Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,149)

Search Parameters:
Keywords = glioblastoma cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2971 KB  
Article
First Experimental Measurements of Biophotons from Astrocytes and Glioblastoma Cell Cultures
by Luca De Paolis, Elisabetta Pace, Chiara Maria Mazzanti, Mariangela Morelli, Francesca Di Lorenzo, Lucio Tonello, Catalina Curceanu, Alberto Clozza, Maurizio Grandi, Ivan Davoli, Angelo Gemignani, Paolo Grigolini and Maurizio Benfatto
Entropy 2026, 28(1), 112; https://doi.org/10.3390/e28010112 (registering DOI) - 17 Jan 2026
Abstract
Biophotons are non-thermal and non-bioluminescent ultraweak photon emissions, first hypothesised by Gurwitsch as a regulatory mechanism in cell division, and then experimentally observed in living organisms. Today, two main hypotheses explain their origin: stochastic decay of excited molecules and coherent electromagnetic fields produced [...] Read more.
Biophotons are non-thermal and non-bioluminescent ultraweak photon emissions, first hypothesised by Gurwitsch as a regulatory mechanism in cell division, and then experimentally observed in living organisms. Today, two main hypotheses explain their origin: stochastic decay of excited molecules and coherent electromagnetic fields produced in biochemical processes. Recent interest focuses on the role of biophotons in cellular communication and disease monitoring. This study presents the first campaign of biophoton emission measurements from cultured astrocytes and glioblastoma cells, conducted at Fondazione Pisana per la Scienza (FPS) using two ultra-sensitive setups developed in collaboration between the National Laboratories of Frascati (LNF-INFN) and the University of Rome II Tor Vergata. The statistical analyses of the collected data revealed a clear separation between cellular signals and dark noise, confirming the high sensitivity of the apparatus. The Diffusion Entropy Analysis (DEA) was applied to the data to uncover dynamic patterns, revealing anomalous diffusion and long-range memory effects that may be related to intercellular signaling and cellular communication. These findings support the hypothesis that biophoton emissions encode rich information beyond intensity, reflecting metabolic and pathological states. The differences revealed by applying the Diffusion Entropy Analysis to the biophotonic signals of Astrocytes and Glioblastoma are highlighted and discussed in the paper. This work lays the groundwork for future studies on neuronal cultures and proposes biophoton dynamics as a promising tool for non-invasive diagnostics and the study of cellular communication. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

18 pages, 1428 KB  
Review
The Glymphatic–Immune Axis in Glioblastoma: Mechanistic Insights and Translational Opportunities
by Joaquin Fiallo Arroyo and Jose E. Leon-Rojas
Int. J. Mol. Sci. 2026, 27(2), 928; https://doi.org/10.3390/ijms27020928 (registering DOI) - 16 Jan 2026
Abstract
Glioblastoma (GBM) remains one of the most treatment-resistant human malignancies, largely due to the interplay between disrupted fluid dynamics, immune evasion, and the structural complexity of the tumor microenvironment; in addition to these, treatment resistance is also driven by intratumoral heterogeneity, glioma stem [...] Read more.
Glioblastoma (GBM) remains one of the most treatment-resistant human malignancies, largely due to the interplay between disrupted fluid dynamics, immune evasion, and the structural complexity of the tumor microenvironment; in addition to these, treatment resistance is also driven by intratumoral heterogeneity, glioma stem cell persistence, hypoxia-induced metabolic and epigenetic plasticity, adaptive oncogenic signaling, and profound immunosuppression within the tumor microenvironment. Emerging evidence shows that dysfunction of the glymphatic system, mislocalization of aquaporin-4, and increased intracranial pressure compromise cerebrospinal fluid–interstitial fluid exchange and impair antigen drainage to meningeal lymphatics, thereby weakening immunosurveillance. GBM simultaneously remodels the blood–brain barrier into a heterogeneous and permeable blood–tumor barrier that restricts uniform drug penetration yet enables tumor progression. These alterations intersect with profound immunosuppression mediated by pericytes, tumor-associated macrophages, and hypoxic niches. Advances in imaging, including DCE-MRI, DTI-ALPS, CSF-tracing PET, and elastography, now allow in vivo characterization of glymphatic function and interstitial flow. Therapeutic strategies targeting the fluid-immune interface are rapidly expanding, including convection-enhanced delivery, intrathecal and intranasal approaches, focused ultrasound, nanoparticle systems, and lymphatic-modulating immunotherapies such as VEGF-C and STING agonists. Integrating barrier modulation with immunotherapy and nanomedicine holds promise for overcoming treatment resistance. Our review synthesizes the mechanistic, microenvironmental, and translational advances that position the glymphatic–immune axis as a new frontier in glioblastoma research. Full article
Show Figures

