Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = glioblastoma multiforme (T98G)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 14167 KiB  
Article
Evaluating the Antitumor Potential of Cannabichromene, Cannabigerol, and Related Compounds from Cannabis sativa and Piper nigrum Against Malignant Glioma: An In Silico to In Vitro Approach
by Andrés David Turizo Smith, Nicolás Montoya Moreno, Josefa Antonia Rodríguez-García, Juan Camilo Marín-Loaiza and Gonzalo Arboleda Bustos
Int. J. Mol. Sci. 2025, 26(12), 5688; https://doi.org/10.3390/ijms26125688 - 13 Jun 2025
Viewed by 1358
Abstract
Malignant gliomas, including glioblastoma multiforme (GBM), are highly aggressive brain tumors with a poor prognosis and limited treatment options. This study investigates the antitumor potential of bioactive compounds derived from Cannabis sativa and Piper nigrum using molecular docking, cell viability assays, and transcriptomic [...] Read more.
Malignant gliomas, including glioblastoma multiforme (GBM), are highly aggressive brain tumors with a poor prognosis and limited treatment options. This study investigates the antitumor potential of bioactive compounds derived from Cannabis sativa and Piper nigrum using molecular docking, cell viability assays, and transcriptomic and expression analyses from public databases in humans and cell lines. Cannabichromene (CBC), cannabigerol (CBG), cannabidiol (CBD), and Piper nigrum derivates exhibited strong binding affinities relative to glioblastoma-associated targets GPR55 and PINK1. In vitro analyses demonstrated their cytotoxic effects on glioblastoma cell lines (U87MG, T98G, and CCF-STTG1), as well as on neuroblastoma (SH-SY5Y) and oligodendroglial (MO3.13) cell lines, revealing interactions among these compounds. The differential expression of GPR55 and PINK1 in tumor versus normal tissues further supports their potential as biomarkers and therapeutic targets. These findings provide a basis for the development of novel therapies and suggest unexplored molecular pathways for the treatment of malignant glioma. Full article
(This article belongs to the Special Issue Medicinal Plants for Tumor Treatments)
Show Figures

Graphical abstract

24 pages, 3035 KiB  
Article
Functional Characterization of LTR12C as Regulators of Germ-Cell-Associated TA-p63 in U87-MG and T98-G In Vitro Models
by Lucia Meola, Sohum Rajesh Shetty, Angelo Peschiaroli, Claudio Sette and Camilla Bernardini
Cells 2025, 14(11), 852; https://doi.org/10.3390/cells14110852 - 5 Jun 2025
Viewed by 624
Abstract
Glioblastoma multiforme (GBM) is a deadly disease known for its genetic heterogeneity. LTR12C is an endogenous retrovirus-derived regulator of pro-apoptotic genes and is normally silenced by epigenetic regulation. In this study, we found that the treatment of two glioblastoma cell lines, T98-G and [...] Read more.
Glioblastoma multiforme (GBM) is a deadly disease known for its genetic heterogeneity. LTR12C is an endogenous retrovirus-derived regulator of pro-apoptotic genes and is normally silenced by epigenetic regulation. In this study, we found that the treatment of two glioblastoma cell lines, T98-G and U87-MG, with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors activated LTR12C expression. Combined treatment with these epigenetic drugs exerted a synergistic action on the LTR12C activation in both cell lines, while treatment with each drug as a single agent had a far weaker effect. A strong induction of the expression of the TP63 gene was seen in both cell lines, with the pro-apoptotic isoform GTA-p63 accounting for most of this increase. Coherently, downstream targets of p63, such as p21 and PUMA, were also induced by the combined treatment. Furthermore, we observed a significant reduction in the GBM cell growth and viability following the dual DNMT/HDAC inhibition. These findings reveal that the reactivation of LTR12C expression has the potential to modulate survival pathways in glioblastoma and provide information regarding possible epigenetic mechanisms that can be used to treat this deadly disease. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

