Peptide Arrays as Tools for Unraveling Tumor Microenvironments and Drug Discovery in Oncology
Highlights
- Recent achievements report on the application of peptide array technology in the study of tumor microenvironment.
- Peptide chip mapping of tumor microenvironment interactions can help identify metastasis-related biomarkers.
- Peptide arrays enable drug screening for personalized therapies.
Abstract
1. Introduction—Peptide Arrays as Decoders of Tumor Complexity
2. Evolution and Application of Peptide Arrays in Cancer Research
2.1. Cell-Based Assays: Mapping Adhesion, Migration, and Signaling
2.2. Blood-Based Assays: Detecting Circulating Biomarkers
2.3. Tumor-Sample-Based Methods
2.3.1. Multi-Omics and Computational Integration: From Motifs to Mechanistic Models
2.3.2. Drug Screening
3. Discussion
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Xiao, X.; Yi, Y.; Wang, X.; Zhu, L.; Shen, Y.; Lin, D.; Wu, C. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct. Target. Ther. 2024, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Wagener, C.; Müller, O. Molekulare Onkologie: Entstehung, Progression und Therapie von Krebs, 4th ed.; Georg Thieme Verlag: Stuttgart, Germany, 2022. [Google Scholar]
- Ghorbian, S. Cancer cell plasticity and therapeutic resistance: Mechanisms, crosstalk, and translational perspectives. Hereditas 2025, 162, 188. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Hu, J.-J.; Liang, J.; He, C.-Y.; Wan, W.-D.; Huang, Y.-Q.; Jiang, C.-H.; Wu, H.; Li, N. Hallmarks of cancer resistance. iScience 2024, 27, 109979. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, A.; Alsubait, A.; Asiri, Z.; Alghamdi, S.; Bin Saqyah, S.; Alqahtani, T.; Fitaihi, R.; Altuwaijri, N.; Jamous, Y.F. Deciphering molecular pathways driving cancer invasion and metastasis: Advances and therapeutic prospects. Front. Oncol. 2025, 15, 1684896. [Google Scholar] [CrossRef]
- Chandrasekharan, G.; Unnikrishnan, M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur. J. Cell Biol. 2024, 103, 151393. [Google Scholar] [CrossRef]
- Iaculli, D.; Ballet, S. Discovery of Bioactive Peptides Through Peptide Scanning. J. Pept. Sci. 2025, 31, e70029. [Google Scholar] [CrossRef]
- MacBeath, G.; Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763. [Google Scholar] [CrossRef]
- Berrade, L.; Garcia, A.E.; Camarero, J.A. Protein microarrays: Novel developments and applications. Pharm. Res. 2011, 28, 1480–1499. [Google Scholar] [CrossRef]
- Hilhorst, R.; Houkes, L.; van den Berg, A.; Ruijtenbeek, R. Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase A. Anal. Biochem. 2009, 387, 150–161. [Google Scholar] [CrossRef]
- Cai, Y.; Gong, M.; Zeng, M.; Leng, F.; Lv, D.; Guo, J.; Wang, H.; Li, Y.; Lin, Q.; Jing, J.; et al. Immunopeptidomics-guided discovery and characterization of neoantigens for personalized cancer immunotherapy. Sci. Adv. 2025, 11, eadv6445. [Google Scholar] [CrossRef]
- Wang, Q.; Douglass, J.; Hwang, M.S.; Hsiue, E.H.-C.; Mog, B.J.; Zhang, M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Vogelstein, B. Direct Detection and Quantification of Neoantigens. Cancer Immunol. Res. 2019, 7, 1748–1754. [Google Scholar] [CrossRef]
- Schumacher, S.; Muekusch, S.; Seitz, H. Up-to-Date Applications of Microarrays and Their Way to Commercialization. Microarrays 2015, 4, 196–213. [Google Scholar]
- Ramberger, E.; Suarez-Artiles, L.; Perez-Hernandez, D.; Haji, M.; Popp, O.; Reimer, U.; Leutz, A.; Dittmar, G.; Mertins, P. A Universal Peptide Matrix Interactomics Approach to Disclose Motif-Dependent Protein Binding. Mol. Cell. Proteom. 2021, 20, 100135. [Google Scholar] [CrossRef]
- Szymczak, L.C.; Kuo, H.Y.; Mrksich, M. Peptide Arrays: Development and Application. Anal. Chem. 2018, 90, 266–282. [Google Scholar] [CrossRef]
- Fu, Q.; Zhu, J.; Van Eyk, J.E. Comparison of multiplex immunoassay platforms. Clin. Chem. 2010, 56, 314–318. [Google Scholar] [CrossRef]
- Lei, Y.; Tang, R.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Applications of single-cell sequencing in cancer research: Progress and perspectives. J. Hematol. Oncol. 2021, 14, 91. [Google Scholar] [CrossRef]
- Editorial. Single-cell proteomics: Challenges and prospects. Nat. Methods 2023, 20, 317–318. [Google Scholar] [CrossRef]
- Jia, Q.; Chu, H.; Jin, Z.; Long, H.; Zhu, B. High-throughput single-cell sequencing in cancer research. Signal Transduct. Target. Ther. 2022, 7, 145. [Google Scholar] [CrossRef]
