Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,548)

Search Parameters:
Keywords = glass fiber reinforcement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 28656 KiB  
Article
Experimental Study and FEM Analysis on the Strengthening of Masonry Brick Walls Using Expanded Steel Plates and Shotcrete with and Without Glass Fiber Reinforcement
by Zeynep Yaman, Alper Cumhur, Elif Ağcakoca, Muhammet Zeki Özyurt, Muhammed Maraşlı, Mohammad Saber Sadid, Abdulsalam Akrami and Azizullah Rasuly
Buildings 2025, 15(15), 2781; https://doi.org/10.3390/buildings15152781 - 6 Aug 2025
Abstract
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen [...] Read more.
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen wall specimens constructed with vertical perforated masonry block bricks were tested under diagonal compression in accordance with ASTM E519 (2010). Reinforcement plates with different thicknesses (1.5 mm, 2 mm, and 3 mm) were anchored using 6 mm diameter tie rods. A specially designed steel frame and an experimental loading program with controlled deformation increments were employed to simulate the effects of reinforced concrete beam frame system on walls under the effect of diagonal loads caused by seismic loads. In addition, numerical simulations were conducted using three-dimensional finite element models in Abaqus Explicit software to validate the experimental results. The findings demonstrated that increasing the number of tie rods enhanced the shear strength and overall behavior of the walls. Steel plates effectively absorbed tensile stresses and limited crack propagation, while the fiber reinforcement in the shotcrete further improved wall strength and ductility. Overall, the proposed strengthening techniques provided significant improvements in the seismic resistance and energy absorption capacity of masonry walls, offering practical and reliable solutions to enhance the safety and durability of existing masonry structures. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

11 pages, 2735 KiB  
Case Report
Management of a Complicated Crown Fracture in a 16-Year-Old Patient: A Case Report
by Ralitsa Bogovska-Gigova
Reports 2025, 8(3), 132; https://doi.org/10.3390/reports8030132 - 1 Aug 2025
Viewed by 189
Abstract
Background and Clinical Significance: Traumatic dental injuries, particularly complicated crown fractures of permanent incisors, are common in adolescents, with maxillary central incisors most frequently affected due to their prominent position. These injuries, often resulting from sports or accidents, require prompt management to [...] Read more.
Background and Clinical Significance: Traumatic dental injuries, particularly complicated crown fractures of permanent incisors, are common in adolescents, with maxillary central incisors most frequently affected due to their prominent position. These injuries, often resulting from sports or accidents, require prompt management to prevent complications such as pulp necrosis or infection, which can compromise long-term prognosis. Fragment reattachment offers a conservative, esthetically favorable approach when the fractured segment is intact, with outcomes comparable to composite restorations. This case report underscores the importance of timely intervention and advanced restorative techniques in pediatric dentistry. Case Presentation: A 16-year-old male presented with a complicated crown fracture of the upper left central incisor sustained during a soccer game. The fracture extended subgingivally with pulp exposure. The patient preserved the fragment in saline. Treatment involved fragment reattachment using a dentin bonding agent and flowable composite resin, followed by single-visit root canal therapy due to delayed presentation (48 h). A glass fiber post was placed to reinforce the restoration due to significant coronal loss. Three years of follow-up visits (1, 3, 6, 12, 24, and 36 months) revealed no clinical or radiographic complications, with the tooth remaining asymptomatic and functional. Conclusions: This case underscores the effectiveness of fragment reattachment when combined with meticulous technique and long-term monitoring. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

18 pages, 4093 KiB  
Article
Study of Mechanical and Wear Properties of Fabricated Tri-Axial Glass Composites
by Raghu Somanna, Rudresh Bekkalale Madegowda, Rakesh Mahesh Bilwa, Prashanth Malligere Vishveshwaraiah, Prema Nisana Siddegowda, Sandeep Bagrae, Madhukar Beejaganahalli Sangameshwara, Girish Hunaganahalli Nagaraju and Madhusudan Puttaswamy
J. Compos. Sci. 2025, 9(8), 409; https://doi.org/10.3390/jcs9080409 - 1 Aug 2025
Viewed by 211
Abstract
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite [...] Read more.
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite strength, with values ranging from 1.63% to 5.31%. Tensile tests revealed that composites with 5 wt% SiO2 (GV1) exhibited superior tensile strength, Young’s modulus, and elongation due to enhanced fiber–matrix interaction. Conversely, composites with 10 wt% SiO2 (GV2) showed decreased tensile performance, indicating increased brittleness. Flexural tests demonstrated that GV1 outperformed GV2, showcasing higher flexural strength, elastic modulus, and deflection, reflecting improved load-bearing capacity at optimal filler content. Shore D hardness tests confirmed that GV1 had the highest hardness among the specimens. SEM analysis revealed wear behavior under various loads and sliding distances. GV1 exhibited minimal wear loss at lower loads and distances, while higher loads caused significant matrix detachment and fiber damage. These findings highlight the importance of optimizing SiO2 filler content to enhance epoxy composites’ mechanical and tribological performance. Full article
Show Figures