17 pages, 2688 KiB  
Article
Cell-Specific Vulnerability of Human Glioblastoma and Astrocytoma Cells to Mephedrone—An In Vitro Study
by Marta Marszalek-Grabska, Marta Kinga Lemieszek, Michal Chojnacki, Sylwia Winiarczyk, Joanna Jakubowicz-Gil, Barbara Zarzyka, Jarosław Pawelec, Jolanta H. Kotlinska, Wojciech Rzeski and Waldemar A. Turski
Molecules 2025, 30(11), 2277; https://doi.org/10.3390/molecules30112277 - 22 May 2025
Viewed by 617
Abstract
Glioblastoma multiforme is a highly aggressive intrinsic brain tumor with a very poor survival rate. The main treatment for cancer is surgery combined with postoperative radiotherapy and temozolomide chemotherapy. Since the outcomes of treatment are unsatisfactory, the search for more effective drugs is [...] Read more.
Glioblastoma multiforme is a highly aggressive intrinsic brain tumor with a very poor survival rate. The main treatment for cancer is surgery combined with postoperative radiotherapy and temozolomide chemotherapy. Since the outcomes of treatment are unsatisfactory, the search for more effective drugs is crucial. Our previous study indicated that mephedrone, a synthetic cathinone, reduced neuron and astrocyte viability and oligodendrocyte proliferation. The aim of the present study was to investigate the effect of mephedrone on selected human glioblastoma (LN-18, LN-229, T98G) and human anaplastic astrocytoma (MOGGCCM) cell lines. The effects of mephedrone on cell viability and proliferation, DNA synthesis, cell cycle progression and the type of cell death were studied. Our results showed that mephedrone possesses potential anticancer activity. The viability and proliferation of all four human glioblastoma and human anaplastic astrocytoma cell lines used were decreased in a concentration-dependent manner. Studies conducted on LN-18 and T98G cells confirmed the significant antiproliferative properties of mephedrone, which reduced DNA synthesis and affected cell cycle progression. Microscopic evaluation supported the antiproliferative effect of the tested compounds. Moreover, substantial cytoplasmic vacuolization in the LN-18 cell line was revealed. This finding may indicate the potential of mephedrone in anticancer therapy. Full article
Show Figures

Figure 1

20 pages, 4100 KiB  
Article
Ultrasound-Assisted Synthesis of Substituted Chalcone-Linked 1,2,3-Triazole Derivatives as Antiproliferative Agents: In Vitro Antitumor Activity and Molecular Docking Studies
by Manuel Cáceres, Víctor Kesternich, Marcia Pérez-Fehrmann, Mariña Castroagudin, Ronald Nelson, Víctor Quezada, Philippe Christen, Alejandro Castro-Alvarez and Juan G. Cárcamo
Int. J. Mol. Sci. 2025, 26(7), 3389; https://doi.org/10.3390/ijms26073389 - 4 Apr 2025
Viewed by 834
Abstract
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass [...] Read more.
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectrometry (IR, NMR, and MS). In vitro evaluation of cytotoxic activity on adherent and non-adherent cells showed that triazole chalcones exhibited significant activity against three of the five cell lines studied: non-Hodgkin lymphoma U937, glioblastoma multiform tumor T98G, and gallbladder cancer cells Gb-d1. In contrast, the cytotoxic activity observed for cervical cancer HeLa and gallbladder adenocarcinoma G-415 was considerably lower. Additionally, in the cell lines where activity was observed, some compounds demonstrated an In vitro inhibitory effect superior to that of the control, paclitaxel. Molecular docking studies revealed specific interactions between the synthesized ligands and therapeutic targets in various cell lines. In U937 cells, compounds 4a and 4c exhibited significant inhibition of vascular endothelial growth factor receptor (VEGFR) kinase, correlating with their biological activity. This effect was attributed to favorable interactions with key residues in the binding site. In T98G cells, compounds 4r and 4w showed affinity for transglutaminase 2 (TG2) protein, driven by their ability to form hydrophobic interactions. In Gb-d1 cells, compounds 4l and 4p exhibited favorable interactions with mitogen-activated protein kinase (MEK) protein, similar to those observed with the known inhibitor selumetinib. In HeLa cells, compounds 4h and 4g showed activity against dihydrofolate reductase (DHFR) protein, driven by hydrogen bonding interactions and favorable aromatic ring orientations. On the other hand, compounds 4b and 4t exhibited no activity, likely due to unfavorable interactions related to halogen substitutions in the aromatic rings. Full article
(This article belongs to the Special Issue Advances in Organic Synthesis in Drug Discovery)
Show Figures