- Li, R.; Yang, P.; Di Pilato, M.; Zhang, J.; Flowers, C.R.; Shang, L.; Li, Z. Accurate imputation of pathway-specific gene expression in spatial transcriptomics with PASTA. Nat. Commun. 2025, 16, 67421. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Z.; Cui, Y.; Zou, Q.; Han, C.; Yan, R.; Yang, Z.; Zhang, W.; Gao, R.; Song, J.; et al. Bridging the dimensional gap from planar spatial transcriptomics to 3D cell atlases. Nat. Methods 2025. [Google Scholar] [CrossRef]
- Song, C.; Park, H.J.; Kim, M.S. Spatial Transcriptomics in Thyroid Cancer: Applications, Limitations, and Future Perspectives. Cells 2025, 14, 936. [Google Scholar] [CrossRef]
- Wu, L.; Han, D.K. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev. Proteom. 2006, 3, 611–619. [Google Scholar] [CrossRef]
- Sallam, R.M. Proteomics in cancer biomarkers discovery: Challenges and applications. Dis. Markers 2015, 2015, 321370. [Google Scholar] [CrossRef]
- Cui, M.; Deng, F.; Disis, M.L.; Cheng, C.; Zhang, L. Advances in the Clinical Application of High-throughput Proteomics. Explor. Res. Hypothesis Med. 2024, 9, 209–220. [Google Scholar] [CrossRef]
- Gheybi, E.; Hosseinzadeh, P.; Tayebi-Khorrami, V.; Rostami, M.; Soukhtanloo, M. Proteomics in decoding cancer: A review. Clin. Chim. Acta 2025, 574, 120302. [Google Scholar] [CrossRef]
- Bhawal, R.; Oberg, A.L.; Zhang, S.; Kohli, M. Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers 2020, 12, 2428. [Google Scholar] [CrossRef]
- Hu, Q.; Zhu, Y.; Mei, J.; Liu, Y.; Zhou, G. Extracellular matrix dynamics in tumor immunoregulation: From tumor microenvironment to immunotherapy. J. Hematol. Oncol. 2025, 18, 65. [Google Scholar] [CrossRef]
- Kacen, A.; Javitt, A.; Kramer, M.P.; Morgenstern, D.; Tsaban, T.; Shmueli, M.D.; Teo, G.C.; da Veiga Leprevost, F.; Barnea, E.; Yu, F.; et al. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat. Biotechnol. 2023, 41, 239–251. [Google Scholar] [CrossRef]
- Legutki, J.B.; Zhao, Z.-G.; Greving, M.; Woodbury, N.; Johnston, S.A.; Stafford, P. Scalable high-density peptide arrays for comprehensive health monitoring. Nat. Commun. 2014, 5, 4785. [Google Scholar] [CrossRef]
- Henson, S.N.; Elko, E.A.; Swiderski, P.M.; Liang, Y.; Engelbrektson, A.L.; Piña, A.; Boyle, A.S.; Fink, Z.; Facista, S.J.; Martinez, V.; et al. PepSeq: A fully in vitro platform for highly multiplexed serology using customizable DNA-barcoded peptide libraries. Nat. Protoc. 2023, 18, 396–423. [Google Scholar] [CrossRef]
- Sonnentag, S.J.; Jenne, F.; Orian-Rousseau, V.; Nesterov-Mueller, A. High-throughput screening for cell binding and repulsion peptides on multifunctionalized surfaces. Commun. Biol. 2024, 7, 870. [Google Scholar] [CrossRef]
- Stoevesandt, O.; Elbs, M.; Köhler, K.; Lellouch, A.C.; Fischer, R.; André, T.; Brock, R. Peptide microarrays for the detection of molecular interactions in cellular signal transduction. Proteomics 2005, 5, 2010–2017. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, N.; Wang, H.; Kobayashi, M.; Ladd, J.J.; Long, J.P.; Lo, K.C.; Patel, J.; Sullivan, E.; Albert, T.; et al. Whole Genome–Derived Tiled Peptide Arrays Detect Prediagnostic Autoantibody Signatures in Non–Small-Cell Lung Cancer. Cancer Res. 2019, 79, 1549–1557. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, L.; Johnston, S.A. Using Frameshift Peptide Arrays for Cancer Neo-Antigens Screening. Sci. Rep. 2018, 8, 17366. [Google Scholar] [CrossRef]
- Huang, R.; Gao, C.-H.; Wu, W.; Huang, R.-P. Enhanced Protein Profiling Arrays for High-Throughput Quantitative Measurement of Cytokine Expression. In Antibody Arrays: Methods and Protocols; Whittaker, K.C., Huang, R.-P., Eds.; Springer: New York, NY, USA, 2021; pp. 123–128. [Google Scholar]
- Chen, X.; Wang, D.; Jiang, Y.-B.; Jiang, T. Design of Cell-Specific Targeting Peptides for Cancer Therapy. Targets 2024, 2, 186–201. [Google Scholar] [CrossRef]
- Kaur, K.; Ahmed, S.; Soudy, R.; Azmi, S. Screening peptide array library for the identification of cancer cell-binding peptides. Methods Mol. Biol. 2015, 1248, 239–247. [Google Scholar] [CrossRef]
- Research, I.M. Peptide Microarray Assay Service Market Outlook 2025–2032; Intelmarket Research: Pune, India, 2025. Available online: https://www.intelmarketresearch.com/peptide-microarray-assay-service-2025-2032-338-4173 (accessed on 1 June 2025).
