Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = glass microbeads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12809 KB  
Article
CaO–SiO2–P2O5–B2O3-Based Bioactive Glass (BGS-7) Macrobeads Incorporated in Hydrogels Aid Bone Regeneration: Evaluation in Rabbit Calvarial and Femoral Defect Models
by Wonseok Choi, Seonghyun Kang, Eliel Nham, Seung-hyo Go, Do-yeon Lee, Baek-Hyun Kim and Jong-Keon Oh
Materials 2026, 19(2), 309; https://doi.org/10.3390/ma19020309 - 12 Jan 2026
Viewed by 140
Abstract
Bone graft substitutes are extensively investigated for addressing critical-size bone defects; however, their efficacy is limited by inadequate bone regeneration and subpar handling properties. Herein, we compared the bone regenerative capacity of CaO–SiO2–P2O5–B2O3-based [...] Read more.
Bone graft substitutes are extensively investigated for addressing critical-size bone defects; however, their efficacy is limited by inadequate bone regeneration and subpar handling properties. Herein, we compared the bone regenerative capacity of CaO–SiO2–P2O5–B2O3-based bioactive glass (BGS-7) macrobeads with that of β-tricalcium phosphate (β-TCP) beads and evaluated their performance when incorporated into hydrogels to improve their handling properties. BGS-7 macrobeads were fabricated via alginate crosslinking and heat treatment, and their physicochemical properties and microstructures were characterized. In a rabbit calvarial defect model, BGS-7 macrobeads, heat-treated at 600 and 800 °C, exhibited superior bone bridging and degradation than size-matched β-TCP macrobeads. To further evaluate their regenerative potential, critical-size defects (6 mm diameter × 10 mm depth) were created in the rabbit femoral condyle. To enhance clinical applicability, BGS-7 beads were incorporated into cellulose-based hydrogels and implanted into the defects. Radiographic and histomorphometric analyses demonstrated that bone formation and stable fixation achieved with hydrogel formulations containing BGS-7 microbeads and Laponite were more pronounced than those with BGS-7 beads alone. The findings suggest that BGS-7 macrobeads, particularly when combined with microbead- and Laponite-containing hydrogels, represent a promising bone graft substitute with improved regenerative and handling properties compared with using BGS-7 beads alone. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

18 pages, 3393 KB  
Article
Development of a High-Performance Immunoaffinity Separation Technique for Rare Cell Capture
by Dora Szerenyi, Paul Stolk, Jozsef Tovari, Laszlo Takacs and Andras Guttman
Separations 2025, 12(5), 134; https://doi.org/10.3390/separations12050134 - 20 May 2025
Viewed by 982
Abstract
Circulating tumor cell enrichment and enumeration are advancing early detection of cancer, monitoring of therapy response, and even next-generation therapies. Efficiently capturing rare cells from complex biological fluids is essential in both diagnostic and therapeutic applications. EpCAM-positive tumor cells are specifically captured by [...] Read more.
Circulating tumor cell enrichment and enumeration are advancing early detection of cancer, monitoring of therapy response, and even next-generation therapies. Efficiently capturing rare cells from complex biological fluids is essential in both diagnostic and therapeutic applications. EpCAM-positive tumor cells are specifically captured by utilizing covalently immobilized anti-EpCAM monoclonal antibodies onto the surface of chemically modified glass microbeads. To maximize the capture efficiency, bead geometry, immobilization conditions, flow rate, and anticoagulant dosage were systematically optimized. An in vitro flow-capture system was designed and used to evaluate the capture efficiency of the proposed technology by utilizing HTC116 colon cancer cell-spiked model media. The effect of substrate surface pretreatment was characterized by goniometry, while the capture performance was monitored by flow cytometry and fluorescent microscopy. The specific capture ability of the bioactive microbead substrate reached over 130,000 cells in the laboratory-scale cartridge (V(cartridge) = 2.6 cm3; m(bead) = 4 g). This capture efficiency suggests a promising rare-cell capture utilization of the proposed technology and may be used for research, diagnostic, and therapeutic purposes. In this paper, we reported on the development and feasibility test of a high-performance bioactive glass-microbead cell capture substrate. Due to the relevance and novelty of the reported results, with further development, the versatile platform technology presented could be readily implemented to capture tumor cells from complex biological samples and represent an additional complementary tool to existing cancer diagnostics and therapies. Full article
Show Figures