Figure 1

21 pages, 4743 KiB  
Article
Seco-Duocarmycin SA in Aggressive Glioblastoma Cell Lines
by Ann Morcos, Yeonkyu Jung, Ryan N. Fuller, Antonella Bertucci, Amy Nguyen, Quanqing Zhang, Tobias Emge, Kristopher E. Boyle, Nathan R. Wall and Marcelo Vazquez
Int. J. Mol. Sci. 2025, 26(6), 2766; https://doi.org/10.3390/ijms26062766 - 19 Mar 2025
Viewed by 692
Abstract
Glioblastoma multiforme (GBM) is among the most lethal primary brain tumors and is characterized by significant cellular heterogeneity and resistance to conventional therapies. This study investigates the efficacy of seco-duocarmycin SA (seco-DSA), a novel DNA alkylating agent. Initial investigations using a colony formation [...] Read more.
Glioblastoma multiforme (GBM) is among the most lethal primary brain tumors and is characterized by significant cellular heterogeneity and resistance to conventional therapies. This study investigates the efficacy of seco-duocarmycin SA (seco-DSA), a novel DNA alkylating agent. Initial investigations using a colony formation assay revealed that seco-DSA exhibits remarkable potential with IC50 values lower than its natural DSA counterpart. Cell viability assay indicated that LN18 cells showed a markedly greater sensitivity to DSA than T98G cells. Furthermore, seco-DSA achieved its full cytotoxic effect within 8 h of drug incubation in GBM cell lines. Although seco-DSA induced a concentration-dependent increase in apoptotic cell death, the extent of apoptosis did not fully account for the observed decrease in cell viability. Instead, seco-DSA treatment resulted in significant cell cycle arrest in S and G2/M phases. These findings suggest that seco-DSA’s cytotoxicity in GBM cells is primarily due to its ability to disrupt cell cycle progression, though the precise mechanisms of action remain to be fully established, and further research is needed. Proteomic analysis of treated cells also indicates dysregulation of proteins involved in senescence, apoptosis, and DNA repair, alluding to seco-DSA-induced arrest as a major mechanism of GBM disruption. Data are available via ProteomeXchange with the dataset identifier “PXD061023”. Our reports promote the future exploration of seco-DSA’s therapeutic potential, representing a critical step toward developing a more targeted and effective treatment for GBM. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

40 pages, 9219 KiB  
Article
Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management
by Kristina Zarif Attalla, Doaa H. Hassan, Mahmoud H. Teaima, Carol Yousry, Mohamed A. El-Nabarawi, Mohamed A. Said and Sammar Fathy Elhabal
Pharmaceuticals 2025, 18(3), 421; https://doi.org/10.3390/ph18030421 - 16 Mar 2025
Cited by 8 | Viewed by 1481
Abstract
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula [...] Read more.
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula was loaded with SPION to make the final atorvastatin/superparamagnetic iron oxide-loaded nanostructured lipid carrier (ASN) formulation. Entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and drug release after 6 h (Q6h) were evaluated for NLCs. ASN was tested for cytotoxicity on T98G cancer cells, and the cell cycle was examined to determine cell death. Furthermore, the ability of the optimal formulation to suppress the levels of inflammatory biomarkers was investigated in Lipopolysaccharide (LPS)-induced inflammation. The brain-targeting behavior of IN-ASN was visualized in rabbits via confocal laser scanning microscopy (CLSM). Results: The optimum NLC exhibited a spherical shape, EE% of 84.0 ± 0.67%, PS of 282.50 ± 0.51 nm, ZP of −18.40 ± 0.15 mV, and Q6h of 89.23%. The cytotoxicity of ASN against cancer cells was 4.4-fold higher than ATO suspension, with a 1.3-fold increment in cell apoptosis. ASN showed significantly reduced pro-inflammatory biomarkers (IL-β, IL-6, TNF-α, TLR4, NF-қB), whereas CLSM revealed enhanced brain delivery with no observed histopathological nasal irritation. The in silico analysis demonstrated enhanced ATO-ADME (absorption, distribution, metabolism, and excretion) properties, while the network pharmacology study identified 10 target GBM genes, among which MAPK3 was the most prominent with a good binding score as elucidated by the simulated docking study. Conclusions: These findings may present ATO/SPION-NLCs as significant evidence for repurposing atorvastatin in the treatment of glioblastoma multiforme. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

