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Abstract: Hyperspectral imaging (HSI) is a remote sensing technique that has been successfully
applied for the task of damage detection in glass fibre-reinforced plastic (GFRP) materials. Similarly
to other vision-based detection methods, one of the drawbacks of HSI is its susceptibility to the
lighting conditions during the imaging, which is a serious issue for gathering hyperspectral data
in real-life scenarios. In this study, a data conditioning procedure is proposed for improving the
results of damage detection with various classifiers. The developed procedure is based on the concept
of signal stationarity and cointegration analysis, and achieves its goal by performing the detection
and removal of the non-stationary trends in hyperspectral images caused by imperfect lighting. To
evaluate the effectiveness of the proposed method, two damage detection tests have been performed
on a damaged GFRP specimen: one using the proposed method, and one using an established damage
detection workflow, based on the works of other authors. Application of the proposed procedure
in the processing of a hyperspectral image of a damaged GFRP specimen resulted in significantly
improved accuracy, sensitivity, and F-score, independently of the type of classifier used.

Keywords: hyperspectral imaging; glass fibre-reinforced plastics; damage detection

1. Introduction

Glass fibre-reinforced polymers (GFRPs) are a type of composite consisting of glass
fibres embedded in a polymer matrix. Using GFRPs in place of more traditional engineering
materials, such as polymers, metals, or ceramics has become more and more widespread,
due to a number of advantageous factors [1,2]. Among them, a few of the most important
factors are their exceptional strength to weight ratio, high resistance to harsh environmental
conditions, high durability, and ability to be manufactured into complex shapes using a
range of processes. Due to these advantages, GFRPs are one of the most widely utilized
composite materials across all the fields of engineering, e.g., the manufacturing of airship
fuselage and wing parts, ship hulls, auto body parts, printed circuit boards, pressure
tanks, concrete reinforcement bars, and blades of wind turbines. Despite their numerous
advantages, successfully using GFRPs also poses a challenge, due to the increased number
of failure modes of composite materials [3].

The most common and serious failure modes in GFRPs are the development of cracks
and delaminations. Typical causes of the damage include manufacturing-induced defects,
cyclic and dynamic loading, and exposure to environmental factors [4,5], which are the re-
sult of varying and difficult operating conditions. The presence of manufacturing-induced
defects leads to failure in the early stages of their exploitation by significantly reducing
the mechanical properties of the material. However, these kinds of defects can be avoided
by employing an extensive post-manufacturing quality control. The loading and environ-
mental issues are much harder to circumvent. Some of these problems can be avoided in
the early stages of designing GFRP structures, especially by supporting the design with
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the data gathered from already deployed structures and provided by simulations, which
are able to obtain strikingly accurate results by the employment of improved simulation
techniques [6,7]. While this process is vital to preventing the damage, operational condi-
tions of GFRP structures can be unpredictable. Because of this, the use of structural health
monitoring (SHM) and damage detection techniques are employed to improve safety and
power generation efficiency, and to minimize the maintenance cost.

Most of the damage detection techniques are based on strain measurement, acoustic
emission, ultrasound, vibration, thermography, or vision [8]. Strain measurement-based
damage detection utilizes strain sensors, either installed on the surface or integrated into
the blade itself, and infer the presence of damage by detecting anomalies in the strain
signal [9]. The drawback to this approach is that the accuracy of damage detection is
dependent on the distance between the damage and the sensor. Acoustic emission events
are detected by piezoelectric sensors installed on the blade of the turbine that register the
elastic waves caused by the release of energy during the appearance of the damage [10].
The main challenges these systems face are distinguishing between the acoustic emission
events caused by the damage and the noise, and the high internal damping of GFRPs.
Ultrasound-based methods are proven to reliably detect the damage using the interaction
between the damage and the ultrasonic waves [11]. However, the ultrasonic tests are
limited by the accessibility of the tested object, which is especially unfavourable in offshore
turbines. Vibration-based methods aim to detect changes in mechanical properties with
the use of modal characteristics [12]. It has been observed that these kinds of methods fail
to detect damage in its early stages. The thermography-based approach aims to detect
damage using remotely registered thermal gradients on the surface of the wind turbine
blade; however, similarly to the vibration-based approach, it is unable to detect damage in
its early stages, and is prone to being heavily influenced by environmental factors such as
temperature and humidity [13].

