{ZnII2} and {ZnIIAuI} Metal Complexes with Schiff Base Ligands as Potential Antitumor Agents Against Human Glioblastoma Multiforme Cells
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Structural Characterization
2.3. Spectral Characterization of 1∞[Zn(Saldmen){μ-Au(CN)2}] (ZnSaldmenAu)
2.3.1. FT/IR and UV-Vis Spectra
2.3.2. The 1H NMR Spectra
2.3.3. Luminescence Properties
2.4. Biological Evaluation
2.4.1. Cytotoxic Assays
2.4.2. Double Staining with Acridine Orange and Propidium Iodide (AO/PI)
2.4.3. Apoptosis Detection by Annexin V-FITC Staining Method
2.4.4. 3D Cell Colony Formation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 1∞[Zn(Saldmen){μ-Au(CN)2}] (ZnSaldmenAu)
3.3. Physicochemical Characterization Methods
3.4. Cell Cultures and Cultivation
3.5. Cytotoxicity Assays
3.6. Double Staining with Acridine Orange (AO) and Propidium Iodide (PI)
3.7. Cell Death Identification
3.8. 3D Cell Colony-Forming Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Ghasemi, H.; Fatahian, R.; Mansouri, K.; Dokaneheifard, S.; Shiri, M.H.; Hemmati, M.; Mohammadi, M. The global prevalence of primary central nervous system tumors: A systematic review and meta-analysis. Eur. J. Med. Res. 2023, 28, 39. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Li, Y.; Zhang, J.; Zong, Z.; Zhang, H. Current Immunotherapies for Glioblastoma Multiforme. Front. Immunol. 2021, 11, 603911. [Google Scholar] [CrossRef]
- Stylli, S.S. Novel Treatment Strategies for Glioblastoma. Cancers 2020, 12, 2883. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, R.; Wang, Y.; Liu, M.; Hu, D.; Wang, Y.; Yang, L. A blood-brain barrier- and blood-brain tumor barrier-penetrating siRNA delivery system targeting gliomas for brain tumor immunotherapy. J. Control. Release 2024, 369, 642–657. [Google Scholar] [CrossRef]
- Alomari, S.; Zhang, I.; Hernandez, A.; Kraft, C.Y.; Raj, D.; Kedda, J.; Tyler, B. Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery—A Comprehensive Review of the Literature. Biomolecules 2021, 11, 1870. [Google Scholar] [CrossRef]
- William, D.; Walther, M.; Schneider, B.; Linnebacher, M.; Classen, C.F. Temozolomide-Induced Increase of Tumorigenicity Can Be Diminished by Targeting of Mitochondria in in Vitro Models of Patient Individual Glioblastoma. PLoS ONE 2018, 13, e0191511. [Google Scholar] [CrossRef]
- Cai, H.; Liu, W.; Liu, X.; Li, Z.; Feng, T.; Xue, Y.; Liu, Y. Advances and Prospects of Vasculogenic Mimicry in Glioma: A Potential New Therapeutic Target? OncoTargets Ther. 2020, 13, 4473–4483. [Google Scholar] [CrossRef] [PubMed]
- Repetto, L. Greater Risks of Chemotherapy Toxicity in Elderly Patients with Cancer. J. Support. Oncol. 2003, 1, 18–24. [Google Scholar] [PubMed]
- Singh, J.C.; Lichtman, S.M. Effect of Age on Drug Metabolism in Women with Breast Cancer. Expert Opin. Drug Metab. Toxicol. 2015, 11, 757–766. [Google Scholar] [CrossRef]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef]
- Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc Coordination Complexes as Anticancer Agents. Coord. Chem. Rev. 2021, 445, 214088. [Google Scholar] [CrossRef]
- Milosavljevic, V.; Haddad, Y.; Merlos Rodrigo, M.A.; Moulick, A.; Polanska, H.; Hynek, D.; Heger, Z.; Kopel, P.; Adam, V. The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy. PLoS ONE 2016, 11, e0163983. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Kumari, N.; Adhikari, M.; Kumar, N.; Tiwari, A.K.; Shukla, A.; Mishra, A.K.; Datta, A. Zinc Complex of Tryptophan Appended 1,4,7,10-Tetraazacyclododecane as Potential Anticancer Agent: Synthesis and Evaluation. Bioorg. Med. Chem. 2017, 25, 3483–3490. [Google Scholar] [CrossRef]
- Popović, A.; Nikolić, M.; Mijajlović, M.; Ratković, Z.; Jevtić, V.; Trifunović, S.R.; Radić, G.; Zarić, M.; Canović, P.; Milovanović, M.; et al. DNA Binding and Antitumor Activities of Zinc(II) Complexes with Some S-Alkenyl Derivatives of Thiosalicylic Acid. Transit. Met. Chem. 2019, 44, 219–228. [Google Scholar] [CrossRef]
- Kartina, D.; Wahab, A.W.; Ahmad, A.; Irfandi, R.; Raya, I. In Vitro Antibacterial and Anticancer Activity of Zn(II)Valinedithiocarbamate Complexes. J. Phys. Conf. Ser. 2019, 1341, 032042. [Google Scholar] [CrossRef]
- Costello, L.C.; Franklin, R.B. Zinc Is Decreased in Prostate Cancer: An Established Relationship of Prostate Cancer! J. Biol. Inorg. Chem. 2011, 16, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Banerjee, A.; Banerjee, K.; Sinha, A.; Das, S.; Majumder, S.; Majumdar, S.; Choudhuri, S.K. A Zinc Schiff Base Complex Inhibits Cancer Progression Both in Vivo and in Vitro by Inducing Apoptosis. Environ. Toxicol. Pharmacol. 2017, 56, 383–392. [Google Scholar] [CrossRef]
- Machado, R.A.d.S.; Siqueira, R.P.; da Silva, F.C.; Matos, A.C.P.d.; Borges, D.S.; Rocha, G.G.; Souza, T.C.P.d.; Souza, R.A.C.; Oliveira, C.R.d.; Ferreira, A.G.; et al. A New Heteroleptic Zn(II) Complex with Schiff Bases Sensitizes Triple-Negative Breast Cancer Cells to Doxorubicin and Paclitaxel. Pharmaceutics 2024, 16, 1610. [Google Scholar] [CrossRef]
- Moreno-Alcántar, G.; Picchetti, P.; Casini, A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew. Chem. Int. Ed. 2023, 62, e202218000. [Google Scholar] [CrossRef]
- Ott, I. On the Medicinal Chemistry of Gold Complexes as Anticancer Drugs. Coord. Chem. Rev. 2009, 253, 1670–1681. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, X.; Chang, X.; Liang, Z.; Lv, L.; Shan, M.; Lu, Q.; Wen, Z.; Gust, R.; Liu, W. Recent Development of Gold(I) and Gold(III) Complexes as Therapeutic Agents for Cancer Diseases. Chem. Soc. Rev. 2022, 51, 5518–5556. [Google Scholar] [CrossRef]
- Koshenskova, K.A.; Bardina, E.E.; Makotchenko, E.V.; Kharlamova, V.Y.; Mironov, I.V.; Bekker, O.B.; Treshalina, H.M.; Sokolova, D.V.; Pokrovsky, V.S.; Borodin, E.A.; et al. Gold(III) Complexes Containing (Non)Protonated Oligopyridines—Unexpected Results in Cancer Drug Research. New J. Chem. 2025, 49, 14037–14052. [Google Scholar] [CrossRef]