- Resmi, C.P.; Xuan, H.; Shao, Q.Y. Recent Advances in Peptide-Based Microarray Technologies. Comb. Chem. High Throughput Screen. 2004, 7, 547–556. [Google Scholar] [CrossRef]
- Mahesh, U.; Shao, Q.Y. Peptide Microarrays: Next Generation Biochips for Detection, Diagnostics and High-Throughput Screening. Curr. Pharm. Des. 2008, 14, 2428–2438. [Google Scholar] [CrossRef]
- König, K.; Block, I.; Nesterov, A.; Torralba, G.; Fernandez, S.; Felgenhauer, T.; Leibe, K.; Schirwitz, C.; Löffler, F.; Painke, F.; et al. Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis. Sens. Actuators B 2010, 147, 418–427. [Google Scholar] [CrossRef]
- Maerkle, F.; Loeffler, F.F.; Schillo, S.; Foertsch, T.; Muenster, B.; Striffler, J.; Schirwitz, C.; Bischoff, F.R.; Breitling, F.; Nesterov-Müller, A. High-Density Peptide Arrays with Combinatorial Laser Fusing. Adv. Mater. 2014, 26, 3730–3734. [Google Scholar] [CrossRef]
- Loeffler, F.F.; Pfeil, J.; Heiss, K. High-Density Peptide Arrays for Malaria Vaccine Development. In Vaccine Design: Methods and Protocols; Volume 1: Vaccines for Human Diseases; Thomas, S., Ed.; Humana Press: New York, NY, USA, 2016; pp. 569–582. [Google Scholar]
- Jenne, F.; Biniaminov, S.; Biniaminov, N.; Marquardt, P.; von Bojničić-Kninski, C.; Popov, R.; Seckinger, A.; Hose, D.; Nesterov-Mueller, A. Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale. Int. J. Mol. Sci. 2022, 23, 3515. [Google Scholar] [CrossRef]
- Yang, S.; Li, P.; Zhang, X.; Liu, Z.; Zhou, D.; Chen, Y.; Chen, Z.; Xiong, Y. High-Throughput Peptide Array Clinical Validation for Lung Adenocarcinoma Detection. ACS Omega 2025, 10, 21857–21866. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, Y.; Chang, L.; Wang, B.; Ye, M.; Qi, J. Rewiring tumor visibility: The immunopeptidome as a dynamic interface between antigen processing, microenvironmental stress, and immune recognition. Front. Oncol. 2025, 15, 1691719. [Google Scholar] [CrossRef]
- Blaha, L.; Zhang, C.; Cabodi, M.; Wong, J.Y. A microfluidic platform for modeling metastatic cancer cell matrix invasion. Biofabrication 2017, 9, 045001. [Google Scholar] [CrossRef]
- Feola, S.; Haapala, M.; Peltonen, K.; Capasso, C.; Martins, B.; Antignani, G.; Federico, A.; Pietiäinen, V.; Chiaro, J.; Feodoroff, M.; et al. PeptiCHIP: A Microfluidic Platform for Tumor Antigen Landscape Identification. ACS Nano 2021, 15, 15992–16010. [Google Scholar] [CrossRef]
- Lambert, C.L.G.; van Mierlo, G.; Bues, J.J.; Guillaume-Gentil, O.J.; Deplancke, B. Engineering next-generation microfluidic technologies for single-cell phenomics. Nat. Genet. 2025, 57, 1344–1356. [Google Scholar] [CrossRef]
- Vitorino, R.; Guedes, S.; Costa, J.P.D.; Kašička, V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. Nanomaterials 2021, 11, 1118. [Google Scholar] [CrossRef]
- Nevenzal, H.; Noach-Hirsh, M.; Skornik-Bustan, O.; Brio, L.; Barbiro-Michaely, E.; Glick, Y.; Avrahami, D.; Lahmi, R.; Tzur, A.; Gerber, D. A high-throughput integrated microfluidics method enables tyrosine autophosphorylation discovery. Commun. Biol. 2019, 2, 42. [Google Scholar] [CrossRef]
- PeptideAtlas. PeptideAtlas: A Multi-Organism Publicly Accessible Compendium of Peptides. 2004–2025. Available online: https://peptideatlas.org/# (accessed on 1 June 2025).
- Andresen, H.; Grötzinger, C.; Zarse, K.; Birringer, M.; Hessenius, C.; Kreuzer, O.J.; Ehrentreich-Förster, E.; Bier, F.F. Peptide microarrays with site-specifically immobilized synthetic peptides for antibody diagnostics. Sens. Actuators B Chem. 2006, 113, 655–663. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zare, R.N.; Min, Q. Peptide and protein assays using customizable bio-affinity arrays combined with ambient ionization mass spectrometry. Chem. Sci. 2021, 12, 10810–10816. [Google Scholar] [CrossRef]
- Barber, K.W.; Shrock, E.; Elledge, S.J. CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays. Mol. Cell 2021, 81, 3650–3658.e5. [Google Scholar] [CrossRef] [PubMed]
- Reineke, U.; Schneider-Mergener, J.; Schutkowski, M. Peptide Arrays in Proteomics and Drug Discovery. In BioMEMS and Biomedical Nanotechnology; Volume II: Micro/Nano Technologies for Genomics and Proteomics; Ferrari, M., Ozkan, M., Heller, M.J., Eds.; Springer: Boston, MA, USA, 2007; pp. 161–282. [Google Scholar]
- Vo, T.H.; McNeela, E.; O’Donovan, O.; Rani, S.; Mehta, J.P. Artificial Intelligence and the Evolving Landscape of Immunopeptidomics. Proteom. Clin. Appl. 2025, 19, e70018. [Google Scholar] [CrossRef] [PubMed]
- Scheid, J.; Lemke, S.; Hoenisch-Gravel, N.; Dengler, A.; Sachsenberg, T.; Declerq, A.; Gabriels, R.; Bauer, J.; Wacker, M.; Bichmann, L.; et al. MHCquant2 refines immunopeptidomics tumor antigen discovery. Genome Biol. 2025, 26, 290. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.; Hegde, N.; Yanow, S.K. Integrating machine learning to advance epitope mapping. Front. Immunol. 2024, 15, 1463931. [Google Scholar] [CrossRef]
- Hotop, S.K.; Reimering, S.; Shekhar, A.; Asgari, E.; Beutling, U.; Dahlke, C.; Fathi, A.; Khan, F.; Lütgehetmann, M.; Ballmann, R.; et al. Peptide microarrays coupled to machine learning reveal individual epitopes from human antibody responses with neutralizing capabilities against SARS-CoV-2. Emerg. Microbes Infect. 2022, 11, 1037–1048. [Google Scholar] [CrossRef]