One of the most promising advances in SHM and damage detection was made in the
field of vision-based methods [14]. Some of the techniques used in vision-based methods
include stereoscopic vision, digital image correlation, computational intelligence-based
algorithms and hyperspectral imaging (HSI) [15,16]. Overall, the quality of results ob-
tained using vision-based methods is dependent on the quality of lighting [17], which
is understandably hard to control in real-life applications due to the environmental in-
fluences. Hyperspectral imaging also suffers from that drawback. However, due to the
increased amount of data gathered in HSI, in comparison to the other vision-based methods,
the filtering of such influence yields better results.

The current methods developed for overcoming the lighting issue in vision-based
methods, and especially in hyperspectral imaging, have been advanced classification
methods, such as classifiers operating on spectral–spatial data [18–20], where instead of
classifying each pixel alone, the data about the neighbouring pixels and location of the pixel
in question are also included in the learning data [21], which lowers the method’s sensitivity
to imperfect lighting. This method, however, performs best in scenarios where different
endmembers (classes) present on the hyperspectral image are of a different chemical
composition from one another, resulting in a high separation of those classes. In cases
where the physical properties, such as the presence of cracks or delaminations, are the
endmembers, the spectral–spatial approach fails to distinguish between a higher intensity
pixel being an endmember or being a result of the uneven lighting.

To resolve this issue, we propose a technique which utilizes cointegration analysis as a
data conditioning tool, and which aims to minimize the influence of imperfect lighting on
the performance of HSI-based damage detectors. To the best of the authors’ knowledge,
the cointegration analysis has never been investigated in the literature to develop a data
conditioning process for classification of hyperspectral images used for damage detection
in GFRPs, while its proven usefulness in trend removal applications makes it an appealing
option to explore for HSI processing.
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2. Materials and Methods
2.1. Damage Detection Using Hyperspectral Imaging

In hyperspectral imaging, a series of monochromatic images is registered over a wide
range of the electromagnetic spectrum. While a traditional digital photograph contains
three channels, each corresponding to one of red, green, or blue colours, hyperspectral
images can contain hundreds of channels, each channel containing information about
a single wavelength of electromagnetic waves. Most commonly, hyperspectral images
cover the visible part of the spectrum, around 380 to 700 nm, and a part of the infrared
spectrum, in our case near infrared (NiR) and short-wave infrared (SWiR) at 700 to 2500 nm.
Hyperspectral images are stored in data structures called hypercubes. Their dimensions
are x× y× λ, where x and y are spatial dimensions, and λ is a spectral dimension.

In the process of hyperspectral imaging, a specimen is lit with a white light by the illu-
minator. After the interaction of electromagnetic radiation with the material, the reflected
light is registered with a hyperspectral camera and saved into a hypercube, as shown by a
schematic in Figure 1, and in the photograph of the hyperspectral camera in Figure 2.
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Figure 1. The process of hyperspectral imaging.

Hyperspectral imaging is based on the interaction of light with matter, primarily
through the mechanisms of absorption and reflection. Absorption is mainly influenced by
the chemical composition of the matter. Every element has a characteristic spectral signature
that describes the intensity at which every wavelength in a given spectrum is absorbed.
Thanks to this phenomenon, hyperspectral images contain chemical information about the
scanned object, similar to the information that could be obtained using a spectrometric test.
On the other hand, the phenomenon of reflection is primarily influenced by the physical
features of the scanned object. Instead of applying to a select few of the wavelengths as is the
case in chemical difference, the physical difference in the scanned object affects the whole
spectrum with nearly the same intensity at every wavelength of the hyperspectral image.

Thanks to its ability to detect chemical and physical changes, HSI has found uses in
the fields of medicine, agriculture, remote sensing, and many more [22,23]. In our study,
we are focusing on the application of hyperspectral imaging in damage detection systems
for GFRP composites.

The great amount of information and high dimensionality of hyperspectral images
limits the use of conventional digital image processing techniques. One of the ways of
circumventing this issue is the deployment of classification algorithms, either conventional,
such as Adaptive Cosine Estimators (ACEs), or machine learning-based classification
algorithms, such as support vector machines (SVMs) or artificial neural networks (ANNs).

