Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = glass fibres-reinforced polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 259
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 632
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

15 pages, 6019 KiB  
Article
Effect of Service Temperature on the Mechanical and Fatigue Behaviour of Metal–Polymer Friction Stir Composite Joints
by Arménio N. Correia, Rodrigo J. Coelho, Daniel F. O. Braga, Mafalda Guedes, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(10), 1366; https://doi.org/10.3390/polym17101366 - 16 May 2025
Cited by 1 | Viewed by 466
Abstract
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at [...] Read more.
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at three different temperatures (23, 75, and 130 °C). Fracture surfaces were analyzed, and the probabilistic S–N curves were derived using Weibull distribution. Results indicated that increasing the service temperature caused a non-linear decrease in both the quasi-static and fatigue strength of the joints. Compared to room temperature, joints tested at 75 °C and 130 °C showed a 10% and 50% reduction in average tensile strength, respectively. The highest fatigue strength occurred at 23 °C, while the lowest was at 130 °C, in line with the quasi-static results. Fatigue stress-life plots displayed a semi-logarithmic nature, with lives ranging from 102 to 105 cycles for stress amplitudes between 7.7 and 22.2 MPa at 23 °C, 7.2 to 19.8 MPa at 75 °C, and 6.2 to 13.5 MPa at 130 °C. The joints’ failure occurred in the polymeric base material close to joints’ interface, highlighting the critical role of the polymer in limiting joints’ performance, as confirmed by thermal and scanning electron microscopy analyses. Full article
Show Figures

Figure 1

19 pages, 6110 KiB  
Article
Fabrication and Characterisation of Fully Bio-Based Flax Fibre-Reinforced Polyester Composites
by Lorenz Walter, Michael Scherdel and Iman Taha
J. Compos. Sci. 2025, 9(5), 241; https://doi.org/10.3390/jcs9050241 - 14 May 2025
Viewed by 563
Abstract
The development of lightweight construction is of crucial importance for the development of sustainable technologies and for the reduction in carbon dioxide emissions, especially in the automotive industry. This study aims to address the challenges associated with manufacturing plant fibre-based polymer composites. The [...] Read more.
The development of lightweight construction is of crucial importance for the development of sustainable technologies and for the reduction in carbon dioxide emissions, especially in the automotive industry. This study aims to address the challenges associated with manufacturing plant fibre-based polymer composites. The investigation focused on two novel formulations of bio-based unsaturated polyester resins, assessing their viability as a matrix in plant fibre-reinforced composites within the context of automotive applications. The study addresses the challenges related to the preparation and processing of the system, leading to the necessity of diluting the resin with (hydroxymethyl)methacrylate (HEMA) to achieve an applicable viscosity. Two different flax fibre textiles, in the form of a short fibre mat and a woven fabric, were used as reinforcement. The composite panels were manufactured using the vacuum-assisted resin infusion (VARI) process. The most efficacious material combination, comprising Bcomp® ampliTex™ 5040 and STRUKTOL® POLYVERTEC® 3831, with viscosity modified by 39% HEMA, exhibited a consistent fibre volume fraction of 40% and a glass transition temperature of 70 °C. In addition, the mechanical behaviour in the 0°-direction demonstrated tensile strength and modulus values of approximately 99 MPa and 9 GPa, respectively, accompanied by an elongation at break of 2%. The flexural modulus was found to be 7 GPa, and the flexural strength 94 MPa. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Graphical abstract