Figure 1

21 pages, 5725 KB  
Article
The Synergistic Effects of rhArg with Bcl-2 Inhibitors or Metformin Co-Treatment in Multiple Cancer Cell Models
by Lai-Pan Sze, Vicky Mei-Ki Ho, Wing-Ki Fung, Kin-Ho Law, Yifan Tu, Yik-Hing So, Sai-Fung Chung, Wing-Leung Wong, Zhen Liu, Alisa Sau-Wun Shum, Leo Man-Yuen Lee and Yun-Chung Leung
Cells 2026, 15(2), 164; https://doi.org/10.3390/cells15020164 - 16 Jan 2026
Abstract
Background: Recombinant human arginase (rhArg) has been proven to exhibit an anticancer effect via arginine starvation. To further improve the efficacy of rhArg, we examined the feasibility of a combination strategy with Bcl-2 inhibitors (ABT263 and ABT199) or an antidiabetic drug (metformin) and [...] Read more.
Background: Recombinant human arginase (rhArg) has been proven to exhibit an anticancer effect via arginine starvation. To further improve the efficacy of rhArg, we examined the feasibility of a combination strategy with Bcl-2 inhibitors (ABT263 and ABT199) or an antidiabetic drug (metformin) and investigated the mechanistic basis for these strategies. Methods: The combination effects were evaluated in a panel of human cancer cell lines modeling pancreatic ductal carcinoma (PDAC), triple-negative breast cancer (TNBC), colorectal cancer (CRC) and glioblastoma (GBM). Western blot analysis was used to evaluate the expression of apoptotic and cell cycle markers. MTT assay was used to evaluate the combination efficacy. Flow cytometric assays were used to investigate the apoptotic and cell cycle effects. Results: The combination of rhArg with sublethal doses of ABT263 significantly induced dose-dependent apoptosis, with elevated expression of apoptotic markers and a CI of 0.47 in U251. The combination inhibited CDK2 and cyclin A expression, indicating that the observed synergy also resulted from cell cycle arrest. We also found that rhArg + metformin was synergistic in a time-dependent manner. Compared to other amino acid depletion agents, rhArg + ABT263 was the most favorable combination pair. Conclusions: The combination of rhArg and ABT263 enhanced apoptosis and cell cycle arrest, demonstrating a potential broad-spectrum antitumor strategy. Full article
Show Figures

Figure 1

43 pages, 2779 KB  
Review
Molecular and Immune Mechanisms Governing Cancer Metastasis, Including Dormancy, Microenvironmental Niches, and Tumor-Specific Programs
by Dae Joong Kim
Int. J. Mol. Sci. 2026, 27(2), 875; https://doi.org/10.3390/ijms27020875 - 15 Jan 2026
Viewed by 48
Abstract
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, [...] Read more.
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, long-term survival, and eventual outgrowth are examined, with a focus on how tumor-intrinsic programs interact with extracellular matrix (ECM) remodeling, angiogenesis, and immune regulation. Gene networks that sustain tumor-cell plasticity and invasion are described, including EMT-linked transcription factors such as SNAIL and TWIST, as well as broader transcriptional regulators like SP1. Also, how epigenetic mechanisms, such as EZH2 activity, DNA methylation, chromatin remodeling, and noncoding RNAs, lock in pro-metastatic states and support adaptation under therapeutic pressure. Finally, proteases and matrix-modifying enzymes that physically and biochemically reshape tissues, including MMPs, uPA, cathepsins, LOX/LOXL2, and heparinase, are discussed for their roles in releasing stored growth signals and building permissive niches that enable seeding and colonization. In parallel, immune-evasion strategies that protect circulating and newly seeded tumor cells are discussed, including platelet-mediated shielding, suppressive myeloid populations, checkpoint signaling, and stromal barriers that exclude effector lymphocytes. A major focus is metastatic dormancy, cellular, angiogenic, and immune-mediated, framed as a reversible survival state regulated by stress signaling, adhesion cues, metabolic rewiring, and niche constraints, and as a key determinant of late relapse. Tumor-specific metastatic programs across mesenchymal malignancies (osteosarcoma, chondrosarcoma, and liposarcoma) and selected high-burden cancers (melanoma, hepatocellular carcinoma, glioblastoma, and breast cancer) are highlighted, emphasizing shared principles and divergent organotropisms. Emerging therapeutic strategies that target both the “seed” and the “soil” are also discussed, including immunotherapy combinations, stromal/ECM normalization, chemokine-axis inhibition, epigenetic reprogramming, and liquid-biopsy-enabled minimal residual disease monitoring, to prevent reactivation and improve durable control of metastatic disease. Full article
(This article belongs to the Special Issue Molecular Mechanism Involved in Cancer Metastasis)
Show Figures