While it has been proven that such systems can perform the task of damage detection
well in laboratory conditions, in real-life applications, the issue of imperfect lighting
becomes crucial. The change in the radiant flux of lighting results in the shift of the
spectrum in a way that is similar to the presence of a physical feature, such as formation of
a crack or delamination, which leads to an increase in false positive damage detections.
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Figure 2. the hyperspectral camera setup with the trajectory of light in yellow: 1—The hyperspectral
sensor, 2—the reflector, 3—the specimen, 4—the background with fiducial markers, 5—the illuminator,
6—the linear stage, 7—the preview monitor.

2.2. Cointegration Analysis

Hyperspectral images can be considered as multidimensional, stochastic, discrete
signals. One of the properties that apply to such signals is its stationarity. A signal
is considered to be strictly stationary when the probability density function (PDF) of a
stochastic variable is constant over the signal’s duration. This definition often finds a limited
use in signal processing, especially in the case of processes realized in real-world full of
noise and non-ideal systems. For this purpose, a range of weaker criteria are utilized: the
N-th order stationarity, and weak-, or wide-sense, stationarity. The process Xt is classified
as n-th degree stationary if it satisfies Equation (1):

FX(xt1+τ
, ..., xtn+τ ) = FX(xt1 , ..., xtn) ∀ τ, t1, ..., tn ∈ R ∧ ∀ n ∈ {1, ..., N} (1)

essentially limiting the global requirement to a requirement for n up to an order N.
The signal of weak-sense stationarity is only required to have a constant mean and

autocovariance over its duration.
Other types of stationarity are the trend-stationary signals and difference-stationary

signals. The signal is called trend-stationary if, after the removal of the deterministic trend,
it becomes stationary [24]. The signal is called difference-stationary if it becomes stationary
after one or few differentiations. Another more precise way of describing such a property
is to state the order of integration of the signal. A signal of d-th order of integration is
typically denoted as I(d). The order of integration can be thought of as the number of times
the differentiation is required to be applied to transform the signal into a stationary signal.
It is also a way of describing the presence of a unit root.

To confirm or deny the presence of a unit root, a range of statistical tests have been
developed. Two of the most widely used unit root tests are the Dickey–Fuller test (AD test)
and the Augmented Dickey–Fuller test (ADF test) [25].
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In the AD test, a data series is represented as a 1st order autoregressive signal (AR(1)),
which is represented as:

Xt = α + ρXt−1 + εt (2)

where Xt is a signal at time t, α is a trend term, ρ is a parameter of the lagged term, and εt
is the error of the AR model. The value of α = 0 signifies that the process is a random walk,
there are no stochastic trends in a signal, and the value of α 6= 0 means that the process is a
random drift.

The AD test is used to determine if the signal is integrated of order I(0) or I(1) [26],
and decides between two hypotheses:

H0 : ρ = 1

H1 : ρ < 1
(3)

The rejection of H0 means that the signal is stationary in the wide sense—integrated
of order I(1). The hypothesis can be rejected or confirmed after performing a t-test over
the duration of the signal.

In practice, however, such an evaluation is improper, as both Xt and Xt−1 could be
non-stationary, thus transforming the t-distribution into a normal distribution, due to the
normal central limit theorem. To bypass that issue, the AR model is constructed for the first
differences of the signal, such that:

Xt − Xt−1 = α + (ρ− 1)Xt−1 + εt (4)

which can also be represented as:

∆Xt = α + δXt−1 + εt (5)

Because ∆Xt is in essence a first difference of Xt, it is integrated of order I(0). If the
H0 holds true, then in the differenced model, a parameter δ = 0, removing the potentially
non-stationary term Xt−1 from the right-hand side of (5), thus allowing for calculation of
the t-statistic. The calculated t-statistic is then evaluated against the critical value of the
Dickey–Fuller distribution for a chosen significance level, which is the criterion for rejecting
or approving the H0.