18 pages, 9576 KiB  
Article
Cold Forming Hybrid Aluminium–Carbon Fibre-Reinforced Polymer Sheets Joined by Mechanical Interlocking
by Núria Latorre, Daniel Casellas, Josep Costa, Eduard Garcia-Llamas and Jaume Pujante
J. Compos. Sci. 2025, 9(5), 204; https://doi.org/10.3390/jcs9050204 - 24 Apr 2025
Viewed by 768
Abstract
Forming hybrid structures into complex shapes is key to address lightweighting of automotive parts. Recently, an innovative joining technique between aluminium and Carbon Fibre-Reinforced Polymer (CFRP) based on mechanical interlocking through sheet punching has been developed. However, scaling up the solution requires the [...] Read more.
Forming hybrid structures into complex shapes is key to address lightweighting of automotive parts. Recently, an innovative joining technique between aluminium and Carbon Fibre-Reinforced Polymer (CFRP) based on mechanical interlocking through sheet punching has been developed. However, scaling up the solution requires the assessment of challenges, such as multi-material forming and joint integrity, after forming operations. Therefore, this work proves the feasibility of forming aluminium–CFRP prepreg panels into complex omega-shaped profiles following a conventional cold-stamping process. Forming without defects was possible even in specimens featuring mechanical joints generated through punching. The effect of the CFRP position (in the inner or the outer side of the formed profile), the number of mechanical joints, the addition of a Glass Fibre-Reinforced Polymer (GFRP) intermediate layer to prevent galvanic corrosion and adequate lubrication on necking, cracking, springback behaviour and the final geometry after curing were studied. Compression tests were performed to assess the mechanical response of the hybrid profile, and the results showed that the addition of CFRP in the aluminium omega profile changed the buckling behaviour from global bending to axial folding, increasing the maximum compression load. Additionally, the presence of mechanical interlocking joints further improved the mechanical performance and led to a more controlled failure due to buckling localization in the geometric discontinuity. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

18 pages, 8239 KiB  
Article
Enhanced Mechanical Properties of 3D-Printed Glass Fibre-Reinforced Polyethylene Composites
by Jan Sezemský, Gregor Primc, Taťana Vacková, Zdeňka Jeníková, Miran Mozetič and Petr Špatenka
Polymers 2025, 17(9), 1154; https://doi.org/10.3390/polym17091154 - 24 Apr 2025
Viewed by 661
Abstract
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the [...] Read more.
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the polymer and fillers. In this study, an additively manufactured composite was 3D-printed and tested. The composite consisted of a linear low-density polyethylene matrix filled with glass fibres. Composite filaments were extruded from neat and plasma-treated polymer powders. Plasma was sustained in oxygen at 100 Pa by a pulsed microwave discharge, and 250 g of polymer powder of average diameter 150 µm was placed into a dish and stirred during the plasma treatment. The O-atom density at the position of the dish containing polymer powder was about 2 × 1021 m−3, and the treatment time was varied up to 30 min. A gradual improvement in the composites’ tensile and flexural strength was observed at the plasma treatment time up to about 10 min, and the mechanical properties remained unchanged with prolonged treatment time. The tensile strength of composites prepared from plasma-treated polymer increased by one-third compared to those based on untreated powder. However, reinforcing the modified polyethylene with plasma-treated glass fibres did not result in further significant mechanical improvement compared to untreated fibres. In contrast, strength values doubled using glass fibres with silane sizing in combination with plasma-modified matrix. The results were explained by the increased surface energy of the polymer powder due to functionalisation with polar functional groups during plasma treatment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

25 pages, 2459 KiB  
Article
Implementation of Composite Materials for an Industrial Vehicle Component: A Design Approach
by Ivan Tomasi, Stefano Grandi and Luigi Solazzi
J. Compos. Sci. 2025, 9(4), 168; https://doi.org/10.3390/jcs9040168 - 29 Mar 2025
Viewed by 788
Abstract
The aim of this research is to define a design approach for implementing composite materials in a component of an industrial vehicle, having weight reduction as the primary goal. Through the schematisation of the problem and analytical analysis, the definition of a new [...] Read more.
The aim of this research is to define a design approach for implementing composite materials in a component of an industrial vehicle, having weight reduction as the primary goal. Through the schematisation of the problem and analytical analysis, the definition of a new geometry, a material and production process, and numerical simulations and experimental studies to test the new solution, an optimization process of the chosen geometry is proposed. After the definition of the process, an applicative example is presented, analysing a front underrun protection device in two different solutions: one made of glass-fibre-reinforced polymer and the other of carbon-fibre-reinforced polymer. An economic comparison has also been conducted between the new configurations and the traditional steel version, showing a weight reduction of approximately 55% for the carbon-fibre-reinforced polymer solution and around 18% for the glass-fibre-reinforced polymer solution. These weight reductions are achievable through a reinvestment that can be amortized in less than five years, thanks to fuel consumption savings. Full article
Show Figures