Figure 1

22 pages, 3229 KB  
Article
Antitumor Activity of All-Trans Retinoic Acid and Curcumin-Loaded BSA Nanoparticles Against U87 Glioblastoma Cells
by Ceyda Sonmez, Aleyna Baltacioglu, Julide Coskun, Gulen Melike Demirbolat, Ozgul Gok and Aysel Ozpinar
Life 2026, 16(1), 131; https://doi.org/10.3390/life16010131 - 15 Jan 2026
Viewed by 140
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery systems. This study aimed to develop a bovine serum albumin (BSA) nanoparticle (NP)-based delivery system to overcome the poor bioavailability and pharmacokinetic limitations of two potent anti-tumor agents, all-trans retinoic acid (ATRA) and curcumin (CURC), and to evaluate their antitumor activity in U87-MG GBM cells. Drug-free and ATRA/CURC-loaded BSA-NPs were synthesized using an optimized desolvation method and characterized in terms of particle size, polydispersity index, morphology, drug encapsulation efficiency, and release behavior. The cytotoxic, anti-migratory, and pro-apoptotic effects of the NPs on U87-MG GBM cells were assessed using real-time proliferation and migration assays and Annexin V/PI staining followed by flow cytometry. Collectively, the findings indicated that the co-delivery of ATRA and CURC using BSA-NPs showed enhanced antiproliferative, antimigratory, and pro-apoptotic effects. With its controlled release profile, high loading capacity, and favorable nanoscale dimensions, the ATRA-CURC-BSA–NP system represents a promising nanoplatform for GBM therapy that warrants further in vivo investigation. To the best of our knowledge, this is the first study demonstrating the inhibition of glioblastoma cell growth through the co-delivery of all-trans retinoic acid and curcumin using a bovine serum albumin-based nanoparticle system. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

18 pages, 1992 KB  
Review
Peptide Arrays as Tools for Unraveling Tumor Microenvironments and Drug Discovery in Oncology
by Anna Grab, Christoph Reißfelder and Alexander Nesterov-Mueller
Cells 2026, 15(2), 146; https://doi.org/10.3390/cells15020146 - 14 Jan 2026
Viewed by 224
Abstract
Peptide arrays represent a powerful tool for investigating a wide application field for biomedical questions. This review summarizes recent applications of peptide chips in oncology, with a focus on tumor microenvironment, metastasis, and drug mechanism of action for various cancer types. These high-throughput [...] Read more.
Peptide arrays represent a powerful tool for investigating a wide application field for biomedical questions. This review summarizes recent applications of peptide chips in oncology, with a focus on tumor microenvironment, metastasis, and drug mechanism of action for various cancer types. These high-throughput platforms enable the simultaneous screening of thousands of peptides. We report on recent achievements in peptide array technology for tumor microenvironments, an enhanced ability to decipher complex cancer-related signaling pathways, and characterization of cell-adhesion-mediating peptides. Furthermore, we highlight the applications in high-throughput drug screenings for development of immune therapies, e.g., the development of novel neoantigen therapies of glioblastoma. Moreover, epigenetic profiling using peptide arrays has uncovered new therapeutic targets across various cancer types with clinical impact. In conclusion, we discuss artificial intelligence-driven peptide array analysis as a tool to determine tumor origin and metastatic state, potentially transforming diagnostic approaches. These innovations promise to accelerate the development of precision cancer approaches. Full article
(This article belongs to the Special Issue Cancer Cell Signaling, Autophagy and Tumorigenesis)
Show Figures