The ADF test expands the AD test by allowing the use of higher order AR models [26].
This is achieved by using an additional lagged term in the AR model. For the ADF test,
the model with one lagged term (AR(2)) takes the form of:

∆Xt = α + δ0Xt−1 + δ1∆Xt−1 + εt (6)

or in general, for n lagged terms in AR(n + 1) model:

∆Xt = α + δ0Xt−1 +
n

∑
i=1

δi∆Xt−i + εt (7)

The hypotheses for ADF are formulated as:

H0 : δ0 = 0

H1 : δ0 < 0
(8)

Similarly to AD, rejection of H0, on the grounds of the δ0 t-statistic absolute value being
smaller than the critical value of the DF distribution’s critical value for a given significance
level, indicates that the X series’ order of integration is less than I(1).
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Cointegration analysis is based on a concept of stationarity [27]. The cointegrating
relationship between two data series exists if

Xc = β′X (9)

is integrated of order I(d− 1), where β is the cointegrating vector, and X is a collection of
(X1, X2, . . . , Xk) time series integrated of order I(d). In essence, a cointegrating relationship
exists if a linear combination of two or more non-stationary data series is itself stationary.
In this context, cointegration analysis is used as a detrending tool to remove the influence
of the environment [28,29].

After ensuring that all data series considered are integrated of the same order, and that
the order is at least I(1), the next step is to test for the existence of cointegration relationships
among them. For this purpose, a Johansen test is utilized [30].

The Johansen test for cointegration is a two-part procedure. In the first step, the signals
are modelled using the Vector Error Correction Models (VECMs) [31]. There are a few
variants of VECMs, and the difference between them are the presence or absence of terms
representing the trend, and the constant, and the number of cointegrating vectors.

The process of estimating the VECM itself consists of four steps. The first step is to
estimate a Vector Autoregressive Model (VAR) for the collection of signals Xt. The VAR
model of rank p takes the form of [32]:

Xt = ΦDt + Π1Xt−1 + . . . + ΠpXt−p + εt (10)

where Dt are the deterministic terms that consist of constant (u0) and trend (u1t) terms,
and can be expanded as:

Dt = u0 + u1t (11)

where Φ is the parameter of deterministic terms, and Πi are the parameters of lagged terms.
The VAR model is then transformed into a VECM model. VECMs are the extension of

Error Correction Models for multivariate area, and are formulated as:

∆Xt = ΦDt + ΠXt−1 + Γ1∆Xt−1 + . . . + Γp−1∆Xt−p+1 + εt (12)

where Dt are the deterministic terms, Φ is the parameter of deterministic terms, and is
constructed as Π = Π1 + . . . + Πp − In, Π is the matrix of long run impact, and Γ is the
matrix of short-term impact, taking the form of Γk = −∑

p
j=k+1 Πj for k = 1, . . . , p.

By transforming a VAR model into a VECM model, it is ensured that the variables
integrated of order I(1) are encapsulated in the ΠXt−1 term; therefore, if the cointegrating
relationship exists, it will be included in this term.

The rank of matrix Π:
r = rank(Π) (13)

represents the number of potential cointegrating vectors found. It can take a value between
0 and n.

The matrix Π is then factorized into two matrices:

Π = ABT (14)

where A and B are (n× r) matrices of rank r. Matrix B is a collection of potential cointe-
grating vectors.

The second part of the Johansen test is to test found potential cointegrating vectors,
using either the trace or maximum eigenvalue statistic. This test consists of m ∈ [0, r] stages,
and in every stage, it challenges the null hypothesis that the number of cointegrating
vectors H0 : r = m with the alternative being H1 : r > m. If the null hypothesis is rejected,
the next stage is performed, and if the null hypothesis is accepted, the number of confirmed
cointegrating relationships is m.
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Next, the found cointegrating vectors are normalized, such that:

β = [−1,−β2, . . . ,−βn]
T (15)

and the residuals of projecting the data series onto the cointegrating vectors is tested
for the existence of the unit root. If that test confirms that the residuals are stationary,
the cointegration relationship is confirmed.