- Saez, J.; Quero, J.; Rodriguez-Yoldi, M.J.; Gimeno, M.C.; Cerrada, E. Gold(I) Complexes Based on Nonsteroidal Anti-Inflammatory Derivatives as Multi-Target Drugs against Colon Cancer. Inorg. Chem. 2024, 63, 19769–19782. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Loseva, O.V.; Ivanov, A.V.; Malyants, I.K.; Shender, V.O.; Kiskin, M.A.; Eremenko, I.L. Anticancer Properties of Au(III) Complexes. Russ. J. Coord. Chem. 2022, 48, 808–812. [Google Scholar] [CrossRef]
- Babgi, B.A.; Alsayari, J.; Alenezi, H.M.; Abdellatif, M.H.; Eltayeb, N.E.; Emwas, A.-H.M.; Jaremko, M.; Hussien, M.A. Alteration of Anticancer and Protein-Binding Properties of Gold(I) Alkynyl by Phenolic Schiff Bases Moieties. Pharmaceutics 2021, 13, 461. [Google Scholar] [CrossRef]
- Bian, M.; Wang, X.; Sun, Y.; Liu, W. Synthesis and Biological Evaluation of Gold(III) Schiff Base Complexes for the Treatment of Hepatocellular Carcinoma through Attenuating TrxR Activity. Eur. J. Med. Chem. 2020, 193, 112234. [Google Scholar] [CrossRef]
- Abou Melha, K.S.A.; Al-Hazmi, G.A.A.; Refat, M.S. Synthesis of Nano-Metric Gold Complexes with New Schiff Bases Derived from 4-Aminoantipyrene, Their Structures and Anticancer Activity. Russ. J. Gen. Chem. 2017, 87, 3043–3051. [Google Scholar] [CrossRef]
- Alkış, M.E.; Turan, N.; Alan, Y.; Irtegun Kandemir, S.; Buldurun, K. Effects of Electroporation on Anticancer Activity of 5-FU and Newly Synthesized Zinc(II) Complex in Chemotherapy-Resistance Human Brain Tumor Cells. Med. Oncol. 2021, 38, 129. [Google Scholar] [CrossRef]
- Greif, C.E.; Mertens, R.T.; Berger, G.; Parkin, S.; Awuah, S.G. An anti-glioblastoma gold(I)–NHC complex distorts mitochondrial morphology and bioenergetics to induce tumor growth inhibition. RSC Chem. Biol. 2023, 4, 592–599. [Google Scholar] [CrossRef]
- Zhivkova, T.; Culita, D.C.; Abudalleh, A.; Dyakova, L.; Mocanu, T.; Madalan, A.M.; Georgieva, M.; Miloshev, G.; Hanganu, A.; Marinescu, G.; et al. Homo- and Heterometallic Complexes of Zn(II), {Zn(II)Au(I)}, and {Zn(II)Ag(I)} with Pentadentate Schiff Base Ligands as Promising Anticancer Agents. Dalton Trans. 2023, 52, 12282–12295. [Google Scholar] [CrossRef]
- Marinescu, G.; Madalan, A.M.; Andruh, M. New Heterometallic Coordination Polymers Based on Zinc(II) Complexes with Schiff-Base Ligands and Dicyanometallates: Synthesis, Crystal Structures, and Luminescent Properties. J. Coord. Chem. 2015, 68, 479–490. [Google Scholar] [CrossRef]
- Marinescu, G.; Madalan, A.M.; Tiseanu, C.; Andruh, M. New D10 Heterometallic Coordination Polymers Based on Compartmental Schiff-Base Ligands. Synthesis, Structure and Luminescence. Polyhedron 2011, 30, 1070–1075. [Google Scholar] [CrossRef]
- Mallah, T.; Boillot, M.L.; Kahn, O.; Gouteron, J.; Jeannin, S.; Jeannin, Y. Crystal Structures and Magnetic Properties of .Mu.-Phenolato Copper(II) Binuclear Complexes with Hydroxo, Azido, and Cyanato-O Exogenous Bridges. Inorg. Chem. 1986, 25, 3058–3065. [Google Scholar] [CrossRef]