Figure 1

15 pages, 2652 KB  
Article
Cannabidiol as a Prophylactic Agent Against Glioblastoma Growth: A Preclinical Investigation
by Lei P. Wang, Bidhan Bhandari, Sahar Emami Naeini, Breanna Hill, Hannah M. Rogers, Jules Gouron, Nayeli Perez-Morales, Aruba Khan, William Meeks, Ahmed El-Marakby, Nancy Young, Fernando L. Vale, Salman Ali, Gerald Wallace, Jack C. Yu, Ali S. Arbab, Évila Lopes Salles and Babak Baban
Int. J. Mol. Sci. 2026, 27(2), 757; https://doi.org/10.3390/ijms27020757 - 12 Jan 2026
Viewed by 203
Abstract
Glioblastoma (GBM) remains one of the most lethal brain tumors, with current therapies offering limited benefits and high relapse rates. This study presents the first preclinical evidence that pretreatment with inhaled cannabidiol (CBD) before tumor establishment can markedly inhibit GBM progression. We hypothesized [...] Read more.
Glioblastoma (GBM) remains one of the most lethal brain tumors, with current therapies offering limited benefits and high relapse rates. This study presents the first preclinical evidence that pretreatment with inhaled cannabidiol (CBD) before tumor establishment can markedly inhibit GBM progression. We hypothesized that early CBD exposure could prime the immune and molecular landscape to resist tumor growth. C57BL/6 mice were pretreated with inhaled CBD for 3 or 14 days, or with placebo, prior to intracranial implantation of glioblastoma cells. Tumor growth, immune checkpoint expressions (IDO, PD-L1), and key biomarkers (MGMT, Ki67) were analyzed to evaluate tumor dynamics and immune modulation. Fourteen-day CBD pretreatment significantly reduced tumor burden compared with both placebo and 3-day CBD groups, accompanied by decreased IDO, PD-L1, MGMT, and Ki67 expression, which are signatures of a less aggressive tumor phenotype. These findings suggest that prolonged CBD exposure can precondition the tumor microenvironment toward an anti-tumor state, improving disease control and potentially lowering relapse risk. This study introduces a novel concept of CBD pretreatment as an immune-modulatory strategy with high translational potential for glioblastoma management. Full article
Show Figures

Graphical abstract

16 pages, 1310 KB  
Review
Emerging Oncogenic and Immunoregulatory Roles of BST2 in Human Cancers
by Chohee Kim, Seoyoon Choi and Jong-Whi Park
Biomedicines 2026, 14(1), 131; https://doi.org/10.3390/biomedicines14010131 - 8 Jan 2026
Viewed by 246
Abstract
BST2 has emerged as a multifunctional molecule that bridges antiviral defense, membrane architecture, and tumor immunity. Originally characterized as an interferon-inducible restriction factor that tethers virions to the plasma membrane, BST2 is now recognized as an oncogenic driver and immunoregulatory hub in diverse [...] Read more.
BST2 has emerged as a multifunctional molecule that bridges antiviral defense, membrane architecture, and tumor immunity. Originally characterized as an interferon-inducible restriction factor that tethers virions to the plasma membrane, BST2 is now recognized as an oncogenic driver and immunoregulatory hub in diverse malignancies. In cancer, BST2 expression is frequently upregulated through promoter hypomethylation and transcriptional activation. Functionally, BST2 promotes proliferation, epithelial–mesenchymal transition, anoikis resistance, and chemoresistance, whereas its loss sensitizes tumor cells to proteotoxic and metabolic stresses. Beyond tumor cells, BST2 modulates the tumor microenvironment by promoting M2 macrophage infiltration, dendritic cell exhaustion, and natural killer (NK)-cell resistance, thereby contributing to immune evasion. Elevated BST2 expression correlates with poor prognosis in glioblastoma, breast, nasopharyngeal, and pancreatic cancers, and it serves as a circulating biomarker within small extracellular vesicles. In conclusion, BST2 is a dual-function molecule that integrates oncogenic signaling and immune regulation, making it an attractive diagnostic and therapeutic target for hematological and solid tumors. Full article
(This article belongs to the Special Issue Drug Resistance and Tumor Microenvironment in Human Cancers)
Show Figures