Figure 1

17 pages, 4346 KB  
Article
Design and Fabrication of an Epoxy/Glass Microbeads-Based 1-3 Piezoelectric Composite
by Qiyun Liu, Jinjie Zhou, Ziliang Jia and Pengfei Zhou
Micromachines 2025, 16(4), 361; https://doi.org/10.3390/mi16040361 - 21 Mar 2025
Cited by 3 | Viewed by 1192
Abstract
An epoxy/glass microbeads-based 1-3 piezoelectric composite is proposed, to enhance electromechanical conversion efficiency. Firstly, based on the series-parallel theory, the theoretical model is established. Secondly, the epoxy resin/glass microbeads-based 1-3 piezoelectric composite is simulated by finite element software. The effects of polymers with [...] Read more.
An epoxy/glass microbeads-based 1-3 piezoelectric composite is proposed, to enhance electromechanical conversion efficiency. Firstly, based on the series-parallel theory, the theoretical model is established. Secondly, the epoxy resin/glass microbeads-based 1-3 piezoelectric composite is simulated by finite element software. The effects of polymers with different acoustic impedances, the thicknesses of piezoelectric composites, and ceramic volume fractions are analyzed systematically. After parameter optimization, the epoxy/glass microbeads-based 1-3 piezoelectric composite is prepared. The experimental results agree well with the theoretical and simulation results. When the ceramic volume fraction is 60.0%, its electromechanical coupling factor is the largest, which is 0.714. Compared with the prepared traditional 1-3 piezoelectric composites with the same parameters, its electromechanical coupling factor is increased by 7.8%. Therefore, the epoxy/glass microbeads-based 1-3 piezoelectric composite can enhance the sensitivity and resolution of the transducers, which has potential advantages for improving the performance of transducers. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 1526 KB  
Article
Impact of Alternative Substrates on Plant Growth and Root Exudates in Plant Interactions: A Study on Secale cereale L. and Amaranthus retroflexus L.
by Elise De Snyders, Marie-Laure Fauconnier, Pauline Canelle, Judith Wirth and Aurélie Gfeller
Agronomy 2024, 14(12), 3000; https://doi.org/10.3390/agronomy14123000 - 17 Dec 2024
Cited by 2 | Viewed by 1875
Abstract
This study investigates the effects of substrate composition on root architecture, plant growth, and allelopathic secondary metabolites, specifically benzoxazinoids (BXs), in the rhizospheres of rye (Secale cereale L.) and redroot pigweed (Amaranthus retroflexus L.). Given the complexities of root exudate analysis, [...] Read more.
This study investigates the effects of substrate composition on root architecture, plant growth, and allelopathic secondary metabolites, specifically benzoxazinoids (BXs), in the rhizospheres of rye (Secale cereale L.) and redroot pigweed (Amaranthus retroflexus L.). Given the complexities of root exudate analysis, including the influence of substrate on root morphology and exudation, the experiment compared plant growth and BX release in two substrates: glass microbeads and a mixture of clay beads and attapulgite. Rye, pigweed, and co-cultures of the two were grown under controlled conditions, with root and shoot parameters measured to assess substrate suitability. Additionally, UPLC-QTOF-MS was used to analyze BXs in rye and rye–pigweed co-cultures. The results demonstrated that the clay bead and attapulgite mixture provided better growth conditions and was effective for BX extraction, making it a suitable substrate for studying allelopathy in controlled environments. The findings highlight the critical role of substrate composition in both plant development and the study of root exudates, with implications for better understanding of crop–weed interactions and allelopathy. Full article
(This article belongs to the Special Issue Application of Allelochemicals in Agriculture)
Show Figures

