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Abstract: The increasing prominence of glass-fibre-reinforced plastics (GFRPs) in the wind energy
industry, due to their exceptional combination of strength, low weight, and resistance to corrosion,
makes them an ideal candidate for enhancing the performance and durability of wind turbine blades.
The unique properties of GFRPs not only contribute to reduced energy costs through improved
aerodynamic efficiency but also extend the operational lifespan of wind turbines. By modifying
the epoxy resin with carbon nanofillers, an even higher degree of performance can be achieved. In
this work, graphene nanoplatelet (GNP)-enhanced GFRPs are produced through industrial methods
(filament winding) and coupons are extracted and tested for their mechanical performance after harsh
environmental aging in high temperature and moisture. GNPs enhance the in-plane shear strength of
GFRP by 200%, while reducing their water uptake by as much as 40%.

Keywords: wind turbine blades; glass-fibre-reinforced plastics (GFRPs); graphene nanoplatelets
(GNPs); filament winding; environmental aging

1. Introduction

The global shift from fossil fuels to renewable energy sources, primarily wind energy,
represents a pivotal moment in the ongoing battle against climate change. This transition,
driven by mounting environmental concerns and the recognition of finite fossil fuel re-
sources, signifies a commitment to a more sustainable and cleaner future. Wind energy
offers an abundant and renewable source of power, significantly reducing greenhouse
gasses [1]. GFRP’s lightweight yet strong nature is pivotal in ensuring the blades’ efficient
rotation and optimizing energy production [2]. Furthermore, its resistance to corrosion is
vital for withstanding harsh outdoor conditions where wind turbines are typically situ-
ated [3].

Epoxy resins represent a class of exceptionally versatile polymers utilized across di-
verse high-performance industries owing to their exceptional amalgamation of mechanical
strength, chemical stability, and physical properties. They exhibit a broad range of applica-
tions, serving as vital components for structural elements [4]. Their inherent compatibility
with a wide array of reinforcing fibres, minimal shrinkage during the curing process, low
mass, and cost-effectiveness makes epoxy resins and fibre-reinforced epoxy composites
attractive alternatives to traditional materials [5]. Epoxy-based composites offer unique
advantages, particularly in high-stress settings characterized by exposure to moisture and
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elevated temperatures known to expedite degradation processes, ultimately leading to
premature component failure. The presence of moisture initiates various adverse effects,
such as swelling, plasticization, and overall material degradation. The water molecules
permeate the epoxy resin matrix, effectively diminishing its mechanical properties through
the establishment of hydrogen bonds with the hydrophilic functional groups within the
epoxy structure. This interaction triggers a swelling effect, infiltrating the material’s “free
volume” and substantially compromising its long-term durability [6].

The Integration of carbon nanofillers into epoxy composites has gained substantial
attention within the realm of scientific investigation, primarily due to the immense po-
tential for advanced applications [7]. These advanced epoxy/carbon nanocomposites are
promising for mitigating the adverse impact of moisture, simultaneously enhancing their
mechanical properties [8], and thus extending their operational lifespan. Extensive research
efforts into exploring the influence of these diverse carbon fillers on the moisture absorption
characteristics of epoxy resins have revealed notable enhancements in the resilience of the
matrix when subjected to environmental exposure [9]. This improvement is intricately
linked to the geometry and dimensions of the incorporated nanofillers [10]. These findings
underscore the promising potential of carbon nanofillers in fortifying epoxy resins against
moisture-induced degradation and advancing their overall performance characteristics,
fostering their suitability for a range of advanced applications [11].

Graphene nanoplatelets (GNPs) are commonly commended for their ability to enhance
the barrier properties of epoxy composites [12]. GNPs are stacks of graphene sheets with
thicknesses from a few nm up to 100 nm [13]. The advantages of GNPs are their low
manufacturing cost and capabilities for mass production. These characteristics make GNPs
ideal for industrial applications. Enhancing epoxy GFRP with GNPs can result in epoxy
nanocomposites with improved barrier, electrical, and mechanical properties. When a
network of GNPs is formed in the matrix, it can significantly decrease the permeation of
erosive substances like moisture by creating a tortuous path, forcing the water molecules
to follow a complicated pathway [14]. Research has established a correlation between the
geometry of GNPs, including high specific surface area and aspect ratio, and their efficacy
as barriers [15].

