Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = glass fibre reinforced plastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 632
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

22 pages, 4812 KiB  
Article
Mechanical Characterization of a Novel Cyclic Olefin-Based Hot-Melt Adhesive
by Vasco C. M. B. Rodrigues, Ana T. F. Venâncio, Eduardo A. S. Marques, Ricardo J. C. Carbas, Armina Klein, Ejiri Kazuhiro, Björn Nelson and Lucas F. M. da Silva
Materials 2025, 18(4), 855; https://doi.org/10.3390/ma18040855 - 15 Feb 2025
Cited by 1 | Viewed by 806
Abstract
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through [...] Read more.
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through adhesive characterizations tests. The glass transition temperature was determined using dynamic mechanical analysis (DMA). For mechanical characterization, bulk and thick adherend shear specimens were manufactured and tested at a quasi-static rate, where at least three specimens were used to calculate the average and standard deviation values. Tensile tests revealed the effects of molecular chain drawing and reorientation before the onset of strain hardening. Thick adherend shear specimens were used to retrieve shear properties. Fracture behaviour was assessed with the double cantilever beam (DCB) test and end-notched flexure (ENF) test, for characterization under modes I and II, respectively. To study the in-joint behaviour, single lap joints (SLJs) of aluminium and carbon fibre-reinforced polymer (CFRP) were manufactured and tested under different temperatures. Results showed a progressive interfacial failure following adhesive plasticization, allowing deformation prior to failure at 8 MPa. An adhesive failure mode was confirmed through scanning electron microscopy (SEM) analysis of aluminium SLJ. The adhesive exhibits tensile properties comparable to existing adhesives, while demonstrating enhanced lap shear strength and a distinctive failure mechanism. These characteristics suggest potential advantages in applications involving heat and pressure across automotive, electronics and structural bonding sectors. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

25 pages, 5683 KiB  
Article
Effects of Seawater on Mechanical Performance of Composite Sandwich Structures: A Machine Learning Framework
by Norman Osa-uwagboe, Amadi Gabriel Udu, Vadim V. Silberschmidt, Konstantinos P. Baxevanakis and Emrah Demirci
Materials 2024, 17(11), 2549; https://doi.org/10.3390/ma17112549 - 25 May 2024
Cited by 9 | Viewed by 1079
Abstract
Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane [...] Read more.
Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications. Full article
Show Figures

Figure 1

20 pages, 10893 KiB  
Article
From Generation to Reuse: A Circular Economy Strategy Applied to Wind Turbine Production
by Ana Rita Caramelo, Paulo Santos and Tânia Miranda Lima
Designs 2024, 8(2), 32; https://doi.org/10.3390/designs8020032 - 3 Apr 2024
Cited by 3 | Viewed by 2308
Abstract
The environmental impact of wind turbine rotor blades, both during manufacturing and at the end of their life cycle, can be significant. The aim of this study was to define and test a methodology for recycling the waste resulting from their production. Particles [...] Read more.
The environmental impact of wind turbine rotor blades, both during manufacturing and at the end of their life cycle, can be significant. The aim of this study was to define and test a methodology for recycling the waste resulting from their production. Particles of waste from the mechanical machining of rotor blades, which were made up of a glass fibre/epoxy matrix mixture, were used to produce toe caps for use by the footwear industry. The addition of 1 wt.% of particles improved the mechanical properties of the epoxy matrix, with a 5.50% improvement in tension and an 8% improvement in stiffness. Characterisation of the laminates, manufactured by hand lay-up technique, revealed that in the three-point bending tests, the additive laminates showed improvements of 18.60% in tension, 7.50% in stiffness, and 10% in deformation compared to the control laminate. The compression test showed that the additive glass fibre toe cap had greater resistance to compression than the control glass fibre toe cap, with a reduction in deformation of 23.10%. The toe caps are suitable for use in protective footwear according to European standard EN ISO 20346:2022. They guaranteed protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