Graphical abstract

42 pages, 4134 KiB  
Review
Solvent-Based Recycling as a Waste Management Strategy for Fibre-Reinforced Polymers: Current State of the Art
by Matthew J. Keith, Bushra Al-Duri, Tom O. McDonald and Gary A. Leeke
Polymers 2025, 17(7), 843; https://doi.org/10.3390/polym17070843 - 21 Mar 2025
Viewed by 1426
Abstract
The growing use of fibre-reinforced polymers (FRPs) is driving a demand for the development of sustainable end-of-life strategies. Solvolysis, a chemical recycling method using solvents to decompose the polymer matrix, has emerged as a promising approach for reclaiming both fibres and organic compounds [...] Read more.
The growing use of fibre-reinforced polymers (FRPs) is driving a demand for the development of sustainable end-of-life strategies. Solvolysis, a chemical recycling method using solvents to decompose the polymer matrix, has emerged as a promising approach for reclaiming both fibres and organic compounds from FRP waste. This work provides a comprehensive overview of solvolysis techniques by discussing the environmental benefits and economic opportunities of this technology, summarising the process conditions, and evaluating the characteristics of the recovered products. The economic viability of solvolysis lies in recovering high-value components; predominantly carbon fibres from CFRPs and organic products from GFRPs, which are suitable for reuse or as a feedstock for new composites. Solvolysis can operate under low temperature and pressure (LTP) or high temperature and pressure (HTP) conditions. The choice of solvent, catalyst, reaction time, and temperature is crucial to achieving high resin decomposition while preserving fibre properties. To achieve an economically viable and environmentally beneficial process, it will be essential to optimise these parameters. A key challenge is maintaining the strength and surface properties of the recovered fibres, as degradation in their performance can limit their suitability for high-performance applications. The implication of this is that, without careful consideration of the recycling process, FRPs cannot be fully circular. They will be continuously downgraded into low-value applications and ultimately incinerated or landfilled. This review further explores the diversity of organic products obtained, which can range from monomers to oligomers to complex mixtures. Efficient separation and upgrading techniques, such as distillation and liquid–liquid extraction, are essential to maximise the value of the recovered organics. These additional processing steps are likely to result in greater financial and resource costs within a commercial recycling system. This review concludes with a summary of commercial solvent-based recycling ventures and an outlook on future research directions, which includes the need to develop processes capable of recovering high-value, long carbon fibres. Successful development of such a process would represent a step-change in the value proposition of a carbon fibre recycling industry. Full article
(This article belongs to the Special Issue New Polymer Fibers: Production and Applications)
Show Figures

Figure 1

32 pages, 15553 KiB  
Article
Mechanical Characterization of Dicyclopentadiene and Glass-Fibre-Reinforced Polymer Subjected to Low to High Strain Rate
by Rogério F. F. Lopes, Daniela Azevedo, Gonçalo P. Cipriano, Tiago M. R. M. Domingues and Pedro M. G. P. Moreira
Polymers 2025, 17(6), 715; https://doi.org/10.3390/polym17060715 - 7 Mar 2025
Cited by 1 | Viewed by 734
Abstract
This work provides a detailed description of the procedures employed to characterize the mechanical behaviour of two materials present in a coach’s exterior panels, including glass-fibre-reinforced polymer (GFRP) and neat DCPD (dicyclopentadiene)-based polymers. Tensile tests were conducted at quasi-static, intermediate [1 s−1 [...] Read more.
This work provides a detailed description of the procedures employed to characterize the mechanical behaviour of two materials present in a coach’s exterior panels, including glass-fibre-reinforced polymer (GFRP) and neat DCPD (dicyclopentadiene)-based polymers. Tensile tests were conducted at quasi-static, intermediate [1 s−1, 10 s−1], and high strain rates [150 s−1, 250 s−1] to obtain a comprehensive understanding of their behaviour. The results indicate positive and significant dependence on the strain rate. Additionally, GFRP demonstrates superior energy absorption capacity for higher strain rates, unlike DCPD, which exhibits a higher energy absorption capacity for QS tests. In the case of DCPD, raising the strain rate to 10 s−1 the maximum stress was not affected but decreased the elongation at fracture. At higher strain rates, there was an increase in maximum stress alongside greater elongation. DCPD maintained consistent stiffness across all rates ranging between 2087 MPa and 2389 MPa, and the tests disclosed a failure mode characterized by numerous surface-transverse fissures. Regarding GFRP, a more pronounced variation in stiffness is observed, decreasing from 11,005 MPa to 4532 MPa at 133 s−1, recovering to 7288 MPa at 252 s−1. In addition, the maximum stress and failure elongation tends to increase with the strain rate increase. The detailed analysis of these results provides valuable insights into the mechanical behaviour of these materials under different loading conditions. Full article
(This article belongs to the Special Issue Advances in Fracture and Failure of Polymers)
Show Figures