Figure 1

14 pages, 3031 KB  
Article
Highly Sensitive Detection and Discrimination of Cell Suspension Based on a Metamaterials-Based Biosensor Chip
by Kanglong Chen, Xiaofang Zhao, Jie Sun, Qian Wang, Qinggang Ge, Liang Hu and Jun Yang
Biosensors 2026, 16(1), 50; https://doi.org/10.3390/bios16010050 - 8 Jan 2026
Viewed by 220
Abstract
Metamaterials (MMs)-based terahertz (THz) biosensors hold promise for clinical diagnosis, featuring label-free operation, simple, rapid detection, low cost, and multi-cell-type discrimination. However, liquid around cells causes severe interference to sensitive detection. Most existing MMs-based cell biosensors detect dead cells without culture medium (losing [...] Read more.
Metamaterials (MMs)-based terahertz (THz) biosensors hold promise for clinical diagnosis, featuring label-free operation, simple, rapid detection, low cost, and multi-cell-type discrimination. However, liquid around cells causes severe interference to sensitive detection. Most existing MMs-based cell biosensors detect dead cells without culture medium (losing original morphology), hindering stable, sensitive multi-cell discrimination. Here, a terahertz biosensor composed of a microcavity and MMs can be used to detect and discriminate multiple cell types within suspension. Its detection mechanism relies on cellular size (radius)/density in suspension, which induces effective permittivity (εeff) differences. By designing MMs’ split rings with luxuriant gaps, the biosensor achieves a theoretical sensitivity of ~328 GHz/RIU, enabling sensitive responses to suspended cells. It shows a robust, increasing frequency shift (610–660 GHz) over 72 h of cell apoptosis. Moreover, it discriminates nerve cells, glioblastoma (GBM) cells, and their 1:1 mixture with obviously distinct frequency responses (~650, ~630, ~620 GHz), which suggests effective and reliable multi-cell-type recognition. Overall, this study and its measurement method should pave the way for metamaterial-based terahertz biosensors for living cell detection and discrimination, and this technology may inspire further innovations in tumor investigation and treatment. Full article
Show Figures

Figure 1

24 pages, 3695 KB  
Review
Therapeutic Advances of Curcumin and Nanocurcumin in Glioblastoma: Molecular Targets, Bioavailability, and Drug Delivery
by Md Ataur Rahman, Mahesh Kumar Yadab and Meser M. Ali
Nutrients 2026, 18(2), 194; https://doi.org/10.3390/nu18020194 - 7 Jan 2026
Viewed by 367
Abstract
Glioblastoma (GBM), the most common, invasive, and chemoresistant form of adult primary brain cancer, is characterized by rapid cell proliferation, local invasiveness, and resistance to chemotherapy (e.g., temozolomide (TMZ)) and radiation therapy. Curcumin, a bioactive polyphenol derived from Curcuma longa, has exhibited [...] Read more.
Glioblastoma (GBM), the most common, invasive, and chemoresistant form of adult primary brain cancer, is characterized by rapid cell proliferation, local invasiveness, and resistance to chemotherapy (e.g., temozolomide (TMZ)) and radiation therapy. Curcumin, a bioactive polyphenol derived from Curcuma longa, has exhibited exceptional anti-cancer properties, including anti-proliferative, pro-apoptotic, anti-inflammatory, and anti-angiogenic activities in a wide range of cancer models, including GBM. However, the clinical application of curcumin has been seriously limited by several challenges, including low water solubility, low bioavailability, rapid systemic clearance, and poor blood–brain barrier (BBB) penetration. To overcome these challenges, several nanocarrier systems to produce nanocurcumin have been developed, including liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, and micelles. These nanoformulations improve the solubility, stability, systemic circulation, and target-directed delivery of curcumin to glioma cells, thereby resulting in a high level of accumulation in the glioma microenvironment. On the other hand, this work is devoted to the potential of curcumin and nanocurcumin for the treatment of GBM. The article provides a detailed review of the major molecular targets of curcumin, such as NF-κB, STAT3, PI3K/AKT/mTOR, and p53 signaling pathways, as well as recent advancements in nanotechnology-based delivery platforms that improve drug delivery across the BBB and their possible clinical translation. We also include a thorough examination of the issues, limitations, and potential opportunities associated with the clinical advancement of curcumin-based therapeutics for GBM. Full article
(This article belongs to the Special Issue Natural Active Substances and Cancer)
Show Figures