23 pages, 10305 KiB  
Article
Methanolic Extract of Cimicifuga foetida Induces G1 Cell Cycle Arrest and Apoptosis and Inhibits Metastasis of Glioma Cells
by Chih-Hsuan Chang, Hung-Pei Tsai, Ming-Hong Yen and Chien-Ju Lin
Nutrients 2024, 16(19), 3254; https://doi.org/10.3390/nu16193254 - 26 Sep 2024
Cited by 2 | Viewed by 1506
Abstract
Background: Glioblastoma multiforme (GBM) is among the most aggressive and challenging brain tumors, with limited treatment options. Cimicifuga foetida, a traditional Chinese medicine, has shown promise due to its bioactive components. This study investigates the anti-glioma effects of a methanolic extract of C. [...] Read more.
Background: Glioblastoma multiforme (GBM) is among the most aggressive and challenging brain tumors, with limited treatment options. Cimicifuga foetida, a traditional Chinese medicine, has shown promise due to its bioactive components. This study investigates the anti-glioma effects of a methanolic extract of C. foetida (CF-ME) in GBM cell lines. Methods: The effects of CF-ME and its index compounds (caffeic acid, cimifugin, ferulic acid, and isoferulic acid) on GBM cell viability were assessed using MTT assays on U87 MG, A172, and T98G cell lines. The ability of CF-ME to induce cell cycle arrest, apoptosis, and autophagy and inhibit metastasis was evaluated using flow cytometry, Western blotting, and functional assays. Additionally, the synergistic potential of CF-ME with temozolomide (TMZ) was explored. Results: CF-ME significantly reduced GBM cell viability in a dose- and time-dependent manner, induced G1 phase cell cycle arrest, promoted apoptosis via caspase activation, and triggered autophagy. CF-ME also inhibited GBM cell invasion, migration, and adhesion, likely by modulating epithelial–mesenchymal transition (EMT) markers. Combined with TMZ, CF-ME further enhanced reduced GBM cell viability, suggesting a potential synergistic effect. However, the individual index compounds of CF-ME exhibited only modest inhibitory effects, indicating that the full anti-glioma activity may result from the synergistic interactions among its components. Conclusions: CF-ME exhibited potent anti-glioma activity through multiple mechanisms, including cell cycle arrest, apoptosis, autophagy, and the inhibition of metastasis. Combining CF-ME with TMZ further enhanced its therapeutic potential, making it a promising candidate for adjuvant therapy in glioblastoma treatment. Full article
(This article belongs to the Special Issue Anticancer Activities of Dietary Phytochemicals)
Show Figures

Figure 1

17 pages, 2028 KiB  
Article
Sphingosine 1-Phosphate Stimulates ER to Golgi Ceramide Traffic to Promote Survival in T98G Glioma Cells
by Paola Giussani, Loredana Brioschi, Enida Gjoni, Elena Riccitelli and Paola Viani
Int. J. Mol. Sci. 2024, 25(15), 8270; https://doi.org/10.3390/ijms25158270 - 29 Jul 2024
Cited by 4 | Viewed by 1404
Abstract
Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting [...] Read more.
Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting cancer progression, promoting apoptosis, enhancing immunotherapy and sensitizing cells to chemotherapy. In contrast, S1P functions as an onco-promoter molecule, increasing proliferation, survival, invasiveness, and resistance to drug-induced apoptosis. The pro-survival PI3K/Akt pathway is a recognized downstream target of S1P, and we have previously demonstrated that in glioma cells it also improves Cer transport and metabolism towards complex sphingolipids in glioma cells. Here, we first examined the possibility that, in T98G glioma cells, S1P may regulate Cer metabolism through PI3K/Akt signaling. Our research showed that exogenous S1P increases the rate of vesicular trafficking of Cer from the endoplasmic reticulum (ER) to the Golgi apparatus through S1P receptor-mediated activation of the PI3K/Akt pathway. Interestingly, the effect of S1P results in cell protection against toxicity arising from Cer accumulation in the ER, highlighting the role of S1P as a survival factor to escape from the Cer-generating cell death response. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