Figure 1

17 pages, 2684 KB  
Article
Comparative Study and Evaluation of Sediment Deposition and Migration Characteristics of New Sustainable Filter Media in Micro-Irrigation Sand Filters
by Lei Song, Jiumao Cai, Guoliang Zhai, Junjie Feng, Yongshen Fan, Jinzhao Han, Pingping Hao, Ning Ma and Faqiang Miao
Sustainability 2024, 16(8), 3256; https://doi.org/10.3390/su16083256 - 13 Apr 2024
Cited by 7 | Viewed by 3262
Abstract
The quartz sand filter medium used in micro-irrigation media filters has the disadvantages of short filtration cycle, surface filtration, and mining pollution. Selecting resources as new filter media is essential to improve the performance of the media filter and boost sustainable development. In [...] Read more.
The quartz sand filter medium used in micro-irrigation media filters has the disadvantages of short filtration cycle, surface filtration, and mining pollution. Selecting resources as new filter media is essential to improve the performance of the media filter and boost sustainable development. In this study, the traditional quartz sand filter medium and two new filter media were selected, and their corresponding filtration performances were comparatively studied. The influence of the type, particle size, and height of the filter medium on filtration performance was evaluated. The sediment content and distribution based on the size of particles in quartz sand, crushed glass, and glass bead filter layers was measured and analyzed. The hydraulic performance of different filter columns was analyzed. The results showed that for a given particle size, quartz sand exhibits the best sediment retention ability. This promoted the aggregation of small sediment particles into larger ones, whereas the crushed glass and bead glass filter layers promoted the splitting of large sediment particles into smaller ones, which enabled the reduction of blockage during the micro-irrigation process. The filtration rate of the quartz sand filter column exhibited the least fluctuation relative to crushed glass and glass bead filter media, and the pressure in each column exhibited a linear incremental change. In summary, glass microbeads are not suitable as filter material, crushed glass is suitable for general micro-irrigation systems, and quartz sand is suitable for micro-irrigation systems with elaborate filtration requirements. The findings of this study can provide theoretical guidance for the selection of the micro-irrigation filter material. Full article
Show Figures

Figure 1

14 pages, 5217 KB  
Article
Process Study of Selective Laser Sintering of PS/GF/HGM Composites
by Lijian Liu, Shouxiao Zhu, Yongkang Zhang, Shaobo Ma, Shuxuan Wu, Bin Wei and Guang Yang
Materials 2024, 17(5), 1066; https://doi.org/10.3390/ma17051066 - 26 Feb 2024
Cited by 3 | Viewed by 1723
Abstract
To address the issues of insufficient strength and poor precision in polystyrene forming parts during the selective laser sintering process, a ternary composite of polystyrene/glass fiber/hollow glass microbeads was prepared through co-modification by incorporating glass fiber and hollow glass microbeads into polystyrene using [...] Read more.
To address the issues of insufficient strength and poor precision in polystyrene forming parts during the selective laser sintering process, a ternary composite of polystyrene/glass fiber/hollow glass microbeads was prepared through co-modification by incorporating glass fiber and hollow glass microbeads into polystyrene using a mechanical mixing method. The bending strength and dimensional accuracy of the sintered composites were investigated by conducting an orthogonal test and analysis of variance to study the effects of laser power, scanning speed, scanning spacing, and delamination thickness. The process parameters were optimized and selected to determine the optimal combination. The results demonstrated that when considering bending strength and Z-dimensional accuracy as evaluation criteria for terpolymer sintered parts, the optimum process parameters are as follows: laser power of 24 W, scanning speed of 1600 mm/s, scanning spacing of 0.24 mm, and delamination thickness of 0.22 mm. Under these optimal process parameters, the bending strength of sintered parts reaches 6.12 MPa with a relative error in the Z-dimension of only 0.87%. The bending strength of pure polystyrene sintered parts is enhanced by 15.69% under the same conditions, while the relative error in the Z-dimension is reduced by 63.45%. It improves the forming strength and precision of polystyrene in the selective laser sintering process and achieves the effect of enhancement and modification, which provides a reference and a new direction for exploring polystyrene-based high-performance composites and expands the application scope of selective laser sintering technology. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