2.3. The Specimens

The specimens used for this study were made of a glass fibre-reinforced plastic (GFRP)
composite material. The matrix consisted of an epoxy resin, the glass fibres had a unidi-
rectional layup, and there were five layers of the glass fibre mat. The material data for
such composites, for the purpose of simulating the damage event, can be found in the
literature [33,34]. To introduce the damage, a destructive strength test was performed.
The specimen was subjected to a quasi-static tensile test, in accordance with the ASTM
E1922 Standard [35]. Test Method for Translaminar Fracture Toughness of Laminated and
Pultruded Polymer Matrix Composite Materials. The test consisted of loading the specimen
in tension, along the direction of the fibre layup, as presented on Figure 3. The load was
applied by the loading pins that were put into the loading holes of the specimen. The test
was displacement driven, and the loading rate was set at 3 mm min−1 (3× 10−5 m s−1).
The test was stopped when the material failure was confirmed by a rapid drop of force
and visual confirmation of the presence of a crack. The peak force registered was 9639.6 N.
As a result of the test, a crack of length 120 mm and width of 4 mm, and reaching the full
depth of the specimen, directed along the fibre layup direction, was introduced to the
specimen, as shown in Figure 4.

Loading pin holes

Notch

Layup direction

Loading 

direction

Loading 

direction

250

1.2

x5.6

4
9
.5 2
5

Figure 3. Specimen dimensions and tensile test setup schematics.

321 4

Figure 4. Photograph of the specimen after the introduction of the crack, with different regions
of the specimen highlighted: 1—Markings inked on the surface of the specimen, for purpose of
specimen identification, and as a size reference. 2—Holes cut into the specimen before the tensile test,
for purpose of accepting loading pins. 3—Notch cut into the specimen before the tensile test, directed
perpendicularly to the glass fibre layup. 4—Area damaged in tensile test—a crack going through the
whole thickness of the specimen, starting at the bottom of the notch, and ending at the edge of the
specimen, following the layup direction of glass fibres.
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2.4. Hyperspectral Imaging Equipment

After the damage was introduced, a hyperspectral image of the specimen was captured.
Imaging was completed using a Headwall Photonics Inc., Bolton, USA Desktop Scanning
Kit. The hyperspectral camera was equipped with two imaging sensors: a visible and near
infrared (VNiR) H-type sensor, and a short-wave infrared (SWiR) M-type sensor. The VNiR
sensor has a wavelength range of 400 nm to 1000 nm with a spectral resolution of 1.6 nm,
and spatial resolution of 1600 px, and the SWiR sensor has a wavelength range of 890 nm
to 2500 nm, with a spectral resolution of 9.8 nm and spatial resolution of 384 px.

The Desktop Scanning Kit utilizes a pushbroom scanning method, i.e., a single row of
an image is registered at regular intervals, while the scanned object is moved at a setup
rate by the motion platform integrated into the device.

To improve the accuracy of the upcoming image registration step, fiducial markers
were placed in the background of the scanned specimen.

As a result, two hyperspectral data cubes were obtained, one from each sensor, along with
white and black references for image calibration purposes. The VNiR hypercube dimensions
were 1600× 2500× 375, and the SWiR hypercube dimensions were 384× 600× 165.

2.5. Hyperspectral Image Preprocessing

The first step of preprocessing consists of converting the digital number (DN) regis-
tered by the sensors to a physical quantity of reflectance. This step is called the calibration
of a hyperspectral image [36]. Reflectance (R) is a dimensionless measure of an effectiveness
in reflecting the radiant energy. It is defined as:

R =
Φr

e
Φi

e
(16)

where Φr
e is the radiant flux reflected by the surface, and Φi

e is the radiant flux incident onto
that surface.

Black and white references obtained during the imaging are themselves hyperspectral
images of size 1× 1× λ, and are used in the calibration procedure to obtain reflectance
values of pixels in a hyperspectral image that are absolute—independent of the radiant
flux of an illuminator used during the imaging step, or the exposition time of an image.
The white reference is obtained by capturing a hyperspectral image of a calibration stan-
dard made of Spectralon material, which is highly reflective at every wavelength used
by hyperspectral sensors. The black reference is obtained by capturing a hyperspectral
image with the sensors covered by a shield impermeable to electromagnetic radiation at
wavelengths used by hyperspectral sensors.

With those two references, an image is calibrated by applying:

R(x, y, λ) =
DN(x, y, λ)− DNblack(λ)

DNwhite(λ)− DNblack(λ)
(17)

where R(x, y, λ) is a reflectance of a hyperspectral image pixel at x and y coordinates at
λ wavelength, DN(x, y, λ) is a digital number of a hyperspectral image pixel at x and y
coordinates at λ wavelength, DNblack(λ) is a digital number of the black reference at λ
wavelength, and DNwhite(λ) is a digital number of the white reference at λ wavelength.
The calibration is performed on both VNiR and SWiR hypercubes independently.