In this study, physical and mechanical characterization through international standards
was performed in pristine and aged unmodified (neat) and GNP-reinforced GFRP post
environmental degradation in harsh environments of elevated moisture and temperature.
The GFRPs were produced in an industrial environment using filament winding, which
is deemed a sustainable manufacturing methodology for large structures such as wind
turbine blades. For better evaluation of the results, dynamic mechanical analysis was
performed to examine the effect of water ingress on the properties of the GFRP. This work
encompasses all evaluation methodologies, including industrial manufacturing, to prove
the viability of the nanomodification in the relevant industrial environment with the direct
transfer beneficial effect of the nanomodification on real structures.

2. Materials and Methods
2.1. Materials

XGNPs C-300 graphene nanoplatelets, provided by XGSciences, Lansing, MI, USA,
were used as the carbon nanofiller of choice for the improvement of the GFRP. The GNPs
had a thickness of a few nanometres, lateral size smaller than 2 µm, and 300 g/m2 surface
area with a Raman ID/IG ratio of 0.85 [16–18]. A commercial-grade epoxy resin, diglycidyl
ether of bisphenol A (DGEBA) Epikote 828, was provided by Hexion, Columbus, OH,
USA, along with complementary Epikure curing agent 866 and Epicure Catalyst 101 in a
10:8.3:0.15 mixing ratio. The epoxy viscosity at room temperature was 10.000 mPa s. E6-CR
386T by Jushi E-glass fibres designed for filament winding applications were applied for
the manufacturing of the GFRP structures.
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2.2. Dispersion and Manufacturing

High shear mixing was selected for dispersing the nanofillers in the polymer matrix.
The dispersion protocol was performed using a laboratory dissolver device (Dispermat
AE by Gentzman, Reichshof, Germany) supplied with a double wall vacuum container in
combination with a thermostatic bath by GRANT capable of temperature control within
±1 ◦C accuracy. The conditions of the dispersion protocols were rotary speed of 3000 rounds
per minute (rpm) and temperature of 25 ◦C. The selected nanofiller weight content was
selected in a previously unpublished work to be 1% wt. GNP. Introducing 1% wt. GNP in
the epoxy system showcased the optimum overall performance, including reduced water
absorption and increased mechanical properties, in lab-scale manufactured GFRP.

SEM spectroscopy was performed on a Phenom Pharos Desktop SEM by Thermo
Fisher Scientific, Waltham, MA, USA. Epoxy matrix specimens were tested to evaluate the
dispersion state. In Figure 1, two SEM images are presented: Figure 1a corresponds to the
GNP-enhanced matrix specimen post single-edged notched beam (SENB) testing, while
Figure 1b corresponds to the neat matrix post SENB. After examination, the dispersion of
GNPs in the matrix was homogonous, while the fracture mechanisms presented were in
line with the literature. GNPs introduced additional fracture mechanisms, increasing the
fracture surface roughness [19].
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Figure 1. SEM images of (a) GNP-enhanced epoxy resin and (b) Neat epoxy resin post single-edged
notched beam testing.

B&T Composites in Florina, Greece, produced two sets of large-scale industrial GFRP
structures purely via filament winding (Figure 2), one set utilized a conventional resin,
while the other employed resin modified with 1% wt. GNPs. Each set consisted of three
composite variants with varying fibre orientations: 0◦, 90◦, and a biaxial orientation of
approximately ±45◦.