15 pages, 4509 KB  
Article
Ultra-Low-Density Drilling Fluids for Low-Pressure Coefficient Formations: Synergistic Effects of Surfactants and Hollow Glass Microspheres
by Haodong Chen, Ming Luo, Wandong Zhang, Cheng Han and Peng Xu
Processes 2023, 11(7), 2129; https://doi.org/10.3390/pr11072129 - 17 Jul 2023
Cited by 3 | Viewed by 2475
Abstract
With the increase in drilling fluid density requirements in low-pressure coefficient formations, traditional hollow bead drilling fluids and foam drilling fluids each have different degrees of deficiencies. Through extensive indoor experiments, an amphoteric surfactant (cocoamidopropyl betaine) with better foaming performance was selected to [...] Read more.
With the increase in drilling fluid density requirements in low-pressure coefficient formations, traditional hollow bead drilling fluids and foam drilling fluids each have different degrees of deficiencies. Through extensive indoor experiments, an amphoteric surfactant (cocoamidopropyl betaine) with better foaming performance was selected to formulate an ultra-low-density drilling fluid that combines a foaming agent and hollow glass microbeads to reduce the density of the fluid, with the following specific formulation: 3% bentonite slurry + 0.3% xanthan gum + 0.5% carboxymethyl cellulose + 0.5% starch + 2% lignite resin + 2% blocking agent + 4% hollow glass microspheres + 0.5% foaming agent + 2% nano blocking agent. The performance of the system was evaluated, and the results showed that: the density of the ultra-low-density drilling fluid did not change much before and after aging at 80 °C and was relatively stable; the filter loss amount of the drilling fluid (tested by API) reached 4.6 mL, which meets the requirements for filter loss of drilling fluid; it can bear the pressure of 12 MPa under a 60–90-mesh sand bed and has better pressure sealing capability than hollow glass microbead drilling fluid. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 2nd Volume)
Show Figures

Figure 1

12 pages, 6560 KB  
Article
Near Infrared Reflection and Hydrophobic Properties of Composite Coatings Prepared from Hollow Glass Microspheres Coated with Needle-Shaped Rutile Shell
by Qianfang Zheng, Shanxia Xiong, Xiaowei Wu, Jianlei Kuang, Wenxiu Liu and Wenbin Cao
Materials 2022, 15(23), 8310; https://doi.org/10.3390/ma15238310 - 23 Nov 2022
Cited by 13 | Viewed by 3556
Abstract
Infrared thermal reflective coating is an effective material to reduce building energy consumption and carbon emission. In this work, needle-shaped-rutile-shell-coated hollow glass microbeads (HGM) were prepared by surface modification of HGM and thermohydrolysis of TiCl4, and the possible shell formation mechanism [...] Read more.
Infrared thermal reflective coating is an effective material to reduce building energy consumption and carbon emission. In this work, needle-shaped-rutile-shell-coated hollow glass microbeads (HGM) were prepared by surface modification of HGM and thermohydrolysis of TiCl4, and the possible shell formation mechanism was also proposed. The near infrared (NIR) reflectance of the coated HGM reached 93.3%, which could be further increased to 97.3% after the rutile shell crystallinity was improved by heat treatment. Furthermore, HGM/styrene–acrylic composite reflective coating was prepared on the surface of gypsum board by facile blending and coating methods, and the thermal insulation performance was measured by an indigenously designed experimental heat set-up. The results show that the composite coating prepared by HGM coated with rutile shell shows better NIR reflectance and thermal insulation performance than that prepared by pure organic coating and uncoated HGM. Meanwhile, it also shows better surface hydrophobicity, which is conducive to long-term and stable infrared reflection performance. Full article
(This article belongs to the Special Issue Advanced and Multifunctional Phase Change Materials)
Show Figures