Figure 1

19 pages, 9171 KiB  
Article
Resonant Frequency Response to Mechanical Loading in Conformal Load-Bearing Antenna Systems
by Shouxun Lu, Kelvin J. Nicholson, Joel Patniotis, John Wang and Wing Kong Chiu
Sensors 2025, 25(5), 1323; https://doi.org/10.3390/s25051323 - 21 Feb 2025
Viewed by 454
Abstract
This study investigates the impact of mechanical loading on the electromagnetic performance of conformal load-bearing antenna structures (CLASs), focusing on the resonant frequency response. Using 6-ply [0/90] GFRP as the CLAS substrate, the research evaluated the effects of two mechanical loading scenarios: the [...] Read more.
This study investigates the impact of mechanical loading on the electromagnetic performance of conformal load-bearing antenna structures (CLASs), focusing on the resonant frequency response. Using 6-ply [0/90] GFRP as the CLAS substrate, the research evaluated the effects of two mechanical loading scenarios: the quasi-static uniaxial tensile test and cyclic fatigue. The quasi-static tests explore the response of CLASs to significant elongation, while the cyclic fatigue tests simulate localised damage propagation under operational loads. The results from the quasi-static tests demonstrated that the dominant effect under uniaxial tensile loading is the increase in substrate permittivity due to damage, causing a decrease in resonant frequency. The cyclic fatigue tests employed two configurations: removeable antenna patch (RAP), which isolates the antenna from mechanical loading to focus on substrate damage; and surface-mounted antenna patch (SMAP), which examines the combined effects of substrate damage and antenna elongation. The RAP results showed a consistent correlation between substrate damage and resonant frequency decrease, while SMAP demonstrated complex frequency behaviour due to competing effects of substrate damage and antenna elongation. A comparison with [±45]6 GFRP results showed that the resonant behaviour remained consistent regardless of ply configuration during the initial damage accumulation induced by cyclic fatigue. However, with significant elongation in quasi-static tests, resonant frequency behaviour was affected by the specimen’s ply configuration, with substrate permittivity changes due to mechanical loading being the dominant factor. These findings provide valuable insights into the relationship between damage sustained by the CLAS system and resonant frequency shifts, providing critical information for predicting CLAS’s reliability and service life. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 15091 KiB  
Article
The Load-Bearing Capacity Assessment of GFRP Foundation Piles for Transmission Line Poles Using Experimental Tests and Numerical Calculations
by Anna Derlatka, Sławomir Labocha and Piotr Lacki
Appl. Sci. 2025, 15(4), 2231; https://doi.org/10.3390/app15042231 - 19 Feb 2025
Viewed by 581
Abstract
This article proposes a novel tube foundation intended for use under transmission line poles. The glass fibre reinforcement polymer (GFRP) piles were driven into sand. A steel tube pole, approximately 6 m high, was mounted on the foundation. The analysed foundations were designed [...] Read more.
This article proposes a novel tube foundation intended for use under transmission line poles. The glass fibre reinforcement polymer (GFRP) piles were driven into sand. A steel tube pole, approximately 6 m high, was mounted on the foundation. The analysed foundations were designed as a monopile to be implemented in the construction of low- and medium-voltage overhead transmission lines. Experimental field tests of innovative piles made of the composite material were carried out on a 1:1 scale. The aim of this work was to develop an isotropic material model treating the GFRP composite as homogeneous. This approach does not fully reproduce the anisotropic behaviour of the composite, but it allows for the engineering design of structures made of the composite material. Laboratory tests in the form of a static tensile test on the samples and a tensile test on the rings cut from a hollow section were performed. The results of the experimental tests and FEM models of the GFRP rings and monopile embedded in sand were compared. The ultimate limit state (ULS) and serviceability limit state (SLS) of the analysed pile were assessed as 14.4 and 9.6 kNm, respectively. The developed numerical model, based on FEM, allows for the load-bearing capacity of the monopile made of GFRP to be reliably determined. From an engineering point of view, the developed numerical model of the GFRP material can be used to calculate the pile load-bearing capacity using engineering software that has limited capabilities in defining material models. Full article
Show Figures