Coupons from the configurations above were collected and subjected to physical
characterization based on the ISO 1172:1996 [20] standard to assess fibre content (calcination
Method A) and ISO 1183-1:2004 [21] standard to determine coupon density (Method A,
immersion method). The coupons’ dimensions were defined according to the ASTM
D3039 [22] and ASTM D3518 [23] standards, used for the measurement of the tensile
and the in-plane shear properties, respectively. Both types of coupons were plane and
orthogonal, having length equal to 160 mm, width equal to 15.3 mm with coefficient of
variation (CoV) = 1.8% for the neat resin coupons and equal to 15.7 mm with CoV = 2.3%
for the modified resin ones, and thickness equal to 8.8 mm with CoV = 5.0% for the neat
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resin coupons and equal to 9.0 mm with CoV = 5.6% for the modified resin ones. Figure 3
depicts typical GFRP coupons. Both types of coupons were plane and orthogonal, having
length equal to 160 mm, width equal to 15.3 mm with coefficient of variation (CoV) = 1.8%
for the neat resin coupons and equal to 15.7 mm with CoV = 2.3% for the modified resin
ones, and thickness equal to 8.8 mm with CoV = 5.0% for the neat resin coupons and equal
to 9.0 mm with CoV = 5.6% for the modified resin ones.
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Figure 3. Typical GFRP coupons (neat resin above, modified resin below).

Subsequently, these coupons were categorized into six groups as outlined in Table 1:

Table 1. Nomenclature and physical properties of each group of coupons.

Name Resin Type Fibre
Orientation (◦)

Fibre Content
(%) Density (kg/m3)

N_0 Neat 0 72 1874
N_90 Neat 90 71 1793
N_45 Neat ±45 69 1787
MD_0 1% wt. GNP 0 64 1781
MD_90 1% wt. GNP 90 64 1774
MD_45 1% wt. GNP ±45 68 1820
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2.3. Mechanical Testing

Mechanical testing was carried out in a 250 kN capacity hydraulic testing machine. All
tests were displacement controlled with an imposed displacement rate equal to 2 mm/min
for the 0◦ coupons, 0.5 mm/min for the 90◦ coupons, and 1 mm/min for the ±45◦ ones.
Strains were measured with the aid of an extensometer in the case of the tensile tests of 0◦

and 90◦ coupons (gauge length equal to 50 mm), and with the aid of a 5 mm gauge length,
0/90 strain gauge rosette, in the case of the ±45◦ coupons for measuring in-plane shear
properties (Figure 4). The reaction force of the testing machine was also measured for each
test, which, by dividing it by the respective cross section area of each coupon, resulted in
the applied stress. Therefore, Young’s modulus and tensile strength were measured from
the 0◦ and 90◦ coupons and shear modulus and shear strength from the ±45◦ ones.
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2.4. Hydrothermal Aging

Hydrothermal exposure was performed on 5 coupons from each category of Table 1.
The specimens were exposed to 70 ◦C temperature and 85% relative humidity in an en-
vironmental chamber. For all configurations, the coupons were sealed with commercial
high-temperature-resistant silicon and aged for 90 days. The coupons were periodically
weighed to determine their water absorption. Post degradation mechanical evaluation
was performed.

2.5. Dynamic Mechanical Analysis

Dynamic mechanical analysis was performed in DMA Q850 (TA Instruments, New
Castle, DE, USA) in 3-point bending configuration. The coupons tested were extracted
from the 90◦ sample. The testing parameters were:

• Amplitude: 20.0 µm
• Frequency: 1.0 Hz
• Temperature scan: from 40 ◦C to 180 ◦C
• Heating rate: 3.0 ◦C/min



Materials 2024, 17, 524 6 of 12

The DMA results were used to calculate the molecular weight between crosslinks
according to the basic equation of rubber elasticity:

ER = 3 (d/Mc) RT (1)

where ER is the storage modulus at the rubbery plateau, d is the density of the composite,
R is the universal gas constant, and T is the temperature at the rubbery plateau. For this
research the T at the rubbery plateau was set as Tg + 30 ◦C [24].