Figure 1

11 pages, 2953 KB  
Article
Research on a New Loading Method for Nano TiO2 Photocatalytic Asphalt Pavement
by Jingxiao Shu, Xiaoyang Wang, Bo Yang and Xiaofeng Wang
Sustainability 2022, 14(19), 11977; https://doi.org/10.3390/su141911977 - 22 Sep 2022
Cited by 8 | Viewed by 2556
Abstract
The main goal of our work was to study a new loading method for photocatalytic asphalt pavement that could effectively solve the problems of photocatalytic degradation efficiency and durability. We adhered nano TiO2 particles to the microscopically textured structure on the surface [...] Read more.
The main goal of our work was to study a new loading method for photocatalytic asphalt pavement that could effectively solve the problems of photocatalytic degradation efficiency and durability. We adhered nano TiO2 particles to the microscopically textured structure on the surface of glass microbeads by cold alkaline corrosion and high-temperature adhesion technology. We observed good adhesion of nano TiO2 on glass microbeads by a microscopic performance characterization of the composites. The improvement in the light transmittance of the composite material improved the catalytic efficiency of nano TiO2 to a certain extent. Three different groups were established to verify the durability of the nano TiO2 loading method. The result shows that the exhaust gas degradation rate of the spray embedding group did not decrease significantly with the increase in road friction time. Our research provides a new idea for the design of exhaust degradation pavement. Full article
(This article belongs to the Special Issue Advances in New Green Road Materials and Applied Technologies)
Show Figures

Figure 1

13 pages, 4557 KB  
Article
Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Process
by Michał Mazurkiewicz, Janusz Kluczyński, Katarzyna Jasik, Bartłomiej Sarzyński, Ireneusz Szachogłuchowicz, Jakub Łuszczek, Janusz Torzewski, Lucjan Śnieżek, Krzysztof Grzelak and Marcin Małek
Materials 2022, 15(14), 5079; https://doi.org/10.3390/ma15145079 - 21 Jul 2022
Cited by 13 | Viewed by 2644
Abstract
The research shows the comparison between two types of polyamide-based (PA) composites and pure, base material. The conducted analysis describes how the additions of carbon fibers and glass microbeads affect the material’s properties and its behavior during the bending tests. All samples have [...] Read more.
The research shows the comparison between two types of polyamide-based (PA) composites and pure, base material. The conducted analysis describes how the additions of carbon fibers and glass microbeads affect the material’s properties and its behavior during the bending tests. All samples have been tested in the three main directions available during the FFF process. To extend the scope of the research, additional digital-image-correlation tests and fracture analyses were made. The obtained results indicated a positive influence of the addition of carbon fibers into the material’s volume (from 81.39 MPa in the case of pure PA to 243.62 MPa in the case of the PA reinforced by carbon fibers). Full article
(This article belongs to the Special Issue Mechanical Properties of Polymeric, Metallic, and Composite Materials)
Show Figures

Figure 1

11 pages, 8011 KB  
Article
3D Printing of Hierarchically Porous Lattice Structures Based on Åkermanite Glass Microspheres and Reactive Silicone Binder
by Arish Dasan, Jozef Kraxner, Luca Grigolato, Gianpaolo Savio, Hamada Elsayed, Dušan Galusek and Enrico Bernardo
J. Funct. Biomater. 2022, 13(1), 8; https://doi.org/10.3390/jfb13010008 - 13 Jan 2022
Cited by 14 | Viewed by 5525
Abstract
The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, [...] Read more.
The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air. No chemical reaction between the glass microspheres, crystallizing into åkermanite, and silica deriving from silicone oxidation was observed upon heat treatment. Silica acted as a binder between the adjacent microspheres, enhancing the creation of microporosity, as documented by XRD, and SEM coupled with EDX analysis. The formation of ‘spongy’ struts was confirmed by infiltration with Rhodamine B solution. The compressive strength of the sintered porous scaffolds was up to 0.7 MPa with the porosity of 68–84%. Full article
(This article belongs to the Special Issue Bioceramics and Bioactive Glass-Based Materials)
Show Figures