The next step in the preprocessing procedure is image registration [37]. In this step,
both hypercubes are prepared for fusion by aligning the image and upscaling the SWiR
hypercube to match the spatial resolution of the VNiR hypercube. Three corresponding
pairs of points are chosen from both hypercubes by selecting the corners of fiducial markers.
Their coordinates are stored in vectors xv and yv for the VNiR hypercube and xs and ys
for the SWiR hypercube. Using these two vectors, an affine transformation is calculated,
such that

xviyvi = Axsiysi + B ∀ i (18)
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where A is a transformation matrix, B is a translation vector, and i is the number of pixels.
That transformation is then applied to the SWiR hypercube.

After the registration and fusion, a splice correction is performed [38], which shifts the
reflectance values in the SWiR hypercube to satisfy:

RVNiR(x, y, λn) = RSWiR(x, y, λn) (19)

where λn is the wavelength in the middle of the wavelength range covered by both the
VNiR and SWiR sensors, in our case λn = 945 nm. The correction is performed by applying:

RSWiR_corrected(x, y, λ) = RSWiR(x, y, λ)− f (λ) (20)

where f (λ) is a correction factor given by:

f (λ) = RSWiR(x, y, λn)− (2 · RVNiR(x, y, λn)− RVNiR(x, y, λn−1)) (21)

After applying the splice correction, the VNiR and SWiR hypercubes are fused, which
is obtained by concatenation along the spectral dimension.

The next step of preprocessing is an application of the Savitzky–Golay filter for each
pixel along the spectral dimension [39]. The window size used was 7, and the order of the
filter was 2. The filtration was achieved by applying:

R f iltered(x, y, λ) = (−2R(x, y, λ− 3) + 3R(x, y, λ− 2) + 6R(x, y, λ− 1)+

+ 7R(x, y, λ) + 6R(x, y, λ + 1) + 3R(x, y, λ + 2)− 2R(x, y, λ + 3))/21
(22)

After the filtration, 10 points were selected from the damaged region and 10 from
the undamaged region of the specimen. By calculating the means of these points, spectral
signatures of the damage to the composite and of the healthy material were constructed.

2.6. Data Conditioning Using Cointegration Analysis

The cointegration analysis is used in the data conditioning step as a trend removal
tool [40]. The Johansen procedure was applied to find the cointegrating vector β for the
spectral signatures of healthy and damaged material. The lag order used in the AR models
of signatures in the Johansen test was N = 7. The t-statistic of −3.46 exceeded a critical
value of the Dickey–Fuller t-distribution at a confidence level of 95%: −3.42 allowed us to
conclude that a cointegration relationship between these spectral signatures exists.

The whole hyperspectral image was then projected onto the found cointegrating vector
β by applying:

Rcoint(x, y, λ) = β(λ)× R(x, y, λ) (23)

The resulting data cube was then subtracted from the fused and filtered hypercube,
resulting in a datacube of cointegration residuals.

Rresiduals(x, y, λ) = R(x, y, λ)− Rcoint(x, y, λ) (24)

To allow for the comparison of the results of applying the data conditioning technique,
two independent workflows for processing hyperspectral images for the purpose of damage
detection will be examined: First, the method based on traditional hyperspectral image
processing, where the learning data are simply the spectra of the pixels on the hyperspectral
image, and second, a method where cointegration analysis is used to transform the spectra
into residuals of cointegration. For this purpose, the trend removal and filtering subroutines
in the traditional workflow are skipped to allow the ADF test, which is required to be
positive and indicate the presence of the unit root in raw data, to hint as to the existence
of cointegrating vectors. After this step, the hypercube is projected onto these vectors,
which allows for the calculation of cointegration residuals. These residuals are used as the
learning data in our proposed method.
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2.7. Classification Algorithms

Three kinds of classification algorithms were used, and with every one of them,
the learning and classification was performed once on a filtered hypercube, and once on a
data cube of cointegration residuals. The first algorithm was a multilayer perceptron neural
network. It consisted of 10 input neurons, 2 fully connected layers of 10 neurons, and
two output neurons. The second algorithm was a support vector machine with Gaussian
kernel. The last algorithm was a support vector machine with a cubic kernel. Before the
classification, a principal component analysis was performed, and the first 10 principal
components were used as the training data.