16 pages, 23635 KiB  
Article
Damage Detection in Glass Fibre Composites Using Cointegrated Hyperspectral Images
by Jan Długosz, Phong B. Dao, Wiesław J. Staszewski and Tadeusz Uhl
Sensors 2024, 24(6), 1980; https://doi.org/10.3390/s24061980 - 20 Mar 2024
Cited by 2 | Viewed by 1481
Abstract
Hyperspectral imaging (HSI) is a remote sensing technique that has been successfully applied for the task of damage detection in glass fibre-reinforced plastic (GFRP) materials. Similarly to other vision-based detection methods, one of the drawbacks of HSI is its susceptibility to the lighting [...] Read more.
Hyperspectral imaging (HSI) is a remote sensing technique that has been successfully applied for the task of damage detection in glass fibre-reinforced plastic (GFRP) materials. Similarly to other vision-based detection methods, one of the drawbacks of HSI is its susceptibility to the lighting conditions during the imaging, which is a serious issue for gathering hyperspectral data in real-life scenarios. In this study, a data conditioning procedure is proposed for improving the results of damage detection with various classifiers. The developed procedure is based on the concept of signal stationarity and cointegration analysis, and achieves its goal by performing the detection and removal of the non-stationary trends in hyperspectral images caused by imperfect lighting. To evaluate the effectiveness of the proposed method, two damage detection tests have been performed on a damaged GFRP specimen: one using the proposed method, and one using an established damage detection workflow, based on the works of other authors. Application of the proposed procedure in the processing of a hyperspectral image of a damaged GFRP specimen resulted in significantly improved accuracy, sensitivity, and F-score, independently of the type of classifier used. Full article
Show Figures

Figure 1

19 pages, 4777 KiB  
Article
A Bio-Inspired Approach to Improve the Toughness of Brittle Bast Fibre-Reinforced Composites Using Cellulose Acetate Foils
by Nina Graupner and Jörg Müssig
Biomimetics 2024, 9(3), 131; https://doi.org/10.3390/biomimetics9030131 - 21 Feb 2024
Cited by 1 | Viewed by 1754
Abstract
Bast fibre-reinforced plastics are characterised by good strength and stiffness but are often brittle due to the stiff and less ductile fibres. This study uses a biomimetic approach to improve impact strength. Based on the structure of the spicules of a deep-sea glass [...] Read more.
Bast fibre-reinforced plastics are characterised by good strength and stiffness but are often brittle due to the stiff and less ductile fibres. This study uses a biomimetic approach to improve impact strength. Based on the structure of the spicules of a deep-sea glass sponge, in which hard layers of bioglass alternate with soft layers of proteins, the toughness of kenaf/epoxy composites was significantly improved by a multilayer structure of kenaf and cellulose acetate (CA) foils as impact modifiers. Due to the alternating structure, cracks are deflected, and toughness is improved. One to five CA foils were stacked with kenaf layers and processed to composite plates with bio-based epoxy resin by compression moulding. Results have shown a significant improvement in toughness using CA foils due to increased crack propagation. The unnotched Charpy impact strength increased from 9.0 kJ/m2 of the pure kenaf/epoxy composite to 36.3 kJ/m2 for the sample containing five CA foils. The tensile and flexural strength ranged from 74 to 81 MPa and 112 to 125 MPa, respectively. The tensile modulus reached values between 9100 and 10,600 MPa, and the flexural modulus ranged between 7200 and 8100 MPa. The results demonstrate the successful implementation of an abstract transfer of biological role models to improve the toughness of brittle bast fibre-reinforced plastics. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers)
Show Figures