Figure 1

33 pages, 1777 KB  
Review
Cancer Neuroscience: Linking Neuronal Plasticity with Brain Tumor Growth and Resistance
by Doaa S. R. Khafaga, Youssef Basem, Hager Mohamed AlAtar, Abanoub Sherif, Alamer Ata, Fayek Sabry, Manar T. El-Morsy and Shimaa S. Attia
Biology 2026, 15(2), 108; https://doi.org/10.3390/biology15020108 - 6 Jan 2026
Viewed by 542
Abstract
Brain tumors, particularly glioblastoma, remain among the most lethal cancers, with limited survival benefits from current genetic and molecular-targeted approaches. Emerging evidence reveals that beyond oncogenes and mutations, neuronal plasticity, long-term potentiation, synaptic remodeling, and neurotransmitter-driven signaling play a pivotal role in shaping [...] Read more.
Brain tumors, particularly glioblastoma, remain among the most lethal cancers, with limited survival benefits from current genetic and molecular-targeted approaches. Emerging evidence reveals that beyond oncogenes and mutations, neuronal plasticity, long-term potentiation, synaptic remodeling, and neurotransmitter-driven signaling play a pivotal role in shaping tumor progression and therapeutic response. This convergence of neuroscience and oncology has given rise to the field of cancer neuroscience, which explores the bidirectional interactions between neurons and malignant cells. In this review, we summarize fundamental principles of neuronal plasticity, contrasting physiological roles with pathological reprogramming in brain tumors. We highlight how tumor cells exploit synaptic input, particularly glutamatergic signaling, to enhance proliferation, invasion, and integration into neural circuits. We further discuss how neuronal-driven feedback loops contribute to therapy resistance, including chemoresistance, radioresistance, and immune evasion, mediated through pathways such as mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and calcium influx. The tumor microenvironment, including astrocytes, microglia, and oligodendrocyte-lineage cells, emerges as an active participant in reinforcing this neuron-tumor ecosystem. Finally, this review explores therapeutic opportunities targeting neuronal plasticity, spanning pharmacological interventions, neuromodulation approaches (transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), optogenetics), and computational/artificial intelligence frameworks that model neuron tumor networks to predict personalized therapy. Also, we propose future directions integrating connect omics, neuroinformatics, and brain organoid models to refine translational strategies. Full article
(This article belongs to the Special Issue Young Researchers in Neuroscience)
Show Figures