- Grötzinger, C. Applications of Peptide Microarrays in Autoantibody, Infection, and Cancer Detection. Methods Mol. Biol. 2023, 2578, 1–15. [Google Scholar] [CrossRef]
- Fang, J.; Lu, Y.; Zheng, J.; Jiang, X.; Shen, H.; Shang, X.; Lu, Y.; Fu, P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: New insights and therapeutic implications. Cell Death Dis. 2023, 14, 586. [Google Scholar] [CrossRef]
- Leone, P.; Malerba, E.; Susca, N.; Favoino, E.; Perosa, F.; Brunori, G.; Prete, M.; Racanelli, V. Endothelial cells in tumor microenvironment: Insights and perspectives. Front. Immunol. 2024, 15, 1367875. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Liu, L.; Wang, J.; Wu, J.; Sun, C. Role of macrophages in tumor progression and therapy (Review). Int. J. Oncol. 2022, 60, 57. [Google Scholar] [CrossRef]
- Nusse, Y.; Kubes, P. Liver macrophages: Development, dynamics, and functions. Cell. Mol. Immunol. 2025, 22, 1178–1189. [Google Scholar] [CrossRef]
- Yuan, Q.; Jia, L.; Yang, J.; Li, W. The role of macrophages in liver metastasis: Mechanisms and therapeutic prospects. Front. Immunol. 2025, 16, 1542197. [Google Scholar] [CrossRef]
- Tournaire, R.; Simon, M.P.; le Noble, F.; Eichmann, A.; England, P.; Pouysségur, J. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep. 2004, 5, 262–267. [Google Scholar] [CrossRef]
- Wu, F.T.H.; Lee, C.R.; Bogdanovic, E.; Prodeus, A.; Gariépy, J.; Kerbel, R.S. Vasculotide reduces endothelial permeability and tumor cell extravasation in the absence of binding to or agonistic activation of Tie2. EMBO Mol. Med. 2015, 7, 770–787. [Google Scholar] [CrossRef]
- Leong, A.; Kim, M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int. J. Mol. Sci. 2020, 21, 8689. [Google Scholar] [CrossRef]
- Atkin-Smith, G.K.; Santavanond, J.P.; Light, A.; Rimes, J.S.; Samson, A.L.; Er, J.; Liu, J.; Johnson, D.N.; Le Page, M.; Rajasekhar, P.; et al. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat. Commun. 2024, 15, 8802. [Google Scholar] [CrossRef]
- Li, Y.; Arsenault, R.J.; Trost, B.; Slind, J.; Griebel, P.J.; Napper, S.; Kusalik, A. A Systematic Approach for Analysis of Peptide Array Kinome Data. Sci. Signal. 2012, 5, pl2. [Google Scholar] [CrossRef]
- Akinsipe, T.; Mohamedelhassan, R.; Akinpelu, A.; Pondugula, S.R.; Mistriotis, P.; Avila, L.A.; Suryawanshi, A. Cellular interactions in tumor microenvironment during breast cancer progression: New frontiers and implications for novel therapeutics. Front. Immunol. 2024, 15, 1302587. [Google Scholar] [CrossRef]
- Griffiths, J.I.; Cosgrove, P.A.; Medina, E.F.; Nath, A.; Chen, J.; Adler, F.R.; Chang, J.T.; Khan, Q.J.; Bild, A.H. Cellular interactions within the immune microenvironment underpins resistance to cell cycle inhibition in breast cancers. Nat. Commun. 2025, 16, 2132. [Google Scholar] [CrossRef]
- Ikeda, H.; Kawase, K.; Nishi, T.; Watanabe, T.; Takenaga, K.; Inozume, T.; Ishino, T.; Aki, S.; Lin, J.; Kawashima, S.; et al. Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature 2025, 638, 225–236. [Google Scholar] [CrossRef]
- Posa, F.; Grab, A.L.; Martin, V.; Hose, D.; Seckinger, A.; Mori, G.; Vukicevic, S.; Cavalcanti-Adam, E.A. Copresentation of BMP-6 and RGD Ligands Enhances Cell Adhesion and BMP-Mediated Signaling. Cells 2019, 8, 1646. [Google Scholar] [CrossRef]
- Kanie, K.; Kondo, Y.; Owaki, J.; Ikeda, Y.; Narita, Y.; Kato, R.; Honda, H. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays. Bioengineering 2016, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Saxinger, C.; Conrads, T.P.; Goldstein, D.J.; Veenstra, T.D. Fully automated synthesis of (phospho)peptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization. BMC Immunol. 2005, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Vengesai, A.; Kasambala, M.; Mutandadzi, H.; Mduluza-Jokonya, T.L.; Mduluza, T.; Naicker, T. Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS ONE 2022, 17, e0248666. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.; Mashiko, S.; Asam, K.; Roy, P.; Wang, S.; Frank, K.; Dietzel, M.; Schahadat, L.G.Z.; Ausmeier, M.; Hertel, A.; et al. Development of high-titer class-switched antibody responses to phosphorylated amino acids is prevalent in pancreatic ductal adenocarcinoma. Front. Immunol. 2025, 16, 1501943. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Dai, J.; Xu, M.; Liu, J.; Ren, J.; Qin, X.; Kang, X.; Yu, X. Detection of Posttranslational Modification Autoantibodies Using Peptide MicroarrayPeptide microarray. In Protein Microarrays for Disease Analysis: Methods and Protocols; Barderas, R., LaBaer, J., Srivastava, S., Eds.; Springer: New York, NY, USA, 2021; pp. 99–106. [Google Scholar]
- Zandian, A.; Forsström, B.; Häggmark-Månberg, A.; Schwenk, J.M.; Uhlén, M.; Nilsson, P.; Ayoglu, B. Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy. J. Proteome Res. 2017, 16, 1300–1314. [Google Scholar] [CrossRef]
- Henkel, S.; Wellhausen, R.; Woitalla, D.; Marcus, K.; May, C. Epitope Mapping Using Peptide Microarray in Autoantibody Profiling. In Microarray Technology: Methods and Applications; Li, P.C.H., Sedighi, A., Wang, L., Eds.; Springer: New York, NY, USA, 2016; pp. 209–224. [Google Scholar]