Figure 1

22 pages, 4812 KiB  
Article
Mechanical Characterization of a Novel Cyclic Olefin-Based Hot-Melt Adhesive
by Vasco C. M. B. Rodrigues, Ana T. F. Venâncio, Eduardo A. S. Marques, Ricardo J. C. Carbas, Armina Klein, Ejiri Kazuhiro, Björn Nelson and Lucas F. M. da Silva
Materials 2025, 18(4), 855; https://doi.org/10.3390/ma18040855 - 15 Feb 2025
Cited by 1 | Viewed by 806
Abstract
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through [...] Read more.
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through adhesive characterizations tests. The glass transition temperature was determined using dynamic mechanical analysis (DMA). For mechanical characterization, bulk and thick adherend shear specimens were manufactured and tested at a quasi-static rate, where at least three specimens were used to calculate the average and standard deviation values. Tensile tests revealed the effects of molecular chain drawing and reorientation before the onset of strain hardening. Thick adherend shear specimens were used to retrieve shear properties. Fracture behaviour was assessed with the double cantilever beam (DCB) test and end-notched flexure (ENF) test, for characterization under modes I and II, respectively. To study the in-joint behaviour, single lap joints (SLJs) of aluminium and carbon fibre-reinforced polymer (CFRP) were manufactured and tested under different temperatures. Results showed a progressive interfacial failure following adhesive plasticization, allowing deformation prior to failure at 8 MPa. An adhesive failure mode was confirmed through scanning electron microscopy (SEM) analysis of aluminium SLJ. The adhesive exhibits tensile properties comparable to existing adhesives, while demonstrating enhanced lap shear strength and a distinctive failure mechanism. These characteristics suggest potential advantages in applications involving heat and pressure across automotive, electronics and structural bonding sectors. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

14 pages, 2325 KiB  
Article
Polymer Structural Composites Reinforced with Hemp Fibres—Impact Tests of Composites After Long-Term Storage in Representative Aqueous Environments and Fire Tests in the Context of Their Disposal by Energy Recycling Methods
by Mieczyslaw Scheibe, Renata Dobrzynska, Magdalena Urbaniak and Andrzej Bledzki
Polymers 2025, 17(3), 276; https://doi.org/10.3390/polym17030276 - 22 Jan 2025
Cited by 1 | Viewed by 1327
Abstract
This paper presents the potential for an alternative use of structural polymer composite reinforcement, made from natural industrial hemp (Cannabis sativa L.) fibres, in the manufacture of selected products in the shipbuilding industry. This research used fabrics made from unmodified and chemically [...] Read more.
This paper presents the potential for an alternative use of structural polymer composite reinforcement, made from natural industrial hemp (Cannabis sativa L.) fibres, in the manufacture of selected products in the shipbuilding industry. This research used fabrics made from unmodified and chemically modified industrial hemp fibres. The primary research focus was on determining the impact strength of the new eco-friendly structural composites produced after long-term storage in representative aqueous environments. Also presented are the results of fire response tests of these composites in the context of their disposal by energy recycling. The tests carried out also referred to a well-defined glass fibre-reinforced polymer composite, from which a control slab of the actual product was realistically produced in the form of a representative section of a 34-foot boat hull plate below the waterline. The results of this basic research into these structural composites confirmed the validity of continuing, respectively, application and implementation research, aimed at producing composites dedicated to selected products of the shipbuilding industry. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymers: Manufacture, Properties and Applications)
Show Figures

Figure 1

19 pages, 50647 KiB  
Article
Long-Pulse Thermography Application for Detection and Localisation of Embedded Optical Fibres into Glass Fibre Composite
by Katarzyna Majewska and Magdalena Mieloszyk
Materials 2024, 17(24), 6255; https://doi.org/10.3390/ma17246255 - 21 Dec 2024
Viewed by 625
Abstract
Composites have found applications in critical components and require a high degree of safety and reliability. To ensure this, structural health monitoring systems based on optical fibres embedded within structures are installed for continuous monitoring. Infrared thermography is a non-destructive method that can [...] Read more.
Composites have found applications in critical components and require a high degree of safety and reliability. To ensure this, structural health monitoring systems based on optical fibres embedded within structures are installed for continuous monitoring. Infrared thermography is a non-destructive method that can be applied to inspect the internal structure after manufacturing and during operation. This paper presents an application of pulsed thermography for observing and evaluating the internal structure of glass fibre-reinforced polymer samples with different arrangements of embedded optical fibres. The goal of the paper is to study the feasibility of using pulsed thermography to distinguish optical fibres from glass textile fibre bundles, as well as to track the arrangement of the optical fibres. Full article
Show Figures