Figure 1

12 pages, 4080 KiB  
Article
Enhancing Epoxy Composite Performance with Carbon Nanofillers: A Solution for Moisture Resistance and Extended Durability in Wind Turbine Blade Structures
by Angelos Ntaflos, Georgios Foteinidis, Theodora Liangou, Elias Bilalis, Konstantinos Anyfantis, Nicholas Tsouvalis, Thomais Tyriakidi, Kosmas Tyriakidis, Nikolaos Tyriakidis and Alkiviadis S. Paipetis
Materials 2024, 17(2), 524; https://doi.org/10.3390/ma17020524 - 22 Jan 2024
Cited by 3 | Viewed by 1929
Abstract
The increasing prominence of glass-fibre-reinforced plastics (GFRPs) in the wind energy industry, due to their exceptional combination of strength, low weight, and resistance to corrosion, makes them an ideal candidate for enhancing the performance and durability of wind turbine blades. The unique properties [...] Read more.
The increasing prominence of glass-fibre-reinforced plastics (GFRPs) in the wind energy industry, due to their exceptional combination of strength, low weight, and resistance to corrosion, makes them an ideal candidate for enhancing the performance and durability of wind turbine blades. The unique properties of GFRPs not only contribute to reduced energy costs through improved aerodynamic efficiency but also extend the operational lifespan of wind turbines. By modifying the epoxy resin with carbon nanofillers, an even higher degree of performance can be achieved. In this work, graphene nanoplatelet (GNP)-enhanced GFRPs are produced through industrial methods (filament winding) and coupons are extracted and tested for their mechanical performance after harsh environmental aging in high temperature and moisture. GNPs enhance the in-plane shear strength of GFRP by 200%, while reducing their water uptake by as much as 40%. Full article
Show Figures

Figure 1

21 pages, 2166 KiB  
Article
Optimization of Machining Parameters for Enhanced Performance of Glass-Fibre-Reinforced Plastic (GFRP) Composites Using Design of Experiments
by Manoj Nikam, Hamad A. Al-Lohedan, Faruq Mohammad, Surekha Khetree, Vinayak Patil, Girish Lonare, Firdos Jahan Khan, Govind Jagatap, Jayant P. Giri, Ankit D. Oza, Manoj Kumar, Rajkumar B. Chadge and Ahmed A. Soleiman
Sustainability 2023, 15(16), 12372; https://doi.org/10.3390/su151612372 - 15 Aug 2023
Cited by 7 | Viewed by 2067
Abstract
A high strength-to-weight ratio, stiffness, fatigue resistance, a low coefficient of thermal expansion, and tailorable properties make glass-fibre-reinforced plastic (GFRP) a popular choice for a wide range of applications, including aircraft structures, automobile chassis, and shipbuilding. However, milling GFRP composites is challenging because [...] Read more.
A high strength-to-weight ratio, stiffness, fatigue resistance, a low coefficient of thermal expansion, and tailorable properties make glass-fibre-reinforced plastic (GFRP) a popular choice for a wide range of applications, including aircraft structures, automobile chassis, and shipbuilding. However, milling GFRP composites is challenging because of their heterogeneous nature and two-phase structure, which lead to high cutting forces and delamination. A statistical experiment was carried out using the Taguchi design of experiments to investigate the effect of machining settings on GFRP composite performance metrics such as surface delamination, surface roughness, and material removal rate. The L27 orthogonal array was used for the experiment, and it served as the foundation for the choice of material, input variables, levels, and output response variables. The experiment’s outcomes were analysed using MINITAB software® 18 Version and the Analysis of Variance (ANOVA) method. Based on the signal-to-noise (S/N) ratio, the ideal conditions were selected, and confirmation studies were carried out to ensure their applicability. In order to identify the ideal circumstances for the manufacturing and machining parameters, the data were normalised to a range from zero to one. To overcome the difficulties involved in milling GFRP composites, a thorough investigation and optimisation of the manufacturing process factors and machining settings is essential. Full article
Show Figures