21 pages, 10277 KiB  
Article
Reprogramming Glioblastoma Cells into Non-Cancerous Neuronal Cells as a Novel Anti-Cancer Strategy
by Michael Q. Jiang, Shan Ping Yu, Takira Estaba, Emily Choi, Ken Berglund, Xiaohuan Gu and Ling Wei
Cells 2024, 13(11), 897; https://doi.org/10.3390/cells13110897 - 23 May 2024
Cited by 4 | Viewed by 3413
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell’s fate as a [...] Read more.
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell’s fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors. Full article
(This article belongs to the Special Issue Glioblastoma: What Do We Know?)
Show Figures

Figure 1

17 pages, 3184 KiB  
Article
Furanocoumarins as Enhancers of Antitumor Potential of Sorafenib and LY294002 toward Human Glioma Cells In Vitro
by Joanna Sumorek-Wiadro, Adrian Zając, Krystyna Skalicka-Woźniak, Wojciech Rzeski and Joanna Jakubowicz-Gil
Int. J. Mol. Sci. 2024, 25(2), 759; https://doi.org/10.3390/ijms25020759 - 7 Jan 2024
Cited by 3 | Viewed by 2072
Abstract
Furanocoumarins are naturally occurring compounds in the plant world, characterized by low molecular weight, simple chemical structure, and high solubility in most organic solvents. Additionally, they have a broad spectrum of activity, and their properties depend on the location and type of attached [...] Read more.
Furanocoumarins are naturally occurring compounds in the plant world, characterized by low molecular weight, simple chemical structure, and high solubility in most organic solvents. Additionally, they have a broad spectrum of activity, and their properties depend on the location and type of attached substituents. Therefore, the aim of our study was to investigate the anticancer activity of furanocoumarins (imperatorin, isoimperatorin, bergapten, and xanthotoxin) in relation to human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cell lines. The tested compounds were used for the first time in combination with LY294002 (PI3K inhibitor) and sorafenib (Raf inhibitor). Apoptosis, autophagy, and necrosis were identified microscopically after straining with Hoechst 33342, acridine orange, and propidium iodide, respectively. The levels of caspase 3 and Beclin 1 were estimated by immunoblotting and for the blocking of Raf and PI3K kinases, the transfection with specific siRNA was used. The scratch test was used to assess the migration potential of glioma cells. Our studies showed that the anticancer activity of furanocoumarins strictly depended on the presence, type, and location of substituents. The obtained results suggest that achieving higher pro-apoptotic activity is determined by the presence of an isoprenyl moiety at the C8 position of the coumarin skeleton. In both anaplastic astrocytoma and glioblastoma, imperatorin was the most effective in induction apoptosis. Furthermore, the usage of imperatorin, alone and in combination with sorafenib or LY294002, decreased the migratory potential of MOGGCCM and T98G cells. Full article
(This article belongs to the Special Issue The Occurrence, Evolution and Treatment of Glioblastoma)
Show Figures