Figure 1

23 pages, 15584 KiB  
Article
Comparison of GFRP (Glass Fiber-Reinforced Polymer) and CFRP (Carbon Fiber-Reinforced Polymer) Composite Adhesive-Bonded Single-Lap Joints Used in Marine Environments
by Gurcan Atakok and Dudu Mertgenc Yoldas
Sustainability 2024, 16(24), 11105; https://doi.org/10.3390/su162411105 - 18 Dec 2024
Cited by 4 | Viewed by 2465
Abstract
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling [...] Read more.
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling methods for the recycling of thermosets among composite materials. The recycling of thermoset composite materials economically saves resources and energy in the production of reinforcement and matrix materials. Due to the superior properties such as hardness, strength, lightness, corrosion resistance, design width, and the flexibility of epoxy/vinylester/polyester fibre formation composite materials combined with thermoset resin at the macro level, environmentally friendly sustainable development is happening with the increasing use of composite materials in many fields such as the maritime sector, space technology, wind energy, the manufacturing of medical devices, robot technology, the chemical industry, electrical electronic technology, the construction and building sector, the automotive sector, the defence industry, the aviation sector, the food and agriculture sector, and sports equipment manufacturing. Bonded joint studies in composite materials have generally been investigated at the level of a single composite material and single joint. The uncertainty of the long-term effects of different composite materials and environmental factors in single-lap bonded joints is an important obstacle in applications. The aim of this study is to investigate the effects of single-lap bonded GFRP (glass fibre-reinforced polymer) and CFRP (carbon fibre-reinforced polymer) specimens on the material at the end of seawater exposure. In this study, 0/90 orientation twill weave seven-ply GFRP and eight-ply CFRP composite materials were used in dry conditions (without seawater soaking) and the hand lay-up method. Seawater was taken from the Aegean Sea, İzmir province (Selçuk/Pamucak), in September at 23.5 °C. This seawater was kept in different containers in seawater for 1 month (30 days), 2 months (60 days), and 3 months (90 days) separately for GFRP and CFRP composite samples. They were cut according to ASTM D5868-01 for single-lap joint connections. Moisture retention percentages and axial impact tests were performed. Three-point bending tests were then performed according to ASTM D790. Damage to the material was examined with a ZEISS GEMINESEM 560 scanning electron microscope (SEM). The SEM was used to observe the interface properties and microstructure of the fracture surfaces of the composite samples by scanning images with a focused electron beam. Damage analysis imaging was performed on CFRP and GFRP specimens after sputtering with a gold compound. Moisture retention rates (%), axial impact tests, and three-point bending test specimens were kept in seawater with a seawater salinity of 3.3–3.7% and a seawater temperature of 23.5 °C for 1, 2, and 3 months. Moisture retention rates (%) are 0.66%, 3.43%, and 4.16% for GFRP single-lap bonded joints in a dry environment and joints kept for 1, 2, and 3 months, respectively. In CFRP single-lap bonded joints, it is 0.57%, 0.86%, and 0.87%, respectively. As a result of axial impact tests, under a 30 J impact energy level, the fracture toughness of GFRP single-lap bonded joints kept in a dry environment and seawater for 1, 2, and 3 months are 4.6%, 9.1%, 14.7%, and 11.23%, respectively. At the 30 J impact energy level, the fracture toughness values of CFRP single-lap bonded joints in a dry environment and in seawater for 1, 2, and 3 months were 4.2%, 5.3%, 6.4%, and 6.1%, respectively. As a result of three-point bending tests, GFRP single-lap joints showed a 5.94%, 8.90%, and 12.98% decrease in Young’s modulus compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. CFRP single-lap joints showed that Young’s modulus decreased by 1.28%, 3.39%, and 3.74% compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. Comparing the GFRP and CFRP specimens formed by a single-lap bonded connection, the moisture retention percentages of GFRP specimens and the amount of energy absorbed in axial impact tests increased with the soaking time in seawater, while Young’s modulus was less in three-point bending tests, indicating that CFRP specimens have better mechanical properties. Full article
Show Figures

Figure 1

Back to TopTop