Figure 1

22 pages, 8779 KiB  
Article
Damage Assessment of Glass-Fibre-Reinforced Plastic Structures under Quasi-Static Indentation with Acoustic Emission
by Norman Osa-uwagboe, Amadi Gabriel Udu, Vadim V. Silberschmidt, Konstantinos P. Baxevanakis and Emrah Demirci
Materials 2023, 16(14), 5036; https://doi.org/10.3390/ma16145036 - 17 Jul 2023
Cited by 14 | Viewed by 2729
Abstract
The use of fibre-reinforced plastics (FRPs) in various industrial applications continues to increase thanks to their good strength-to-weight ratio and impact resistance, as well as the high strength that provides engineers with advanced options for the design of modern structures subjected to a [...] Read more.
The use of fibre-reinforced plastics (FRPs) in various industrial applications continues to increase thanks to their good strength-to-weight ratio and impact resistance, as well as the high strength that provides engineers with advanced options for the design of modern structures subjected to a variety of out-of-plane impacts. An assessment of the damage morphology under such conditions using non-destructive techniques could provide useful data for material design and optimisation. This study investigated the damage mechanism and energy-absorption characteristics of E-glass laminates and sandwich structures with GFRP face sheets with PVC cores under quasi-static indentation with conical, square, and hemispherical indenters. An acoustic emission (AE) technique, coupled with a k-means++ pattern-recognition algorithm, was employed to identify the dominant microscopic and macroscopic damage mechanisms. Additionally, a post-mortem damage assessment was performed with X-ray micro computed tomography and scanning electron microscopy to validate the identified clusters. It was found that the specific energy absorption after impact with the square and hemispherical indenters of the GFRP sandwich and the plain laminate differed significantly, by 19.29% and 43.33%, respectively, while a minimal difference of 3.5% was recorded for the conical indenter. Additionally, the results obtained with the clustering technique applied to the acoustic emission signals detected the main damaged modes, such as matrix cracking, fibre/matrix debonding, delamination, the debonding of face sheets/core, and core failure. The results therefore could provide a methodology for the optimisation and prediction of damage for the health monitoring of composites. Full article
Show Figures

Figure 1

29 pages, 22187 KiB  
Article
Wireless, Material-Integrated Sensors for Strain and Temperature Measurement in Glass Fibre Reinforced Composites
by Lukas Bertram, Michael Brink and Walter Lang
Sensors 2023, 23(14), 6375; https://doi.org/10.3390/s23146375 - 13 Jul 2023
Cited by 2 | Viewed by 2626
Abstract
Fiber reinforced plastics (FRP) offer huge potentials for energy efficient applications. Special care must be taken during both FRP fabrication and usage to ensure intended material properties and behavior. This paper presents a novel approach for the monitoring of the strain and temperature [...] Read more.
Fiber reinforced plastics (FRP) offer huge potentials for energy efficient applications. Special care must be taken during both FRP fabrication and usage to ensure intended material properties and behavior. This paper presents a novel approach for the monitoring of the strain and temperature of glass fibre reinforced polymer (GFRP) materials in the context of both production process monitoring and structural health monitoring (SHM) applications. The sensor is designed to be integrated into GFRPs during the production process, and the sensor concept includes possibilities of automated placement during textile layup. To minimize sensor impact on GFRP integrity and to simplify vacuum setup and part handling, the sensor operates without the need for either wires or a battery. In the first sections of this work, sensor concept, design and prototype fabrication are presented. Subsequently, it is shown how the sensors can be used for flow front monitoring and cure estimation during GFRP production by measuring local resin temperature. The resulting specimens are then characterized regarding strain measurement capabilities, mechanical influence on the host component and overall system limitations. Average strain sensor accuracy is found to be ≤0.06 mm/m, while a maximum operation temperature of 126.9 °C and a maximum reading distance of 38 mm are measured. Based on a limited number of bending tests, no negative influence of sensor presence on breaking strength could be found. Possible applications include structural components, e.g., wind turbine blades or boat hulls. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