3. Results and Discussion
3.1. Water Uptake

Before starting the moisture absorption tests, all coupons were dried in an oven at
60 ◦C until significant change in mass was not observed (0.1 mg). The water absorption
curves correspond to the average water uptake of the neat structures compared to the 1%
wt. GNP-enhanced structures (Figure 5). In all structures, despite the fibre orientation,
the GNP-enhanced composites outperformed the neat composites. All coupons exhibited
near-identical water uptake curves, with the fibre orientation that presented the highest
water absorption being the 90◦ coupons, despite the resin type, as presented in Table 2. The
detrimental effects of water absorption were less evident in the case of the GNP composites,
leading to higher retention of mechanical properties compared to their neat counterparts.
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Table 2. Water uptake of each group at day 90.

Water Uptake (%)

Orientation 0◦ 90◦ ±45◦

Neat 0.22 ± 0.01 0.28 ± 0.01 0.22 ± 0.02
GNP 0.16 ± 0.02 0.20 ± 0.01 0.17 ± 0.01

Due to the natural affinity of epoxies to absorb moisture, considerable research efforts
have been made to reduce that effect. Epoxies absorb water within the voids of their
polymeric network. Generally, two types of water can be identified when water is absorbed
by epoxies:

• Unbound free water (Type-I water), which occupies nano-voids within the epoxy
without inducing any significant swelling.

• Hydrogen-bonded water (Type-II water), which is responsible for causing swelling
in the epoxy due to the formation of multiple hydrogen bonds with unreacted epoxy
groups [25,26].

In the initial absorption stage, water ingress increases linearly with time until it
reaches a saturation point. This saturation point is linked to the free volume within the
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polymer. After reaching the saturation point, stage-2 absorption begins and the rate of
water ingress decreases. During this stage, Type-II water molecules form hydrogen bonds
with unreacted epoxy groups, leading to swelling of the polymer. This, in turn, results in
the degradation of the material’s performance [11]. In GFRP, water absorption can occur
with various mechanisms either at the locations of micro-cracks in the matrix or at the
interface between the fibres and the matrix. The latter mechanism involves the diffusion
of water into the surrounding polymer network through unreacted polymeric chains. In
highly cross-linked epoxy systems, the increased free volume tends to result in higher
absorption of Type-I water during the early stages of exposure [27]. Consequently, when
GNPs are effectively dispersed within the epoxy network, the reduction of available free
space within the material can lead to notable enhancements in both the sorption (absorption)
properties and the mechanical characteristics of the composite system. The sorption curves
for both groups followed the same trend. The GNP-enhanced GFRP had an aggregate
water absorption reduction of 12%, which is a significant improvement considering the
already low absorption of the neat coupons. As separate groups, the GNP modification of
the GFRP improved the water absorption by as much as 40% in the case of the 90◦ coupons.
The improvement is even higher if the difference in fibre content is considered due to glass
fibres’ higher hydrophobicity compared to the epoxy resin. In Figure 5 it is observed that
despite fibre orientation the water uptake curves have similar trends, with most of the
water intake taking place in the first sec1/2 of exposure. These trends can be attributed
to coupon similarities since the core materials are the same, manufactured with the same
method, and weighed on the same day during exposure in the hydrothermal chamber.
Their only difference is their edges, which were sealed with commercial silicon.