Figure 1

13 pages, 35397 KB  
Article
Effects of Different Air Particle Abrasion Protocols on the Biaxial Flexural Strength and Fractography of High/Ultra-Translucent Zirconia
by Reem AlMutairi, Hend AlNahedh, Ahmed Maawadh and Ahmed Elhejazi
Materials 2022, 15(1), 244; https://doi.org/10.3390/ma15010244 - 29 Dec 2021
Cited by 11 | Viewed by 3196
Abstract
In this study, the biaxial flexural strength (BFS) and fractography of high/ultra-translucent monolithic zirconia ceramics subjected to different mechanical surface pretreatments were evaluated. A total of 108 disc-shaped samples (12 mm diameter, 1.2 mm thickness) of three zirconia materials (5Y-ZP KATANA Zirconia UTML [...] Read more.
In this study, the biaxial flexural strength (BFS) and fractography of high/ultra-translucent monolithic zirconia ceramics subjected to different mechanical surface pretreatments were evaluated. A total of 108 disc-shaped samples (12 mm diameter, 1.2 mm thickness) of three zirconia materials (5Y-ZP KATANA Zirconia UTML (ML), 3Y-TZP DD Bio ZX2 (DB), and 5Y-ZP DD cube X2 (DC)) were used. The BFS was investigated after subjecting the samples to surface treatment using air abrasion particles of two types (aluminum oxide or glass microbeads). The data were analyzed using two-way analysis of variance, followed by Scheffe’s post hoc test for multiple comparisons. The mean ± standard deviation BFS for DB was highest after treatment with 50 µm Al2O3 (1626.05 ± 31.9 MPa), with lower values being observed following treatment with 50 µm glass microbeads (1399.53 ± 24.2 MPa) and in the control sample (1198.51 ± 21.1 MPa). The mean ± standard deviation (SD) BFSs for DC and ML were the highest in the control groups. Surface air abrasion with 50 µm Al2O3 particles and 2 bar pressure is recommended for 3Y-TZP translucent zirconia, while no abrasion of 5Y-ZP translucent zirconia ceramic. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

17 pages, 5272 KB  
Article
Lessons Learned in Protein Precipitation Using a Membrane Emulsification Technique to Produce Reversible and Uniform Microbeads
by Sang-Koo Park, Ga Yeon Noh, Hyun Woo Yu, Eun Chae Lee, Junoh Jeong, Young-Min Park, Hyo-Kyung Han, Seong Hoon Jeong and Nam Ah Kim
Pharmaceutics 2021, 13(10), 1738; https://doi.org/10.3390/pharmaceutics13101738 - 19 Oct 2021
Cited by 5 | Viewed by 3436
Abstract
The effects of the manufacturing process and the regeneration of Shirasu porous glass (SPG) membranes were investigated on the reproducibility of protein precipitants, termed protein microbeads. Intravenous immunoglobulin (IVIG) was selected as a model protein to produce its microbeads in seven different cases. [...] Read more.
The effects of the manufacturing process and the regeneration of Shirasu porous glass (SPG) membranes were investigated on the reproducibility of protein precipitants, termed protein microbeads. Intravenous immunoglobulin (IVIG) was selected as a model protein to produce its microbeads in seven different cases. The results showed that the hydrophobically modified SPG membrane produced finer microbeads than the hydrophilic SPG membrane, but this was inconsistent when using the general regeneration method. Its reproducibility was determined to be mostly dependent on rinsing the SPG membrane prior to the modification and on the protein concentration used for emulsification. The higher concentration could foul and plug the membrane during protein release and thus the membrane must be washed thoroughly before hydrophobic modification. Moreover, the membrane regenerated by silicone resin dissolved in ethanol had better reproducibility than silicone resin dissolved in water. On the other hand, rinsing the protein precipitant with cold ethanol after the emulsification was not favorable and induced protein aggregation. With the addition of trehalose, the purity of the IVIG microbeads was almost the same as before microbeadification. Therefore, the regeneration method, protein concentration, and its stabilizer are key to the success of protein emulsification and precipitation using the SPG membrane. Full article
Show Figures