Graphical abstract

10 pages, 1501 KB  
Communication
Magnetic Detection of Cancer Cells Using Tumor-Homing Peptide-Modified Magnetic Nanoparticles
by Shengli Zhou, Yuji Furutani, Kei Yamashita, Sakuya Kako, Kazunori Watanabe, Toshihiko Kiwa and Takashi Ohtsuki
Biosensors 2026, 16(1), 45; https://doi.org/10.3390/bios16010045 - 5 Jan 2026
Viewed by 292
Abstract
Magnetic nanoparticles (MNPs) provide a platform for target detection because of their magnetic responsiveness to alternating magnetic fields (AMFs). We developed a detection method using MNPs modified with tumor-homing peptides (THPs), PL1 and PL3, which selectively bind to protein components enriched in malignant [...] Read more.
Magnetic nanoparticles (MNPs) provide a platform for target detection because of their magnetic responsiveness to alternating magnetic fields (AMFs). We developed a detection method using MNPs modified with tumor-homing peptides (THPs), PL1 and PL3, which selectively bind to protein components enriched in malignant tissues. THP-MNPs were synthesized using maleimide-PEG-NHS linkers and characterized using transmission electron microscopy. Human glioblastoma cancer U87MG and normal tissue-derived HEK293 cells were incubated with THP-MNPs, and the magnetic signals were measured using a high-temperature superconducting quantum interference device (SQUID) magnetometer under an AMF (1.06 kHz). Dark-field microscopy confirmed the preferential binding of THP-MNPs to U87MG cells. In the absence of cells, THP-MNPs exhibited AMF-dependent signal enhancement, which correlated with particle size reduction due to THP release. This increase was completely suppressed in the presence of U87MG cells, indicating a strong THP-mediated interaction. PL3-MNPs exhibited superior discrimination between malignant and non-malignant cells. These results demonstrate that SQUID-based magnetic measurements using THP-MNPs enable rapid and label-free cancer cell detection. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring—2nd Edition)
Show Figures

Figure 1

14 pages, 1675 KB  
Article
Necrotic Cells Alter IRE1α-XBP1 Signaling and Induce Transcriptional Changes in Glioblastoma
by Jiwoo Lim, Seulgi Lee, Ye-Seon Hong, Ji Ha Choi, Ala Jo, Jihee Lee Kang, Tae-Jin Song and Youn-Hee Choi
Int. J. Mol. Sci. 2026, 27(1), 474; https://doi.org/10.3390/ijms27010474 - 2 Jan 2026
Viewed by 244
Abstract
Necrosis is a characteristic feature of glioblastoma multiforme (GBM) and is closely associated with tumor-associated inflammation and poor clinical outcomes. However, the molecular consequences of necrotic cell death on endoplasmic reticulum (ER) stress signaling in GBM cells remain unclear. In this study, we [...] Read more.
Necrosis is a characteristic feature of glioblastoma multiforme (GBM) and is closely associated with tumor-associated inflammation and poor clinical outcomes. However, the molecular consequences of necrotic cell death on endoplasmic reticulum (ER) stress signaling in GBM cells remain unclear. In this study, we examined the effects of necrotic cells on the ER stress signaling and unfolded protein response (UPR) in human glioblastoma cell lines. Exposure to necrotic cells reduced IRE1α phosphorylation and increased unspliced XBP1 (XBP1u) accumulation, without affecting PERK or ATF6 pathways. These changes were accompanied by enhanced IκBα phosphorylation and impaired autophagic degradation. Treatment with ER stress inducers failed to reverse XBP1u accumulation, and reduced phosphorylation of PKAc was observed together with decreased IRE1α activation. Transcriptomic analysis and quantitative reverse transcription PCR (qRT-PCR) revealed that necrotic cell-induced XBP1u was associated with altered expression of XBP1-related genes, while XBP1 knockdown produced similar transcriptional changes and enhanced the effects of necrotic cell treatment. These findings suggest that necrotic cells impair canonical IRE1α-XBP1 signaling and induce transcriptional reprogramming in glioblastoma cells, which may contribute to tumor progression. Full article
Show Figures