- Marinescu, G.; Marin, G.; Madalan, A.M.; Vezeanu, A.; Tiseanu, C.; Andruh, M. New Molecular Rectangles and Coordination Polymers Constructed from Binuclear Phenoxo-Bridged [Cu2] and [Zn2] Tectons. Cryst. Growth Des. 2010, 10, 2096–2103. [Google Scholar] [CrossRef]
- Schmidbaur, H. Ludwig Mond Lecture. High-Carat Gold Compounds. Chem. Soc. Rev. 1995, 24, 391–400. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Aurophilic Interactions as a Subject of Current Research: An up-date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar] [CrossRef]
- Baril-Robert, F.; Li, X.; Katz, M.J.; Geisheimer, A.R.; Leznoff, D.B.; Patterson, H. Changes in Electronic Properties of Polymeric One-Dimensional {[M(CN)2]−}n(M = Au, Ag) Chains Due to Neighboring Closed-Shell Zn(II) or Open-Shell Cu(II) Ions. Inorg. Chem. 2011, 50, 231–237. [Google Scholar] [CrossRef]
- Katz, M.J.; Ramnial, T.; Yu, H.-Z.; Leznoff, D.B. Polymorphism of Zn[Au(CN)2]2 and Its Luminescent Sensory Response to NH3 Vapor. J. Am. Chem. Soc. 2008, 130, 10662–10673. [Google Scholar] [CrossRef]
- Coker, N.L.; Krause Bauer, J.A.; Elder, R.C. Emission Energy Correlates with Inverse of Gold−Gold Distance for Various [Au(SCN)2]− Salts. J. Am. Chem. Soc. 2004, 126, 12–13. [Google Scholar] [CrossRef]
- White-Morris, R.L.; Olmstead, M.M.; Balch, A.L. Aurophilic Interactions in Cationic Gold Complexes with Two Isocyanide Ligands. Polymorphic Yellow and Colorless Forms of [(Cyclohexyl Isocyanide)2 AuI](PF6) with Distinct Luminescence. J. Am. Chem. Soc. 2003, 125, 1033–1040. [Google Scholar] [CrossRef]
- Okawa, H.; Kida, S. Binuclear Metal Complexes. III. Preparation and Properties of Mononuclear and Binuclear Copper(II) and Nickel(II) Complexes of New Macrocycles and Their Related Ligands. Bull. Chem. Soc. Jpn. 1972, 45, 1759–1764. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Borenfreund, E.; Puerner, J.A. Toxicity Determined in Vitro by Morphological Alterations and Neutral Red Absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef]
- A Saotome, K.; Morita, H.; Umeda, M. Cytotoxicity Test with Simplified Crystal Violet Staining Method Using Microtitre Plates and Its Application to Injection Drugs. Toxicol. Vitr. 1989, 3, 317–321. [Google Scholar] [CrossRef]
- Abdel Wahab, S.I.; Abdul, A.B.; Alzubairi, A.S.; Mohamed Elhassan, M.; Mohan, S. In Vitro Ultramorphological Assessment of Apoptosis Induced by Zerumbone on (HeLa). BioMed Res. Int. 2009, 2009, 769568. [Google Scholar] [CrossRef]

















| Compound | Cytotoxic Concentration CC50 and (CC90) (µM) | |||||
|---|---|---|---|---|---|---|
| 8MGBA | U251MG | Lep-3 | ||||
| Method | Incubation Period (h) | |||||
| 24 | 48 | 72 | 72 | 72 | ||
| ZnSalampyAu | MTT | n.da. | n.da. | 1.10 ± 1.2 * (6.72) ± 2.4 ** | 1.5 ± 0.9 (7.1 ± 2.3) | 0.57 ± 1.8 (0.89 ± 1.6) |
| ZnSaldmenAu | MTT | n.da. | n.da. | 0.17 ± 0.9 (0.57 ± 1.4) | 6.74 ± 2.1 (9.63 ± 1.2) | 1.03 ± 1.4 (0.93 ± 2.2) |
| ZnDmen | MTT | - | - | - | - | 41.7 ± 2.4 (71.01 ± 2.6) |
| ZnAmpy | MTT | - | - | - | - | 24.8 ± 2.3 (65.4 ± 1.8) |