- Shen, L.; Zhao, Z.G.; Lainson, J.C.; Brown, J.R.; Sykes, K.F.; Johnston, S.A.; Diehnelt, C.W. Production of high-complexity frameshift neoantigen peptide microarrays. RSC Adv. 2020, 10, 29675–29681. [Google Scholar] [CrossRef]
- Purohit, B.; Svendsen, W.E. Peptide-Based Electrochemical Nanobiosensors for Clinical Diagnosis. In Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices; Purohit, B., Chandra, P., Eds.; Springer Nature: Singapore, 2023; pp. 199–222. [Google Scholar]
- Iyer, V.; Yang, Z.; Ko, J.; Weissleder, R.; Issadore, D. Advancing microfluidic diagnostic chips into clinical use: A review of current challenges and opportunities. Lab Chip 2022, 22, 3110–3121. [Google Scholar] [CrossRef]
- Chen, X.; Cao, S.; Tao, L.; Yan, R.; Cao, S.; Hao, J.; Yi, Y.; Luan, C.; Wu, J.; Gao, Y.; et al. Establishment of MS LOC platform and its pilot application in clinical lipidomics. Talanta 2025, 285, 127314. [Google Scholar] [CrossRef]
- Li, S.S.; Wu, C. Using peptide array to identify binding motifs and interaction networks for modular domains. Methods Mol. Biol. 2009, 570, 67–76. [Google Scholar] [CrossRef]
- Tinti, M.; Kiemer, L.; Costa, S.; Miller, M.L.; Sacco, F.; Olsen, J.V.; Carducci, M.; Paoluzi, S.; Langone, F.; Workman, C.T.; et al. The SH2 domain interaction landscape. Cell Rep. 2013, 3, 1293–1305. [Google Scholar] [CrossRef]
- Sinzinger, M.D.; Chung, Y.-D.; Adjobo-Hermans, M.J.W.; Brock, R. A microarray-based approach to evaluate the functional significance of protein-binding motifs. Anal. Bioanal. Chem. 2016, 408, 3177–3184. [Google Scholar] [CrossRef]
- Luo, R.; Zhong, P.; Li, X.; Cai, J.; Tao, Y.; Xiong, B.; Zheng, H.; Zhang, Z.; Tang, L.; Yao, J.; et al. High-Throughput Peptide Arrays Identify Potential Diagnostic Autoantibody Signatures in Early-Stage Lung Adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2023, 32, 726–738. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, X.; Liu, M.; Wang, Y.; Wang, T.; Pei, L.; Wang, P.; Ye, H.; Shi, J.; Song, C.; et al. Discovering Panel of Autoantibodies for Early Detection of Lung Cancer Based on Focused Protein Array. Front. Immunol. 2021, 12, 658922. [Google Scholar] [CrossRef]
- Corzana, F.; Asin, A.; Eguskiza, A.; De Tomi, E.; Martin-Carnicero, A.; Martinez-Moral, M.P.; Mangini, V.; Papi, F.; Breton, C.; Oroz, P.; et al. Detection of Tumor-Associated Autoantibodies in the Sera of Pancreatic Cancer Patients Using Engineered MUC1 Glycopeptide Nanoparticle Probes. Angew. Chem. Int. Ed. Engl. 2024, 63, e202407131. [Google Scholar] [CrossRef]
- Mowoe, M.O.; Allam, H.; Nqada, J.; Bernon, M.; Gandhi, K.; Burmeister, S.; Kotze, U.; Kahn, M.; Kloppers, C.; Dharshanan, S.; et al. Identification and validation of a novel autoantibody biomarker panel for differential diagnosis of pancreatic ductal adenocarcinoma. Front. Immunol. 2025, 16, 1494446. [Google Scholar] [CrossRef]
- Barpanda, A.; Tuckley, C.; Ray, A.; Banerjee, A.; Duttagupta, S.P.; Kantharia, C.; Srivastava, S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteom. Clin. Appl. 2023, 17, e2200062. [Google Scholar] [CrossRef]
- Hoefges, A.; McIlwain, S.J.; Erbe, A.K.; Mathers, N.; Xu, A.; Melby, D.; Tetreault, K.; Le, T.; Kim, K.; Pinapati, R.S.; et al. Antibody landscape of C57BL/6 mice cured of B78 melanoma via immunotherapy. bioRxiv 2023. [Google Scholar] [CrossRef]
- Meng, W.; Duan, J.; Guo, C.; Xu, J.; Zheng, S.; Wu, H. Multiomics Integration of Serum Proteome and Autoantibody Profiles Reveals Diagnostic and Prognostic Biomarkers in Glioma; Research Square: Durham, NC, USA, 2025. [Google Scholar]
- Sun, Y.; Liu, C.; Zhong, H.; Wang, C.; Xu, H.; Chen, W. Screening of autoantibodies as biomarkers in the serum of renal cancer patients based on human proteome microarray. Acta Biochim. Biophys. Sin. 2022, 54, 1909–1916. [Google Scholar] [CrossRef]
- Lou, N.; Zheng, C.; Wang, Y.; Liang, C.; Tan, Q.; Luo, R.; Zhang, L.; Xie, T.; Shi, Y.; Han, X. Identification of novel serological autoantibodies in Chinese prostate cancer patients using high-throughput protein arrays. Cancer Immunol. Immunother. 2023, 72, 235–247. [Google Scholar] [CrossRef]
- Babel, I.; Barderas, R.; Díaz-Uriarte, R.; Martínez-Torrecuadrada, J.L.; Sánchez-Carbayo, M.; Casal, J.I. Identification of Tumor-associated Autoantigens for the Diagnosis of Colorectal Cancer in Serum Using High Density Protein Microarrays. Mol. Cell. Proteom. 2009, 8, 2382–2395. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Qiu, C.; Qin, J.; Wang, K.; Sun, G.; Jiang, D.; Li, J.; Wang, L.; Shi, J.; et al. Using protein microarray to identify and evaluate autoantibodies to tumor-associated antigens in ovarian cancer. Cancer Sci. 2021, 112, 537–549. [Google Scholar] [CrossRef]
- Anderson, K.S.; Sibani, S.; Wallstrom, G.; Qiu, J.; Mendoza, E.A.; Raphael, J.; Hainsworth, E.; Montor, W.R.; Wong, J.; Park, J.G.; et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J. Proteome Res. 2011, 10, 85–96. [Google Scholar] [CrossRef]
