issue Antioxidant Activities of Phytochemicals in Fruits and Vegetables)
Show Figures

Figure 1

22 pages, 1115 KB  
Review
Globe Artichoke (Cynara scolymus L.) By-Products in Food Applications: Functional and Biological Properties
by Raffaella Colombo, Giulia Moretto, Vanessa Pellicorio and Adele Papetti
Foods 2024, 13(10), 1427; https://doi.org/10.3390/foods13101427 - 7 May 2024
Cited by 19 | Viewed by 4611
Abstract
Globe artichoke (Cynara cardunculus var. scolymus L.) is widely cultivated in the Mediterranean area and Italy is one of the largest producers. A great issue is represented by its high amount of by-product, mainly consisting of external bracts and stems, but also [...] Read more.
Globe artichoke (Cynara cardunculus var. scolymus L.) is widely cultivated in the Mediterranean area and Italy is one of the largest producers. A great issue is represented by its high amount of by-product, mainly consisting of external bracts and stems, but also of residual leaves, stalks, roots, and seeds. Artichoke by-products are rich in nutrients (carbohydrates and proteins) and bioactive compounds (polyphenols and terpenes) and represent potential ingredients for foodstuffs, functional foods, and food supplements, due to their functional and biological properties. In fact, artichoke by-products’ components exhibit many beneficial effects, such as dyspeptic, prebiotic, antioxidant, anti-inflammatory, antiglycative, antimicrobial, anticarcinogenic, and hypolipidemic properties. Therefore, they can be considered potential food ingredients useful in reducing the risk of developing metabolic and age-related disorders. This work summarizes the economic and environmental impact of the recovery and valorization of artichoke by-products, focusing on rheological, physical, and biological properties of the different components present in each by-product and their different food applications. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

18 pages, 1044 KB  
Review
An Overview of the Versatility of the Parts of the Globe Artichoke (Cynara scolymus L.), Its By-Products and Dietary Supplements
by Beata Olas
Nutrients 2024, 16(5), 599; https://doi.org/10.3390/nu16050599 - 22 Feb 2024
Cited by 14 | Viewed by 6555
Abstract
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is [...] Read more.
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

27 pages, 2085 KB  
Article
Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study
by Cinzia Ingallina, Giacomo Di Matteo, Mattia Spano, Erica Acciaro, Enio Campiglia, Luisa Mannina and Anatoly Petrovich Sobolev
Molecules 2023, 28(3), 1363; https://doi.org/10.3390/molecules28031363 - 31 Jan 2023
Cited by 19 | Viewed by 3885
Abstract
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and [...] Read more.
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements. Full article
Show Figures

Figure 1

14 pages, 3312 KB  
Article
Silage Fermentation: A Potential Biological Approach for the Long-Term Preservation and Recycling of Polyphenols and Terpenes in Globe Artichoke (Cynara scolymus L.) By-Products
by Zhuoyan Fan, Kai Chen, Lingyin Ban, Yu Mao, Caiyun Hou and Jingming Li
Molecules 2020, 25(14), 3302; https://doi.org/10.3390/molecules25143302 - 21 Jul 2020
Cited by 13 | Viewed by 3947
Abstract
An economic and effective method for storage is necessary to make full use of the nature of active components in artichoke by-products and ease environmental pressure. In this paper, the potential of silage fermentation for the preservation and recycling of polyphenols and terpenes [...] Read more.
An economic and effective method for storage is necessary to make full use of the nature of active components in artichoke by-products and ease environmental pressure. In this paper, the potential of silage fermentation for the preservation and recycling of polyphenols and terpenes in artichoke by-products is evaluated. The silage of artichoke by-products is characterized by lactic acid bacteria fermentation. Silage distinctly increases the abundance of lactic acid bacteria in artichoke by-products, such as Lactobacillus, Lactococcus, Serratia, and Weissella, and greatly increases the abundance of Firmicutes. The improvement of the microorgan structure and composition is of great significance for the quality of artichoke by-products. Polyphenols in the stems and leaves of artichokes are preserved well in silage. Among the 18 polyphenol compounds detected by high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS), the contents of 11 phenolic acids and four flavonoids increased significantly. For terpenes detected by gas chromatography-mass spectrometry (GC-MS), the contents of four pentacyclic triterpenoids increased significantly, while two sterols were kept stable in the silage process. Silage is a potential biotechnology for the long-term preservation of bioactive components, such as polyphenols and terpenes in artichoke by-products, and the results provide a scientific basis for the efficient utilization of by-products. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plant Foods)
Show Figures

Figure 1

11 pages, 956 KB  
Article
Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy
by Fabio De Menna, Remo Alessio Malagnino, Matteo Vittuari, Giovanni Molari, Giovanna Seddaiu, Paola A. Deligios, Stefania Solinas and Luigi Ledda
Energies 2016, 9(2), 92; https://doi.org/10.3390/en9020092 - 2 Feb 2016
Cited by 31 | Viewed by 6518
Abstract
The paper aims at evaluating the potential biogas production, both in terms of CH4 and theoretical energy potential, from globe artichoke agricultural byproducts in Sardinia. Field data about the productivity of byproducts were collected on five artichoke varieties cultivated in Sardinia, to [...] Read more.
The paper aims at evaluating the potential biogas production, both in terms of CH4 and theoretical energy potential, from globe artichoke agricultural byproducts in Sardinia. Field data about the productivity of byproducts were collected on five artichoke varieties cultivated in Sardinia, to assess the biomethane production of their aboveground non-food parts (excluding the head). Moreover, secondary data from previous studies and surveys at regional scale were collected to evaluate the potential biogas production of the different districts. Fresh globe artichoke residues yielded, on average, 292.2 Nm3·tDOM−1, with dissimilarities among cultivars. Fresh samples were analyzed in two series: (a) wet basis; and (b) wet basis with catalytic enzymes application. Enzymes proved to have some beneficial effects in terms of anticipated biomethane availability. At the regional level, ab. 20 × 106 Nm3 CH4 could be produced, corresponding to the 60% of current installed capacity. However, districts potentials show some differences, depending on the specific biomass partitioning and on the productivity of cultivated varieties. Regional assessments should encompass the sensitiveness of results to agro-economic variables and the economic impacts of globe artichoke residue use in the current regional biogas sector. Full article
Show Figures

Figure 1

Back to TopTop