| ZnAmpyAu | MTT | 3.58 ± 1.1 (-) | 0.57 ± 1.7 (4.04 ± 3.3) | 0.33 ± 2.4 (2.72 ± 2.2) | 18.7 ± 2.6 (6.09 ± 2.0) | 0.6 ± 1.7 (2.62 ± 2.5) |
| ZnDmenAu | MTT | 0.83 ± 0.9 (-) | n.d. | n.d. | n.d. | 0.73 ± 1.4 (2.55 ± 2.1) |
| Cell Line | Treatment Period (h) | Hierarchical Order |
|---|---|---|
| 8MGBA | 72 | * ZnDmenAu ≥ ZnSaldmenAu > ZnAmpyAu > ZnSalampyAu > CisPt > (Vincristine; OxPt; ZnAmpy; ZnDmen) ** (ZnDmenAu > ZnSaldmenAu > ZnAmpyAu > ZnSalampyAu > Vincristine ≥ CisPt > OxPt ≥ (ZnAmpy; ZnDmen) |
| U251MG | 72 | ZnDmenAu > ZnSalampyAu > CisPt > ZnSaldmenAu > ZnAmpyAu > OxPt > (Vincristine; ZnAmpy; ZnDmen) (ZnDmenAu > ZnAmpyAu > ZnSalampyAu > ZnSaldmenAu > CisPt > OxPt > (Vincristine; ZnAmpy; ZnDmen)) |
| Lep-3 | 72 | ZnSaldmenAu > ZnSalampyAu > ZnDmenAu > ZnAmpyAu = CisPt > OxPt > ZnAmpy > ZnDmen (ZnSaldmenAu > ZnSalampyAu > ZnDmenAu > ZnAmpyAu > ZnAmpy > CisPt > ZnDmen > OxPt) |
| Compound | 8MGBA | U251MG | ||
|---|---|---|---|---|
| Observation Period, Days | ||||
| 26 | 37 | 21 | 28 | |
| ZnAmpy | ≥100 | ≥100 | ≥100 | ≥100 |
| ZnDmen | ≥100 | ≥100 | ≥100 | ≥100 |
| ZnAmpyAu | ≥20 | ≥5 | ≥5 | ≥5 |
| ZnDmenAu | ≥10 | ≥0.5 | ≥5 | ≥1 |
| 16 | 23 | 14 | 24 | |
| ZnSalampyAu | ≥1 | ≥1 | ≥5 | ≥1 |
| ZnSaldmenAu | ≥1 | ≥0.5 | ≥5 | ≥1 |
| Cell Line | Hierarchical Order |
|---|---|
| 8MGBA | ZnDmenAu = ZnSaldmenAu > ZnSalampyAu > ZnAmpyAu > ZnAmpy = ZnDmen |
| U251MG | ZnDmenAu = ZnSaldmenAu = ZnSalampyAu > ZnAmpyAu > ZnAmpy = ZnDmen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dyakova, L.; Zhivkova, T.; Abudalleh, A.; Culita, D.C.; Mocanu, T.; Madalan, A.M.; Hanganu, A.; Marinescu, G.; Naydenov, E.; Alexandrova, R. {ZnII2} and {ZnIIAuI} Metal Complexes with Schiff Base Ligands as Potential Antitumor Agents Against Human Glioblastoma Multiforme Cells. Molecules 2026, 31, 173. https://doi.org/10.3390/molecules31010173
Dyakova L, Zhivkova T, Abudalleh A, Culita DC, Mocanu T, Madalan AM, Hanganu A, Marinescu G, Naydenov E, Alexandrova R. {ZnII2} and {ZnIIAuI} Metal Complexes with Schiff Base Ligands as Potential Antitumor Agents Against Human Glioblastoma Multiforme Cells. Molecules. 2026; 31(1):173. https://doi.org/10.3390/molecules31010173
Chicago/Turabian StyleDyakova, Lora, Tanya Zhivkova, Abedulkadir Abudalleh, Daniela C. Culita, Teodora Mocanu, Augustin M. Madalan, Anamaria Hanganu, Gabriela Marinescu, Emanuil Naydenov, and Radostina Alexandrova. 2026. "{ZnII2} and {ZnIIAuI} Metal Complexes with Schiff Base Ligands as Potential Antitumor Agents Against Human Glioblastoma Multiforme Cells" Molecules 31, no. 1: 173. https://doi.org/10.3390/molecules31010173
APA StyleDyakova, L., Zhivkova, T., Abudalleh, A., Culita, D. C., Mocanu, T., Madalan, A. M., Hanganu, A., Marinescu, G., Naydenov, E., & Alexandrova, R. (2026). {ZnII2} and {ZnIIAuI} Metal Complexes with Schiff Base Ligands as Potential Antitumor Agents Against Human Glioblastoma Multiforme Cells. Molecules, 31(1), 173. https://doi.org/10.3390/molecules31010173