Figure 1

24 pages, 8627 KB  
Article
{ZnII2} and {ZnIIAuI} Metal Complexes with Schiff Base Ligands as Potential Antitumor Agents Against Human Glioblastoma Multiforme Cells
by Lora Dyakova, Tanya Zhivkova, Abedulkadir Abudalleh, Daniela C. Culita, Teodora Mocanu, Augustin M. Madalan, Anamaria Hanganu, Gabriela Marinescu, Emanuil Naydenov and Radostina Alexandrova
Molecules 2026, 31(1), 173; https://doi.org/10.3390/molecules31010173 - 1 Jan 2026
Viewed by 424
Abstract
The challenges of glioblastoma multiforme treatment are related to limitations in tumor removal surgery, its high heterogeneity and aggressiveness, development of resistance to standard therapy, the blood–brain barrier, and the side and toxic effects of the conventional antitumor agents used in clinical practice. [...] Read more.
The challenges of glioblastoma multiforme treatment are related to limitations in tumor removal surgery, its high heterogeneity and aggressiveness, development of resistance to standard therapy, the blood–brain barrier, and the side and toxic effects of the conventional antitumor agents used in clinical practice. Although new treatment strategies continue to emerge, progress remains slow and has not resulted in substantial improvements in patient survival. The main goal of research in recent years has been aimed at developing ways to deal with all these challenges. One of the ways to improve the control of glioblastomas is the introduction of effective new antitumor agents. Metal complexes represent a particularly promising class of compounds in this context. This is why the aim of this study was to assess the effects of six homo- and heterometallic coordination compounds bearing Schiff base ligands—[Zn2(Ampy)(µ-OH)(H2O)2](ClO4)2 (ZnAmpy), [Zn2(Dmen)(µ-OH)(H2O)2](ClO4)2 (ZnDmen), 1[{Zn2(Ampy)(μ3-OH)}2(H2O){μ-[Au(CN)2]}](ClO4)3·THF·H2O (ZnAmpyAu), [{Zn2(Dmen)(μ-OH)}2{μ-[Au(CN)2]}{[Au(CN)2]2}](ClO4)·H2O (ZnDmenAu), 1[Zn(Salampy){μ-Au(CN)2}] (ZnSalampyAu), and 1[Zn(Saldmen)(μ-Au(CN)2}] (ZnSaldmenAu)—on the viability and proliferation of 8MGBA and U251MG human glioblastoma multiforme cells (HDmen and HAmpy are bicompartmental Schiff base ligands resulting from the condensation of 2,6-diformyl-p-cresol with N,N-dimethylethylenediamine and 2-(aminomethyl)pyridine, respectively, while HSaldmen and HSalampy are tridentate Schiff base ligands obtained via condensation of salicylaldehyde with N,N-dimethylethylenediamine and 2-(aminomethyl)pyridine, respectively). Among these compounds, ZnSaldmenAu is a new compound and is reported here for the first time. Cytotoxicity of the compounds was evaluated through analysis of cell viability, 2D/3D growth, cytopathological alterations, and induction of cell death. The results obtained by methods with different targets in cells and the associated mechanisms of action revealed that the compounds investigated show promising cytotoxic/potential antitumor activity in treated cells. Full article
(This article belongs to the Special Issue Exploring Schiff Base Ligands and Their Metal Complexes)
Show Figures

Figure 1

23 pages, 1747 KB  
Article
The Use of Benzoin as a Privileged Structure: Synthesis, Characterization, Crystalline Form and an In Vitro Biological Evaluation of 1,2-Diphenyl-2-[1,2,3]triazol-1-yl-ethanol Derivatives
by Noé Martínez-Romero, Mario Valle-Sánchez, Marco A. García-Eleno, Carlos A. González-González, David Corona-Becerril, Lizbeth Triana-Cruz, Diego Martínez-Otero, María Teresa Ramírez-Apan, David Morales-Morales, Jorge Andrés Ornelas-Guillén and Erick Cuevas-Yañez
Molecules 2026, 31(1), 170; https://doi.org/10.3390/molecules31010170 - 1 Jan 2026
Viewed by 392
Abstract
A collection of 40 derivatives of 1,2-diphenyl-2-[1,2,3]triazol-1-yl-ethanol was obtained through a sequence of reactions, starting with benzoin as the initial raw material and using the CuAAC reaction as the key step in this process. The structure of a pair of these compounds was [...] Read more.
A collection of 40 derivatives of 1,2-diphenyl-2-[1,2,3]triazol-1-yl-ethanol was obtained through a sequence of reactions, starting with benzoin as the initial raw material and using the CuAAC reaction as the key step in this process. The structure of a pair of these compounds was ultimately corroborated by single-crystal X-ray diffraction studies, which also reveals important O-H···N interactions. The antimicrobial activity of synthesized 1,2,3-triazoles was assessed against strains that include Candida albicans and Staphylococcus aureus. The antiproliferative properties of some of these novel compounds were also tested using a variety of tumor cell lines, including U251 (human glioblastoma), PC-3 (human prostate cancer cell line), K562 (human leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human breast adenocarcinoma), and SKLU (human lung adenocarcinoma). Full article
Show Figures

Figure 1

Back to TopTop