19 pages, 21053 KiB  
Article
An Experimental Investigation of the Mechanical Performance of EPS Foam Core Sandwich Composites Used in Surfboard Design
by Sam Crameri, Filip Stojcevski and Clara Usma-Mansfield
Polymers 2023, 15(12), 2703; https://doi.org/10.3390/polym15122703 - 16 Jun 2023
Cited by 4 | Viewed by 3953
Abstract
Surfboard manufacturing has begun to utilise Expanded Polystyrene as a core material; however, surf literature relatively ignores this material. This manuscript investigates the mechanical behaviour of Expanded Polystyrene (EPS) sandwich composites. An epoxy resin matrix was used to manufacture ten sandwich-structured composite panels [...] Read more.
Surfboard manufacturing has begun to utilise Expanded Polystyrene as a core material; however, surf literature relatively ignores this material. This manuscript investigates the mechanical behaviour of Expanded Polystyrene (EPS) sandwich composites. An epoxy resin matrix was used to manufacture ten sandwich-structured composite panels with varying fabric reinforcements (carbon fibre, glass fibre, PET) and two foam densities. The flexural, shear, fracture, and tensile properties were subsequently compared. Under common flexural loading, all composites failed via compression of the core, which is known in surfing terms as creasing. However, crack propagation tests indicated a sudden brittle failure in the E-glass and carbon fibre facings and progressive plastic deformation for the recycled polyethylene terephthalate facings. Testing showed that higher foam density increased the flex and fracture mechanical properties of composites. Overall, the plain weave carbon fibre presented the highest strength composite facing, while the single layer of E-glass was the lowest strength composite. Interestingly, the double-bias weave carbon fibre with a lower-density foam core presented similar stiffness behaviour to standard E-glass surfboard materials. The double-biased carbon also improved the flexural strength (+17%), material toughness (+107%), and fracture toughness (+156%) of the composite compared to E-glass. These findings indicate surfboard manufacturers can utilise this carbon weave pattern to produce surfboards with equal flex behaviour, lower weight and improved resistance to damage in regular loading. Full article
Show Figures

Figure 1

20 pages, 21934 KiB  
Article
The Correlation of LVI Parameters and CAI Behaviour in Aluminium-Based FML
by Piotr Podolak, Magda Droździel-Jurkiewicz, Patryk Jakubczak and Jarosław Bieniaś
Materials 2023, 16(8), 3224; https://doi.org/10.3390/ma16083224 - 19 Apr 2023
Cited by 5 | Viewed by 1612
Abstract
An experimental analysis of mechanical behaviour for aluminium-based fibre metal laminates under compression after impact was conducted. Damage initiation and propagation were evaluated for critical state and force thresholds. Parametrization of laminates was done to compare their damage tolerance. Relatively low-energy impact had [...] Read more.
An experimental analysis of mechanical behaviour for aluminium-based fibre metal laminates under compression after impact was conducted. Damage initiation and propagation were evaluated for critical state and force thresholds. Parametrization of laminates was done to compare their damage tolerance. Relatively low-energy impact had a marginal effect on fibre metal laminates compressive strength. Aluminium–glass laminate was more damage-resistant than one reinforced with carbon fibres (6% vs. 17% of compressive strength loss); however, aluminium–carbon laminate presented greater energy dissipation ability (around 30%). Significant damage propagation before the critical load was found (up to 100 times the initial damaged area). Damage propagation for assumed load thresholds was minor in comparison to the initial damage size. Metal plastic strain and delaminations are dominant failure modes for compression after impact. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes of Metal Forming)
Show Figures

Figure 1

30 pages, 6435 KiB  
Review
A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields
by Dario De Fazio, Luca Boccarusso, Antonio Formisano, Antonio Viscusi and Massimo Durante
J. Mar. Sci. Eng. 2023, 11(4), 851; https://doi.org/10.3390/jmse11040851 - 18 Apr 2023
Cited by 38 | Viewed by 8235
Abstract
Fibre-reinforced plastic (FRP) materials are attracting growing interest because of their high specific mechanical properties. These characteristics, in addition to a high level of tailorability and design of freedom, make them attractive for marine, aerospace, automotive, sports and energy applications. However, the large [...] Read more.
Fibre-reinforced plastic (FRP) materials are attracting growing interest because of their high specific mechanical properties. These characteristics, in addition to a high level of tailorability and design of freedom, make them attractive for marine, aerospace, automotive, sports and energy applications. However, the large use of this class of material dramatically increases the amount of waste that derives from end-of-life products and offcuts generated during the manufacturing processes. In this context, especially when thermosetting matrices are considered, the need to deeply study the recycling process of FRPs is an open topic both in academic and industrial research. This review aims to present the current state of the art of the most affirmed recycling technologies used for polymeric composites commonly used in industrial applications, such as carbon and glass FRPs. Each recycling method (i.e., chemical, thermal and mechanical) was analysed in terms of technological solutions and process parameters required for matrix dissolution and fibre recovery, showing their advantages, drawbacks, applications and properties of the recycled composites. Therefore, the aim of this review is to offer an extensive overview of the recycling process of polymeric composite materials, which is useful to academic and industrial researchers that work on this topic. Full article
(This article belongs to the Special Issue Applications, Properties and Manufacturing of Marine Composites)
Show Figures