- Yang, Q.; Ye, H.; Sun, G.; Wang, K.; Dai, L.; Qiu, C.; Shi, J.; Zhu, J.; Wang, X.; Wang, P. Human Proteome Microarray identifies autoantibodies to tumor-associated antigens as serological biomarkers for the diagnosis of hepatocellular carcinoma. Mol. Oncol. 2023, 17, 887–900. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Chen, J.; Shu, H.; Shen, S.; Li, Y.; Lu, X.; Cao, X.; Dong, L.; Shi, J.; et al. Autoantibody signature in hepatocellular carcinoma using seromics. J. Hematol. Oncol. 2020, 13, 85. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, W.; Liu, X.; Meng, Y.; Liu, J.; Wu, L.; Zhang, Y.; Hu, X.; Fan, Y.; Qin, X. Proteome microarray identifies autoantibody biomarkers for diagnosis of hepatitis B-related hepatocellular carcinoma. Clin. Chim. Acta 2024, 554, 117727. [Google Scholar] [CrossRef]
- Hao, W.; Zhao, D.; Meng, Y.; Yang, M.; Ma, M.; Hu, J.; Liu, J.; Qin, X. Screening of Cancer-Specific Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma Based on a Proteome Microarray. Mol. Cell. Proteom. 2024, 23, 100872. [Google Scholar] [CrossRef]
- Poli, E.; Cattelan, M.; Zanetti, I.; Scagnellato, A.; Giordano, G.; Zin, A.; Bisogno, G.; Bonvini, P. Autoantibody profiling of alveolar rhabdomyosarcoma patients unveils tumor-associated antigens with diagnostic and prognostic significance. Oncoimmunology 2021, 10, 1954765. [Google Scholar] [CrossRef]
- Segal, N.H.; Blachere, N.E.; Shiu, H.Y.A.; Leejee, S.; Antonescu, C.R.; Lewis, J.J.; Wolchok, J.D.; Houghton, A.N. Antigens recognized by autologous antibodies of patients with soft tissue sarcoma. Cancer Immun. 2005, 5, 4. [Google Scholar]
- Anderson, K.S.; Cramer, D.W.; Sibani, S.; Wallstrom, G.; Wong, J.; Park, J.; Qiu, J.; Vitonis, A.; LaBaer, J. Autoantibody signature for the serologic detection of ovarian cancer. J. Proteome Res. 2015, 14, 578–586. [Google Scholar] [CrossRef]
- Mock, A.; Warta, R.; Geisenberger, C.; Bischoff, R.; Schulte, A.; Lamszus, K.; Stadler, V.; Felgenhauer, T.; Schichor, C.; Schwartz, C.; et al. Printed peptide arrays identify prognostic TNC serumantibodies in glioblastoma patients. Oncotarget 2015, 6, 13579–13590. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, X.; Yang, J.; Shi, H.; Li, H.; Zhao, X.; Ma, X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front. Cell Dev. Biol. 2021, 9, 637675. [Google Scholar] [CrossRef]
- He, X.; Lee, B.; Jiang, Y. Extracellular matrix in cancer progression and therapy. Med. Rev. 2022, 2, 125–139. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef]
- Lee, J.J.; Ng, K.Y.; Bakhtiar, A. Extracellular matrix: Unlocking new avenues in cancer treatment. Biomark. Res. 2025, 13, 78. [Google Scholar] [CrossRef]
- Zhou, Z.; Yeung, W.; Soleymani, S.; Gravel, N.; Salcedo, M.; Li, S.; Kannan, N. Using explainable machine learning to uncover the kinase–substrate interaction landscape. Bioinformatics 2024, 40, btae033. [Google Scholar] [CrossRef]
- Wu, Y.; Rozans, S.J.; Moghaddam, A.S.; Pashuck, E.T. Using High-Throughput Screening to Identify Crosslinking Peptides That Control Cell-Mediated Matrix Degradation. Adv. Healthc. Mater. 2025, 14, e01932. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Duffy, M.P.; Ahn, K.J.; Sussman, J.H.; Pang, M.; Smith, D.; Duncan, G.; Zhang, I.; Huang, J.; Lin, Y.; et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 2024, 187, 3120–3140.e29. [Google Scholar] [CrossRef] [PubMed]
- Black, S.; Phillips, D.; Hickey, J.W.; Kennedy-Darling, J.; Venkataraaman, V.G.; Samusik, N.; Goltsev, Y.; Schürch, C.M.; Nolan, G.P. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 2021, 16, 3802–3835. [Google Scholar] [CrossRef] [PubMed]
- Janesick, A.; Shelansky, R.; Gottscho, A.D.; Wagner, F.; Williams, S.R.; Rouault, M.; Beliakoff, G.; Morrison, C.A.; Oliveira, M.F.; Sicherman, J.T.; et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 2023, 14, 8353. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhang, Z.; Xu, X.; Tian, Y.; Feng, L.; Huang, X.; Du, Y.; Li, Z. Single-cell and spatial transcriptomics integration: New frontiers in tumor microenvironment and cellular communication. Front. Immunol. 2025, 16, 1649468. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Ye, F.; Gao, L.; Liu, X.; Zhao, X.; Che, Y.; Wang, H.; Wang, L.; Wu, J.; Song, D.; et al. Proteomics, pathway array and signaling network-based medicine in cancer. Cell Div. 2009, 4, 20. [Google Scholar] [CrossRef]
- Zhai, S.; Liu, T.; Lin, S.; Li, D.; Liu, H.; Yao, X.; Hou, T. Artificial intelligence in peptide-based drug design. Drug Discov. Today 2025, 30, 104300. [Google Scholar] [CrossRef]
- Hamoud, A.R.; Alganem, K.; Hanna, S.; Morran, M.; Henkel, N.; Imami, A.S.; Ryan, W.; Sahay, S.; Pulvender, P.; Kunch, A.; et al. Illuminating the dark kinome: Utilizing multiplex peptide activity arrays to functionally annotate understudied kinases. Cell Commun. Signal. 2024, 22, 501. [Google Scholar] [CrossRef]
- Yetgin, A. Revolutionizing multi-omics analysis with artificial intelligence and data processing. Quant. Biol. 2025, 13, e70002. [Google Scholar] [CrossRef]
- Nam, Y.; Kim, J.; Jung, S.H.; Woerner, J.; Suh, E.H.; Lee, D.G.; Shivakumar, M.; Lee, M.E.; Kim, D. Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine. Annu. Rev. Biomed. Data Sci. 2024, 7, 225–250. [Google Scholar] [CrossRef]