3. Results
3.1. Data Conditioning Results

The ADF tests were performed on the spectral signatures obtained from the prepro-
cessing of hyperspectral images. The null hypothesis in ADF was H0 : δ0 = 0, and the
alternative was H1 : δ0 < 0. The results of the ADF tests, along with the critical values of
DF distribution, are presented in Table 1.

Table 1. Results of ADF test at significance level of 5%.

Data Series T-Statistic Critical Value Null Rejected

Damaged spectral signature −0.5655 −2.8681 False
Healthy spectral signature −2.2881 −2.8681 False

The models used in the ADF tests were AR(5) with drift. In both cases, H0 was not
rejected, confirming that both spectral signatures are integrated of order I(1).

After the ADF test, the Johansen test for cointegration was performed. Similarly,
a VECM model with lag order of 5 was used. The null hypothesis in the Johansen test was
H0 : r < k, where r is the number of cointegrating vectors, and k is the number of tested
data series. The alternative hypothesis was H1 : r = k. The results of the tests are presented
in Table 2.

Table 2. Johansen test results by type of VECM model, at significance level of 5%, at r = 2.

VECM Model T-Statistic Critical Value Null Rejected

No deterministic terms 17.9372 12.3206 True
With deterministic constant 18.2173 20.2619 False
With deterministic trend 14.1937 15.4948 False
With deterministic trend and constant 37.8892 25.8723 True

For VECM models with either a constant, or a trend, the tests indicate that there is one
cointegrating vector. The models with no deterministic terms, and one with both a constant
and a trend, indicate that there are two valid cointegrating vectors.

The cointegrating vector was calculated using the model with the deterministic trend.
The original spectral signatures, and the residua of projecting them onto the cointegrating
vectors, are shown in Figure 5.

3.2. Classification without the Data Conditioning

The classification was performed using three kinds of algorithms. The learning and
learning validation data consisted of 500 spectral signatures of healthy and damaged
material, which defined the two classes. A five-fold cross-validation was used to prevent
overfitting. After the learning was completed, the classification algorithms were applied
to the preprocessed hyperspectral images. The results of classification are presented in
Figure 6, and the metrics of classifier performance in Table 3.
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Figure 5. Model spectra before and after the data conditioning step.

2-layer NN results Gaussian Kernel SVM results Cubic Kernel SVM results

(a) (b) (c) (d)

Figure 6. Classification results without the cointegration analysis data conditioning. (a): A reference
RGB image of the damaged specimen. (b): Results of classification using 2-layered neural network.
(c): Results of classification using SVM with Gaussian kernel. (d): Results of classification using SVM
with cubic kernel.
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The accuracies achieved by the classification algorithms in the validation step were
81.4% for the bilayered artificial neural network, 76.4% for the SVM with Gaussian kernel,
and 83.6% for the SVM with cubic kernel.

Table 3. Classifier metrics without data conditioning.

Sensitivity Specificity Precision Accuracy F1 Score

Neural network 0.695 0.824 0.263 0.814 0.381
Gaussian kernel SVM 0.618 0.777 0.199 0.764 0.301
Cubic kernel SVM 0.713 0.847 0.296 0.836 0.418

3.3. Classification with the Data Conditioning

The setup for the classification algorithms was similar to that described in a previous
section. The key difference is that instead of using spectral signatures as the algorithms’
input, the residuals of the projection onto the cointegrating vectors were used. The results of
classification are presented in Figure 7, and the metrics of the classifiers are shown in Table 4.

2-layer NN results Gaussian Kernel SVM results Cubic Kernel SVM results

(a) (b) (c) (d)

Figure 7. Classification results with the cointegration analysis data conditioning. (a): A reference
RGB image of the damaged specimen. (b): Results of classification using 2-layered neural network.
(c): Results of classification using SVM with Gaussian kernel. (d): Results of classification using SVM
with cubic kernel.
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Table 4. Classifier metrics with data conditioning, and the trend in comparison to metrics without
data conditioning.