Figure 1

22 pages, 3357 KiB  
Review
Making a Case for Hybrid GFRP-Steel Reinforcement System in Concrete Beams: An Overview
by Rajeev Devaraj, Ayodele Olofinjana and Christophe Gerber
Appl. Sci. 2023, 13(3), 1463; https://doi.org/10.3390/app13031463 - 22 Jan 2023
Cited by 11 | Viewed by 4897
Abstract
Ageing concrete infrastructures are known to be facing deterioration, especially regarding the corrosion of their reinforcing steel. As a solution, glass fibre-reinforced plastic (GFRP) bars are now considered a reinforcement alternative to conventional steel, and design codes now exist for designing GFRP-RC structures. [...] Read more.
Ageing concrete infrastructures are known to be facing deterioration, especially regarding the corrosion of their reinforcing steel. As a solution, glass fibre-reinforced plastic (GFRP) bars are now considered a reinforcement alternative to conventional steel, and design codes now exist for designing GFRP-RC structures. However, there is a need to improve on addressing the limited plastic yield in GFRPs. Consequently, it is suggested that a hybrid steel–GFRP RC system can enhance the mechanical performance of flexure beams up to the required standard and, at the same time, address the durability concerns of steel-only RC beams. This overview presents the studies conducted to enhance the performance of hybrid GFRP–steel RC beams by reviewing the analytical models proposed to improve the various aspects of reinforcement design. The models consider mechanical effects such as ductility, crack width, flexure and shear, and the physical effects such as thermal stability when exposed to the temperature. Though the evidence reviewed supports the viability of the hybrid GFRP–steel reinforcing system to address ductility, much is still required in the area of research, as highlighted in the future outlook. Full article
Show Figures

Figure 1

13 pages, 9604 KiB  
Article
Comparison between the Mechanical Recycling Behaviour of Amorphous and Semicrystalline Polymers: A Case Study
by André A. Costa, Pedro G. Martinho and Fátima M. Barreiros
Recycling 2023, 8(1), 12; https://doi.org/10.3390/recycling8010012 - 10 Jan 2023
Cited by 14 | Viewed by 4358
Abstract
The increase in waste has motivated the adoption of the circular economy concept, which assumes particular relevance in the case of plastic materials. This has led to research of new possibilities for recycling plastics after their end-of-life. To achieve this goal, it is [...] Read more.
The increase in waste has motivated the adoption of the circular economy concept, which assumes particular relevance in the case of plastic materials. This has led to research of new possibilities for recycling plastics after their end-of-life. To achieve this goal, it is fundamental to understand how the materials’ properties change after recycling. This study aims to evaluate the thermal and mechanical properties of recycled plastics, namely polycarbonate (PC), polystyrene (PS), glass fibre-reinforced polyamide 6 (PA6-GF30), and polyethylene terephthalate (PET). With this purpose, injected samples were mechanically recycled twice and compared through thermal and mechanical tests, such as differential scanning calorimetry, hardness, tensile strength, and the melt flow rate. The results show that the amorphous materials used do not suffer significant changes in their properties but exhibit changes in their optical characteristics. The semicrystalline ones present some modifications. PET is the material that suffers the biggest changes, both in its flowability and mechanical properties. This work demonstrates that the mechanical recycling process may be an interesting possibility for recycling depending on the desired quality of final products, allowing for some materials to maintain comparable thermal and mechanical properties after going through the recycling process. Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
Show Figures

Figure 1

Back to TopTop