- Sun, M.; He, L.; Chen, R.; Lv, M.; Chen, Z.-S.; Fan, Z.; Zhou, Y.; Qin, J.; Du, J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist. Updates 2025, 79, 101208. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Flashner-Abramson, E.; Vasudevan, S.; Adejumobi, I.A.; Sonnenblick, A.; Kravchenko-Balasha, N. Decoding cancer heterogeneity: Studying patient-specific signaling signatures towards personalized cancer therapy. Theranostics 2019, 9, 5149–5165. [Google Scholar] [CrossRef] [PubMed]
- Baião, A.R.; Cai, Z.; Poulos, R.C.; Robinson, P.J.; Reddel, R.R.; Zhong, Q.; Vinga, S.; Gonçalves, E. A technical review of multi-omics data integration methods: From classical statistical to deep generative approaches. Brief. Bioinform. 2025, 26, bbaf355. [Google Scholar] [CrossRef]
- Renard, B.Y.; Löwer, M.; Kühne, Y.; Reimer, U.; Rothermel, A.; Türeci, Ö.; Castle, J.C.; Sahin, U. rapmad: Robust analysis of peptide microarray data. BMC Bioinform. 2011, 12, 324. [Google Scholar] [CrossRef]
- Cauli, E.; Polidoro, M.A.; Marzorati, S.; Bernardi, C.; Rasponi, M.; Lleo, A. Cancer-on-chip: A 3D model for the study of the tumor microenvironment. J. Biol. Eng. 2023, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Jouybar, M.; de Winde, C.M.; Wolf, K.; Friedl, P.; Mebius, R.E.; den Toonder, J.M.J. Cancer-on-chip models for metastasis: Importance of the tumor microenvironment. Trends Biotechnol. 2024, 42, 431–448. [Google Scholar] [CrossRef] [PubMed]
- Lo Buglio, G.; Lo Cicero, A.; Campora, S.; Ghersi, G. The Multifaced Role of Collagen in Cancer Development and Progression. Int. J. Mol. Sci. 2024, 25, 13523. [Google Scholar] [CrossRef] [PubMed]
- Worthington, P.; Pochan, D.J.; Langhans, S.A. Peptide Hydrogels—Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front. Oncol. 2015, 5, 92. [Google Scholar] [CrossRef]
- Brouwers, F.M.; Petricoin, E.F., 3rd; Ksinantova, L.; Breza, J.; Rajapakse, V.; Ross, S.; Johann, D.; Mannelli, M.; Shulkin, B.L.; Kvetnansky, R.; et al. Low molecular weight proteomic information distinguishes metastatic from benign pheochromocytoma. Endocr. Relat. Cancer 2005, 12, 263–272. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Xiao, W.; Lam, K.S. Tumor-targeting peptides from combinatorial libraries. Adv. Drug Deliv. Rev. 2017, 110–111, 13–37. [Google Scholar] [CrossRef]
- Gray, B.P.; Brown, K.C. Combinatorial peptide libraries: Mining for cell-binding peptides. Chem. Rev. 2014, 114, 1020–1081. [Google Scholar] [CrossRef]
- Zheng, Z.; Mergaert, A.M.; Ong, I.M.; Shelef, M.A.; Newton, M.A. MixTwice: Large-scale hypothesis testing for peptide arrays by variance mixing. Bioinformatics 2021, 37, 2637–2643. [Google Scholar] [CrossRef]
- Zhang, X.; Karim, M.; Hasan, M.M.; Hooper, J.; Wahab, R.; Roy, S.; Al-Hilal, T.A. Cancer-on-a-Chip: Models for Studying Metastasis. Cancers 2022, 14, 648. [Google Scholar] [CrossRef]
- Subramanian, S.; Daquinag, A.C.; AghaAmiri, S.; Ghosh, S.C.; Azhdarinia, A.; Kolonin, M.G. Characterization of Peptides Targeting Metastatic Tumor Cells as Probes for Cancer Detection and Vehicles for Therapy Delivery. Cancer Res. 2021, 81, 5756–5764. [Google Scholar] [CrossRef]
- Gattringer, J.; Gruber, C.W.; Hellinger, R. Peptide modulators of cell migration: Overview, applications and future development. Drug Discov. Today 2023, 28, 103554. [Google Scholar] [CrossRef]
- Gioiella, F.; Urciuolo, F.; Imparato, G.; Brancato, V.; Netti, P.A. An Engineered Breast Cancer Model on a Chip to Replicate ECM-Activation In Vitro during Tumor Progression. Adv. Healthc. Mater. 2016, 5, 3074–3084. [Google Scholar] [CrossRef]
- Sgarminato, V.; Marasso, S.L.; Cocuzza, M.; Scordo, G.; Ballesio, A.; Ciardelli, G.; Tonda-Turo, C. PDAC-on-chip for in vitro modeling of stromal and pancreatic cancer cell crosstalk. Biomater. Sci. 2023, 11, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Guo, T.; Zhu, B.; Tian, Q.; Wu, Y.; Liu, Y. Interpretable machine learning model for predicting post-hepatectomy liver failure in hepatocellular carcinoma. Sci. Rep. 2025, 15, 15469. [Google Scholar] [CrossRef] [PubMed]
- Vadevoo, S.M.P.; Gurung, S.; Lee, H.-S.; Gunassekaran, G.R.; Lee, S.-M.; Yoon, J.-W.; Lee, Y.-K.; Lee, B. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023, 55, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Savović, J.; Higgins, J.P.T.; Caldwell, D.M.; Reeves, B.C.; Shea, B.; Davies, P.; Kleijnen, J.; Churchill, R. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J. Clin. Epidemiol. 2016, 69, 225–234. [Google Scholar] [CrossRef]
- Sachse, K.; Rahman, K.S.; Schnee, C.; Müller, E.; Peisker, M.; Schumacher, T.; Schubert, E.; Ruettger, A.; Kaltenboeck, B.; Ehricht, R. A novel synthetic peptide microarray assay detects Chlamydia species-specific antibodies in animal and human sera. Sci. Rep. 2018, 8, 4701. [Google Scholar] [CrossRef]
- Seurynck-Servoss, S.L.; White, A.M.; Baird, C.L.; Rodland, K.D.; Zangar, R.C. Evaluation of surface chemistries for antibody microarrays. Anal. Biochem. 2007, 371, 105–115. [Google Scholar] [CrossRef]
- Cretich, M.; Gori, A. Peptide Microarrays: Methods and Protocols; Springer: New York, NY, USA, 2022. [Google Scholar]
- Vernet, T.; Choulier, L.; Nominé, Y.; Bellard, L.; Baltzinger, M.; Travé, G.; Altschuh, D. Spot peptide arrays and SPR measurements: Throughput and quantification in antibody selectivity studies. J. Mol. Recognit. 2015, 28, 635–644. [Google Scholar] [CrossRef]