3.2. Physical and Mechanical Characterization

The coupons that incorporated nano-modifications with fibre orientation parallel to
the loading direction displayed an ultimate tensile strength that was 7% lower than that
of the unmodified coupons and near-identical Young’s modulus as seen in Figure 6. This
observed behaviour can be primarily attributed to the reduction in fibre content compared
to the unmodified GFRP. The tensile strength of 0 oriented composite materials is mostly
affected by the fibre content. The ultimate tensile strength of the fibres is significantly higher
than the tensile strength of the matrix and, as a result, the longitudinal tensile strength is
mostly affected by the volume of fibres in the system. In composite coupons oriented at
θ = 90◦, failure is primarily due to the occurrence of transverse matrix cracking. While
one might intuitively assume that in these coupons where the fibres are not under tensile
stress the material would exhibit the characteristics of a pure polymer, the presence of
transverse fibres has an adverse impact on the tensile strength of the coupons caused by
debonding between the fibre/matrix interface. This debonding phenomenon leads to a
reduction in tensile strength perpendicular to the orientation of the fibres [28]. Compared
to the neat coupons, nanomodified coupons showcased an increase in tensile strength
perpendicular to the fibre orientation of over 10%, while the modulus of elasticity was
relatively the same. An impressive increase due to the nano-modification of the resin
was exhibited by the coupons subjected to in-plane shear according to ASTM—D3518.
The nano-modified coupons exhibited ultimate shear strength over 200% compared to the
neat GFRP. Carbon nanofillers show an improvement in the shear strength of composites.
Pinto et al. observed an increase in shear strength of more than 50% with incorporation of
0.1 wt.% GNPs [25]. The effective reinforcement of the epoxy matrix can be attributed to
the 3D orientation of GNPs. GNPs introduce additional reinforcement mechanisms, such
as bridging effects, enhancing mechanical interactions between the fibres and the matrix
and, as a result, increasing shear strength [29].
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Environmental aging had a notable impact on the mechanical properties of GFRP
coupons as observed in Figure 7. In the case of coupons oriented at 0◦, both systems showed
an increase in their Young’s modulus. Neat GFRP exhibited a 3% increase in Young’s
modulus after aging, while GNP-GFRP exhibited a significant increase of 10%. However,
the neat coupons experienced a 20% drop in ultimate tensile strength (UTS), whereas
GNP-GFRP demonstrated better retention of mechanical properties with a 10% decrease,
showcasing higher UTS post environmental degradation despite the lower fibre content.
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For the 90◦ coupons, neat coupons appeared to show an almost 70% increase in UTS.
This apparent increase can be attributed to curing reactions occurring during environmental
exposure, often referred to as “pseudo cross-linking”, which results in improved proper-
ties [29]. Despite the increase in UTS, the Young’s modulus decreased by 20%. Regarding
the GNP 90◦ coupons, both the Young’s modulus and the UTS presented a drop of 7% and
13%, respectively. For the ±45◦ coupons, the in-plane shear strength remained relatively
stable and did not exhibit significant changes.

3.3. Dynamic Mechanical Analysis

In pristine coupons (those without exposure to hydrothermal conditions), the incorpo-
ration of GNPs into the epoxy increased its storage modulus by nearly 10% compared to
the pure epoxy (Figure 8, Table 3). This enhancement can be attributed to the stiff nature of
GNPs, which restrict the movement of polymer chains, despite the smaller crosslink density
indicated by the molecular weight between crosslinks’ (Mc) values. Similarly, the inclusion
of GNPs led to an increase in the glass transition temperature (Tg) of the material. This rise
in Tg is due to the strong interaction between the stiff GNPs and the epoxy matrix, reducing
both the mobility of the polymeric chains and the free volume [30]. Despite the reduction
in the crosslink density of the material mentioned above, the GNP sample experiences
higher thermal stability compared to the neat resin, reaching the rubbery state at higher
temperatures [31]. As expected, the addition of GNPs in the material also led to a decrease
in the height of the tan (d) curve, indicating higher energy dissipation compared to its
internal losses. The tan (d) curve of the neat coupons peaked at 0.77 compared to the 0.71 of
the GNP coupons. The decrease in the half-width of the tan (d) curve is noticeable, which
can be interpreted as a decrease in the heterogeneity of the polymeric network and lower
distribution of the relaxation times of the polymer chains compared to the neat GFRP [32].
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Table 3. DMA values for pristine and aged composites.