Figure 1

15 pages, 2073 KiB  
Article
Emodin-8-O-Glucoside—Isolation and the Screening of the Anticancer Potential against the Nervous System Tumors
by Estera Okon, Maryna Koval, Anna Wawruszak, Adrianna Slawinska-Brych, Katarzyna Smolinska, Myroslav Shevera, Andrzej Stepulak and Wirginia Kukula-Koch
Molecules 2023, 28(21), 7366; https://doi.org/10.3390/molecules28217366 - 31 Oct 2023
Cited by 5 | Viewed by 2553
Abstract
Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. [...] Read more.
Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8-O-G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells. As a source of E-8-O-G the methanolic extract from the aerial parts of Reynoutria japonica Houtt. (Polygonaceae) was used. Thanks to the application of centrifugal partition chromatography (CPC) operated in the descending mode using a mixture of petroleum ether:ethyl acetate:methanol:water (4:5:4:5 v/v/v/v) and a subsequent purification with preparative HPLC, E-8-O-G was obtained in high purity in a sufficient quantity for the bioactivity tests. Assessment of the cancer cell viability and proliferation were performed with the MTT (3-(bromide 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium), CTG (CellTiter-Glo®) and BrdU (5-bromo-2′-deoxyuridine) assays, respectively. E-8-O-G inhibits the viability and proliferation of SK-N-AS neuroblastoma, T98G human glioblastoma multiforme, and C6 mouse glioblastoma cells dose-dependently. E-8-O-G seems to be a promising natural antitumor compound in the therapy of nervous system tumors. Full article
(This article belongs to the Special Issue Applications of HPLC Methods in Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 4862 KiB  
Article
Green Synthesis of Silver Nanoparticles Derived from Papaver rhoeas L. Leaf Extract: Cytotoxic and Antimicrobial Properties
by Polat İpek, Reşit Yıldız, Mehmet Fırat Baran, Abdulkerim Hatipoğlu, Ayşe Baran, Albert Sufianov and Ozal Beylerli
Molecules 2023, 28(17), 6424; https://doi.org/10.3390/molecules28176424 - 4 Sep 2023
Cited by 8 | Viewed by 2967
Abstract
In the last few decades, the search for metal nanoparticles as an alternative to cancer treatments and antibiotics has increased. In this article, the spectroscopic (ultraviolet–visible (UV-vis), electron-dispersing X-ray (EDX), and Fourier transform infrared (FT-IR)), microscopic (field emission scanning electron microscope (FE-SEM), transmission [...] Read more.
In the last few decades, the search for metal nanoparticles as an alternative to cancer treatments and antibiotics has increased. In this article, the spectroscopic (ultraviolet–visible (UV-vis), electron-dispersing X-ray (EDX), and Fourier transform infrared (FT-IR)), microscopic (field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and atomic force microscope (AFM)), structural (X-ray diffractometer (XRD) and zetasizer), and analytic (thermogravimetric/differential thermal analyzer (TGA-DTA)) characterization of the silver nanoparticles (AgNPs) produced from Papaver rhoeas (PR) L. leaf extract are presented. PR-AgNPs are generally spherical and have a maximum surface plasmon resonance of 464.03 nm. The dimensions of the manufactured nanomaterial are in the range of 1.47–7.31 nm. PR-AgNPs have high thermal stability and a zeta potential of −36.1 mV. The minimum inhibitory concentration (MIC) values (mg L−1) of PR-AgNPs on Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans are 1.50, 0.75, 3.00, 6.00, and 0.37, respectively. In the study, the cytotoxic and proliferative effects of PR-AgNPs using the MTT (3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide) method on various cancer cell lines (CACO-2 (human colon adenocarcinoma cell), MCF-7 (human breast cancer cell), T98-G (glioblastoma multiforme cell), and healthy HUVEC (human umbilical vein endothelial cell)) cell lines are presented. After 24 and 48 h of the application, the half-maximum inhibitory concentration (IC50) values (μg mL−1) of PR-AgNPs on HUVEC, CACO-2, MCF-7, and T98-G lines are 2.365 and 2.380; 2.526 and 2.521; 3.274 and 3.318; 3.472 and 3.526, respectively. Comprehensive in vivo research of PR-AgNPs is proposed to reveal their potential for usage in sectors such as nanomedicine and nanochemistry. Full article
Show Figures