- Zhang, Y.S. Modular multi-organ-on-chips platform with physicochemical sensor integration. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017. [Google Scholar]
- Lapuente-Santana, Ó.; Sturm, G.; Kant, J.; Ausserhofer, M.; Zackl, C.; Zopoglou, M.; McGranahan, N.; Rieder, D.; Trajanoski, Z.; da Cunha Carvalho de Miranda, N.F.; et al. Multimodal analysis unveils tumor microenvironment heterogeneity linked to immune activity and evasion. iScience 2024, 27, 110529. [Google Scholar] [CrossRef]
- Weng, J.; Ju, F.; Lyu, Z.; Fan, N.; Smit, D.J.; Xu, W.; Wu, X.; Becker, P.; Xu, Y.; Schweiger, M.R.; et al. Single-cell insights into tumor microenvironment heterogeneity and plasticity: Transforming precision therapy in gastrointestinal cancers. J. Exp. Clin. Cancer Res. 2025, 44, 314. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Gao, S.; Jiang, Z.; Ding, Q.; Cheng, Z. Recent advances in mitochondria-targeting theranostic agents. Exploration 2024, 4, 20230063. [Google Scholar] [CrossRef]
- Le, J.; Dian, Y.; Zhao, D.; Guo, Z.; Luo, Z.; Chen, X.; Zeng, F.; Deng, G. Single-cell multi-omics in cancer immunotherapy: From tumor heterogeneity to personalized precision treatment. Mol. Cancer 2025, 24, 221. [Google Scholar] [CrossRef]
- Choudhury, P.R.; Mishra, S.K.; Yadav, S.; Singh, S.; Mathur, P. In Silico Peptide Design: Methods, Resources, and Role of AI. J. Pept. Sci. 2025, 31, e70063. [Google Scholar] [CrossRef]
- Chen, S.; Lin, T.; Basu, R.; Ritchey, J.; Wang, S.; Luo, Y.; Li, X.; Pei, D.; Kara, L.B.; Cheng, X. Design of target specific peptide inhibitors using generative deep learning and molecular dynamics simulations. Nat. Commun. 2024, 15, 1611. [Google Scholar] [CrossRef]
- Geylan, G.; Janet, J.P.; Tibo, A.; He, J.; Patronov, A.; Kabeshov, M.; Czechtizky, W.; David, F.; Engkvist, O.; De Maria, L. PepINVENT: Generative peptide design beyond natural amino acids. Chem. Sci. 2025, 16, 8682–8696. [Google Scholar] [CrossRef]
- Ekambaram, S.; Dokholyan, N. Peptide-based drug design using generative AI. Chem. Commun. 2026, 62, 672–691. [Google Scholar] [CrossRef]


| Cancer Type | Autoantibody Detection Technique |
|---|---|
| Lung adenocarcinoma | High-density peptide microarray profiled plasma to identify peptide autoantibody signatures [91] |
| Lung cancer (general) | Protein array and ELISA validation screening of cancer-driver proteins, developed 7-TAAb decision-tree panel [92] |
| Pancreatic cancer | Engineered glycopeptide probes (not array) peptide–antibody confirmed by SPR [93] |
| Pancreatic ductal adenocarcinoma | High-throughput protein microarrays screened sera to identify an 11-autoantibody panel [94] |
| Colorectal cancer | Protein-array workflow for serum screen of autoantibody signatures [95] |
| Melanoma (mouse model) | Whole-proteome high-density peptide array epitope mapping in mice [96] |
| Glioblastoma | Peptide microarray assessing IgG/IgM autoantibodies [97] |
| Renal cancer | Human proteome microarray to examine the differences in IgG and IgM autoantibodies in sera [98] |
| Prostate cancer | High-throughput protein arrays [99] |
| Colon cancer | High-density peptide microarrays for detection of autoantibody biomarkers of colon cancer [100] |
| Ovarian Cancer | Protein microarray to evaluate autoantibodies and tumor-associated antigens (GNAS, NPM1, p53) [101] |
| Breast cancer | High-density protein microarrays were functionalized with 4988 candidate tumor antigens of patients with early-stage breast cancer and IgG [102] |
| Hepatocellular carcinoma | Human Proteome Microarray was used to detect autoantibodies to a panel of six tumor-associated antigens (RAD23A, CAST, RUNX1T1, PAIP1, SARS, PRKCZ) [103,104] |
| Hepatitis B-related hepatocellular carcinoma | Proteome microarrays enabled the detection of autoantibodies against tumor-associated antigens (TAAbs) and a candidate biomarker panel (APEX2, RCSD1, and TP53). [105,106] |
| Alveolar rhabdomyosarcoma | Protein microarray screens found PCDHGC5 autoantibodies as an independent negative prognostic factor and ARMS as a marker for immune response [107] |
| Soft tissue sarcoma | Serological analysis of recombinant cDNA expression libraries was used to generate a list of tumor-associated antigens as potential biomarkers and therapy targets (DLG7, JUN) [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Grab, A.; Reißfelder, C.; Nesterov-Mueller, A. Peptide Arrays as Tools for Unraveling Tumor Microenvironments and Drug Discovery in Oncology. Cells 2026, 15, 146. https://doi.org/10.3390/cells15020146
Grab A, Reißfelder C, Nesterov-Mueller A. Peptide Arrays as Tools for Unraveling Tumor Microenvironments and Drug Discovery in Oncology. Cells. 2026; 15(2):146. https://doi.org/10.3390/cells15020146
Chicago/Turabian StyleGrab, Anna, Christoph Reißfelder, and Alexander Nesterov-Mueller. 2026. "Peptide Arrays as Tools for Unraveling Tumor Microenvironments and Drug Discovery in Oncology" Cells 15, no. 2: 146. https://doi.org/10.3390/cells15020146
APA StyleGrab, A., Reißfelder, C., & Nesterov-Mueller, A. (2026). Peptide Arrays as Tools for Unraveling Tumor Microenvironments and Drug Discovery in Oncology. Cells, 15(2), 146. https://doi.org/10.3390/cells15020146