Neat Pristine Neat Exposed GNP Pristine GNP Exposed

Tg (from tan(δ)
peak) 124 ± 0.55 113 ± 1.8 128 ± 0.05 121 ± 0.50

Mc (g/mol) 159 ± 70 146 ± 59 321 ± 30.5 112 ± 22.5
tan(δ)peak 0.77 ± 0.05 0.47 ± 0.01 0.71 ± 0.01 0.56 ± 0.01

Width tan(δ) at
half peak
maximum

22.7 ± 0.93 26.8 ± 3.05 19.0 ± 1.30 22.8 ± 1.05

When comparing the pristine coupons to those that have undergone hydrothermal
aging, a significant increase in the storage modulus is evident: both the pure epoxy and
GNP-enhanced resins showed an increase of more than 20%. The storage modulus of the
pure resin increased from 5564 MPa to 7522 MPa at 40 ◦C, while the GNP-enhanced resin
increased from 6074 MPa to 8222 MPa. During hydrothermal aging, different mechanisms
come into play. The prolonged exposure to elevated temperatures and moisture can lead to
secondary post-curing mechanisms, increasing the crosslink density of the coupons. It has
been reported that when epoxies are immersed in water, pseudo cross-linking phenomena
can occur. Water molecules, both in the free volume of the resin and the water bound to
the polymer chains, restrict the mobility of polymer chains, leading to increased stiffness
and binding with unreacted polymer chains [11]. This notion is supported by the lower Mc
values of the aged coupons, with the neat coupons’ Mc decreasing from 156 to 146 g/mol
and the GNP-enhanced coupons experiencing a massive decrease of 321 to 112 g/mol.

Hydrothermal aging also significantly affected the behaviour of the coupons. Both
types of GFRP showcased a lower tan(δ) peak, consistent with the increased stiffness
mentioned earlier. The pure resin, however, exhibited a deterioration in its tan(δ) profile,
with a broader peak, indicating increased network heterogeneity. Furthermore, the aged
pure resin displayed a distinct leftward shift in its tan(δ) curve and the appearance of a
double peak at 113 ◦C and 119 ◦C. This corresponds to a drop in Tg of 11 ◦C compared
to the GNP resin’s drop of 7 ◦C. The GNP coupon’s smaller change in its tan(δ) profile,
if connected with the results of the absorption curve, can be attributed to the reduced
hydrolytic degradation process in the polymer due to the lower amount of water absorbed
into the body of the resin [33]. The GNP-enhanced coupons showcased the lowest tan(δ)
peak between all groups due to their enhanced behaviour.

4. Conclusions

This study highlights the considerable potential of GNP modifications in reducing
moisture absorption and enhancing the mechanical and dynamic properties of composite
materials for large structures. The findings revealed that GNP-enhanced composites
consistently outperformed their neat counterparts in terms of moisture absorption. The
improvement was particularly significant, with up to a 40% reduction in water absorption
observed, in the 90◦ GNP-enhanced coupons.

Moving on to the physical and mechanical characterization of the composite materials,
this study revealed some intriguing insights. Coupons with GNP modifications and fibres
oriented parallel to the loading direction exhibited a slightly lower ultimate tensile strength
(UTS) compared to the neat composites, despite the 5% reduction in fibre content in the
GNP-modified coupons. In contrast, GNP-modified coupons displayed a remarkable
increase in shear strength, surpassing their neat counterparts by 200%. This study also
conducted dynamic mechanical analysis on the pristine and hydrothermally aged coupons,
revealing that the incorporation of GNPs into the epoxy resulted in an approximately
10% increase in storage modulus, indicating greater stiffness. Comparing pristine and
aged coupons, both the pure GFRP and GNP-enhanced GFRP demonstrated a significant
increase of more than 20% in storage modulus post environmental degradation. This
increase was attributed to the impact of prolonged exposure to elevated temperatures and
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moisture, leading to secondary post-curing mechanisms and an increased crosslink density.
As a result, the higher retention of mechanical properties and decreased water absorption,
with capabilities for mass production, can lead to improved GFRP composites for wind
turbine applications by increasing their lifetime with a marginal increase in their cost.
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