Figure 1

17 pages, 3695 KiB  
Article
mTOR Inhibition Is Effective against Growth, Survival and Migration, but Not against Microglia Activation in Preclinical Glioma Models
by Lucia Lisi, Michela Pizzoferrato, Gabriella Maria Pia Ciotti, Maria Martire and Pierluigi Navarra
Int. J. Mol. Sci. 2023, 24(12), 9834; https://doi.org/10.3390/ijms24129834 - 7 Jun 2023
Cited by 3 | Viewed by 2654
Abstract
Initially introduced in therapy as immunosuppressants, the selective inhibitors of mTORC1 have been approved for the treatment of solid tumors. Novel non-selective inhibitors of mTOR are currently under preclinical and clinical developments in oncology, attempting to overcome some limitations associated with selective inhibitors, [...] Read more.
Initially introduced in therapy as immunosuppressants, the selective inhibitors of mTORC1 have been approved for the treatment of solid tumors. Novel non-selective inhibitors of mTOR are currently under preclinical and clinical developments in oncology, attempting to overcome some limitations associated with selective inhibitors, such as the development of tumor resistance. Looking at the possible clinical exploitation in the treatment of glioblastoma multiforme, in this study we used the human glioblastoma cell lines U87MG, T98G and microglia (CHME-5) to compare the effects of a non-selective mTOR inhibitor, sapanisertib, with those of rapamycin in a large array of experimental paradigms, including (i) the expression of factors involved in the mTOR signaling cascade, (ii) cell viability and mortality, (iii) cell migration and autophagy, and (iv) the profile of activation in tumor-associated microglia. We could distinguish between effects of the two compounds that were overlapping or similar, although with differences in potency and or/time-course, and effects that were diverging or even opposite. Among the latter, especially relevant is the difference in the profile of microglia activation, with rapamycin being an overall inhibitor of microglia activation, whereas sapanisertib was found to induce an M2-profile, which is usually associated with poor clinical outcomes. Full article
(This article belongs to the Special Issue Molecular Research Progress on Glioblastoma)
Show Figures

Figure 1

15 pages, 2275 KiB  
Article
AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways
by Yu-Kai Huang, Kun-Che Chang, Chia-Yang Li, Ann-Shung Lieu and Chih-Lung Lin
Curr. Issues Mol. Biol. 2023, 45(4), 3391-3405; https://doi.org/10.3390/cimb45040222 - 13 Apr 2023
Cited by 21 | Viewed by 3432
Abstract
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and [...] Read more.
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1′s inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

27 pages, 5571 KiB  
Article
Development of Berberine-Loaded Nanoparticles for Astrocytoma Cells Administration and Photodynamic Therapy Stimulation
by Sergio Comincini, Federico Manai, Milena Sorrenti, Sara Perteghella, Camilla D’Amato, Dalila Miele, Laura Catenacci and Maria Cristina Bonferoni
Pharmaceutics 2023, 15(4), 1078; https://doi.org/10.3390/pharmaceutics15041078 - 27 Mar 2023
Cited by 23 | Viewed by 3735
Abstract
Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been [...] Read more.
Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been encapsulated in PLGA-based nanoparticles (NPs), chitosan-coated by the addition of chitosan oleate in the preparation. NPs were also further functionalized with folic acid. All the BBR-loaded NPs were efficiently internalized into T98G GBM established cells, and internalization increased in the presence of folic acid. However, the highest mitochondrial co-localization percentages were obtained with BBR-S NPs without folic acid content. In the T98G cells, BBR-S NPs appeared to be the most efficient in inducing cytotoxicity events and were therefore selected to assess the effect of photodynamic stimulation (PDT). As a result, PDT potentiated the viability reduction for the BBR-S NPs at all the studied concentrations, and a roughly 50% reduction of viability was obtained. No significant cytotoxic effect on normal rat primary astrocytes was observed. In GBM cells, a significant increase in early and late apoptotic events was scored by BBR NPs, with a further increase following the PDT scheme. Furthermore, a significantly increased depolarization of mitochondria was highlighted following BBR-S NPs’ internalization and mostly after PDT stimulation, compared to untreated and PDT-only treated cells. In conclusion, these results highlighted the efficacy of the BBR-NPs-based strategy coupled with photoactivation approaches to induce favorable cytotoxic effects in GBM cells. Full article
(This article belongs to the Special Issue Recent Advances in Anticancer Photodynamic Therapy)
Show Figures

Figure 1

Back to TopTop