Sensitivity Specificity Precision Accuracy F1 Score

Neural network 0.670↘ 0.970↗ 0.672↗ 0.945↗ 0.674↗
Gaussian kernel SVM 0.695↗ 0.968↗ 0.649↗ 0.942↗ 0.654↗
Cubic kernel SVM 0.587↘ 0.977↗ 0.698↗ 0.945↗ 0.638↗

The accuracies achieved by the classification algorithms in the validation step were
94.5% for the bilayered artificial neural network, 94.2% for the SVM with Gaussian kernel,
and 94.5% for the SVM with cubic kernel.

4. Discussion

The ADF tests confirmed that both of the spectral signatures are non-stationary, and are
integrated of order I(1). Because the variant of the ADF test used utilized the AR(5)
model with drift, both of these signals can be classified as trend-stationary. Because of the
cointegration analysis’ proven ability to detrend data series, it is reasonable to apply the
Johansen test in an effort to remove those trends.

The noteworthy difference in such application is that the cointegration and the concept
of stationarity itself in our research is applied not to a time series data, but to the spectra of
particular areas on the hyperspectral image, or the models of their spectral signatures—in
other words, the temporal dimension is replaced with a spectral dimension.

While it is not always obvious which features, or their combinations, of the data
used in the machine learning are the key factors in the determination of the algorithm’s
output, the increase in the distance between the different classes generally improve the
performance. This is supported by the remarkable success of the PCA analysis in nearly
every machine learning task, and other methods that achieve a similar result, for example,
application of the kernel tricks in SVM algorithms.

The proposed usage of cointegration analysis achieves that goal, which is visible in
the difference between the input data in Figure 5. Another confirmation of the proposed
algorithm’s validity comes from the classification results themselves. By comparing the
results of classification with and without the data conditioning step in Figures 6 and 7,
a conclusion can be drawn that the algorithms that used cointegration residuals perform
better than the ones that use the spectral signatures. In the first case, the areas classified as
damaged are consistent with the reference image, and the false positives that are present
appear as the small groups of pixels, and can be distinguished easily from the actual
damage. In the latter case, the damaged areas have been correctly classified as damaged;
however, the bounds of the damaged area are hard to determine exactly because of the
difference in its characteristic—on the left side of the crack, the transition from healthy to
damaged is clear and abrupt, but on its right side, the transition seems gradual and soft.
This difference can be attributed to the existence of trends in the data, which are abundant
in hyperspectral imaging due to imperfect lighting conditions.

Overall, the improvement in performance of the classifiers when using the data
conditioning step is most visible in the increase in the precision metric. Across all the
tested classifiers, the precision increased twofold, which is the result of significantly fewer
occurrences of false positive classifications. The consistency of this increase in each of
the three tested classification methods: the artificial neural network, and the Gaussian
and cubic kernel SVMs, suggests that the improved quality of classification by using the
proposed method of data conditioning is not specific to a singular classifier and is beneficial
regardless of the type of classifier used.

5. Conclusions

In our study, the cointegration analysis was used to develop an unconventional
data conditioning process for classification of hyperspectral images. The process takes
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advantage of cointegration analysis’ ability to remove trends in the data, which were sus-
pected to decrease the performance of classifiers. Application of the developed technique,
and comparison of the results, obtained with and without its use, allowed us to conclude
the following:

• The application of cointegration analysis improves the results of classification, espe-
cially in regard to decreasing the number and spatial distribution of false positives;

• In hyperspectral imaging, the benefits of data conditioning apply universally to
classification algorithms, regardless of the specific algorithm used;

• In hyperspectral imaging, the concept of signal stationarity can be considered in
the spectral domain, instead of the traditional temporal domain, while still keeping
its properties.

This said, we believe that further work is required on the topic of the use of cointe-
gration analysis in HSI. Among many other areas, the aspects of the performance against
different data conditioning procedures, other approaches to damage detection using HSI
(such as using segmentation algorithms for deciding if the pixel in question bears marks
of damage or not), the performance on different kinds of samples (different kinds of dam-
age, different kinds of material), and the applicability to the detection of dynamic crack
propagation can be explored further.
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