Graphical abstract

14 pages, 1677 KB  
Article
Development of a Point-of-Care Assay for HIV-1 Viral Load Using Higher Refractive Index Antibody-Coated Microbeads
by Mazhar Sher, Benjamin Coleman, Massimo Caputi and Waseem Asghar
Sensors 2021, 21(5), 1819; https://doi.org/10.3390/s21051819 - 5 Mar 2021
Cited by 11 | Viewed by 3828
Abstract
The detection of viruses using imaging techniques is challenging because of the weak scattering of light generated by the targets of sizes in the nanometer range. The system we have developed overcomes the light scattering problems by utilizing antibody-coated microbeads of higher index [...] Read more.
The detection of viruses using imaging techniques is challenging because of the weak scattering of light generated by the targets of sizes in the nanometer range. The system we have developed overcomes the light scattering problems by utilizing antibody-coated microbeads of higher index of refraction that can specifically bind with viruses and increase the acceptance angle. Using the new technology, we have developed a portable, cost-effective, and field-deployable platform for the rapid quantification of HIV-1 viral load for point-of-care (POC) settings. The system combines microfluidics with a wide field of view lensless imaging technology. Highly specific antibodies are functionalized to a glass slide inside a microchip to capture HIV-1 virions. The captured virions are then bound by antibody-conjugated microbeads, which have a higher refraction index. The microbeads—HIV-1 virions complexes generate diffraction patterns that are detected with a custom-built imaging setup and rapidly and accurately quantified by computational analysis. This platform technology enables fast nanoscale virus imaging and quantification from biological samples and thus can play a significant role in the detection and management of viral diseases. Full article
(This article belongs to the Special Issue Bionanotechnology and Biomaterials in Medicine)
Show Figures

Graphical abstract

18 pages, 6238 KB  
Article
Modelling of Effective Thermal Conductivity of Composites Filled with Core-Shell Fillers
by Jan Czyzewski, Andrzej Rybak, Karolina Gaska, Robert Sekula and Czeslaw Kapusta
Materials 2020, 13(23), 5480; https://doi.org/10.3390/ma13235480 - 1 Dec 2020
Cited by 17 | Viewed by 4418
Abstract
An effective model to calculate thermal conductivity of polymer composites using core-shell fillers is presented, wherein a core material of filler grains is covered by a layer of a high-thermal-conductivity (HTC) material. Such fillers can provide a significant increase of the composite thermal [...] Read more.
An effective model to calculate thermal conductivity of polymer composites using core-shell fillers is presented, wherein a core material of filler grains is covered by a layer of a high-thermal-conductivity (HTC) material. Such fillers can provide a significant increase of the composite thermal conductivity by an addition of a small amount of the HTC material. The model employs the Lewis-Nielsen formula describing filled systems. The effective thermal conductivity of the core-shell filler grains is calculated using the Russel model for porous materials. Modelling results are compared with recent measurements made on composites filled with cellulose microbeads coated with hexagonal boron nitride (h-BN) platelets and good agreement is demonstrated. Comparison with measurements made on epoxy composites, using silver-coated glass spheres as a filler, is also provided. It is demonstrated how the modelling procedure can improve understanding of properties of materials and structures used and mechanisms of thermal conduction within the composite. Full article
Show Figures

Figure 1

Back to TopTop