Figure 1

21 pages, 13539 KiB  
Article
Impact of Fiber Type on Chloride Ingress in Concrete: A MacroXRF Imaging Analysis
by Suânia Fabiele Moitinho da Silva, Wanderson Santos de Jesus, Thalles Murilo Santos de Almeida, Renato Quinto de Oliveira Novais, Laio Andrade Sacramento, Joaquim Teixeira de Assis, Marcelino José dos Anjos and José Renato de Castro Pessôa
Appl. Sci. 2025, 15(15), 8495; https://doi.org/10.3390/app15158495 (registering DOI) - 31 Jul 2025
Viewed by 106
Abstract
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural [...] Read more.
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural longevity. Fiber-reinforced concrete (FRC) is widely used to improve durability; however, the effects of different fiber types on chloride resistance remain unclear. This study examines the influence of glass and polypropylene fibers on concrete’s microstructure and chloride penetration resistance. Cylindrical specimens were prepared, including a reference mix without fibers and mixes with 0.25% and 0.50% fiber content by volume. Both fiber types were tested for chloride resistance. The accelerated non-steady-state migration method was employed to determine the resistance coefficients to chloride ion penetration, while X-ray macrofluorescence (MacroXRF) mapped the chlorine infiltration depth in the samples. Compressive strength decreased in all fiber-reinforced samples, with 0.50% glass fiber leading to a 56% reduction in strength. Nevertheless, the XRF results showed that a 0.25% fiber content significantly reduced chloride penetration, with polypropylene fibers outperforming glass fibers. These findings highlight the critical role of fiber type and volume in improving concrete durability, offering insights for designing long-lasting FRC structures in chloride-rich environments. Full article
Show Figures

Figure 1

14 pages, 8280 KiB  
Article
Mechanical Characteristics of Glass-Fiber-Reinforced Polyester Composite Materials
by Ioan Milosan, Tibor Bedo, Camelia Gabor and Mihai Alin Pop
Materials 2025, 18(15), 3595; https://doi.org/10.3390/ma18153595 - 31 Jul 2025
Viewed by 183
Abstract
Fiber-reinforced composites are gaining more importance across different fields such as aeronautics, automotives, high-performance sporting equipment, etc., where decreasing weight while improving mechanical properties of polymers is fundamental. This article explores the mechanical behavior of fiber-reinforced polyester composite materials, highlighting their advantages and [...] Read more.
Fiber-reinforced composites are gaining more importance across different fields such as aeronautics, automotives, high-performance sporting equipment, etc., where decreasing weight while improving mechanical properties of polymers is fundamental. This article explores the mechanical behavior of fiber-reinforced polyester composite materials, highlighting their advantages and applications in various industrial fields. Usually, composite materials consist of a polyester matrix reinforced with different types of fibers, such as glass, carbon, or Kevlar, which provide superior mechanical characteristics. This study analyzed the tensile strength, bending resistance, and resilience of glass fiber composites, emphasizing the importance of proper fiber selection and manufacturing processes. These materials stand out for their excellent strength-to-weight ratio and are widely used in the fabrication of tanks in various industries. Experimental results demonstrated tensile strength (Rm) around 115 MPa, Shore D hardness values of 88 units, and impact toughness (resilience) of 2.7 J/cm2. Based on the composite materials’ behavior in testing, the article further offers practical recommendations for the effective deployment of these composites in the fabrication of various types of industrial reservoirs. Full article
Show Figures

Graphical abstract

25 pages, 16276 KiB  
Article
Localized Compression Behavior of GFRP Grid Web–Concrete Composite Beams: Experimental, Numerical, and Analytical Studies
by Yunde Li, Hai Cao, Yang Zhou, Weibo Kong, Kun Yu, Haoting Jiang and Zhongya Zhang
Buildings 2025, 15(15), 2693; https://doi.org/10.3390/buildings15152693 - 30 Jul 2025
Viewed by 216
Abstract
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable shear-span ratios (λ = 1.43, 1.77) and local stiffener specimens were designed to assess their localized compressive behavior. Experimental results reveal that a 19.2% reduction in shear-span ratio enhances ultimate load capacity by 22.93% and improves stiffness by 66.85%, with additional performance gains of 77.53% in strength and 94.29% in stiffness achieved through local stiffener implementation. In addition, finite element (FE) analysis demonstrated a strong correlation with experimental results, showing less than 5% deviation in ultimate load predictions while accurately predicting stress distributions and failure modes. FE parametric analysis showed that increasing the grid thickness and decreasing the grid spacing within a reasonable range can considerably enhance the localized compression performance. The proposed analytical model, based on Winkler elastic foundation theory, predicts ultimate compression capacities within 10% of both the experimental and numerical results. However, the GFRP grid strength adjustment factor βg should be further refined through additional experiments and numerical analyses to improve reliability. Full article
Show Figures

Figure 1

17 pages, 2616 KiB  
Article
Investigation of the Dynamic Characterization of Traditional and Modern Building Materials Using an Impact Excitation Test
by Anil Ozdemir
Buildings 2025, 15(15), 2682; https://doi.org/10.3390/buildings15152682 - 30 Jul 2025
Viewed by 246
Abstract
This study presents a comprehensive non-destructive evaluation of a broad range of construction materials using the impulse excitation of vibration (IEV) technique. Tested specimens included low- and normal-strength concrete, fiber-reinforced concrete (with basalt, polypropylene, and glass fibers), lime mortars (NHL-2 and -3.5), plaster, [...] Read more.
This study presents a comprehensive non-destructive evaluation of a broad range of construction materials using the impulse excitation of vibration (IEV) technique. Tested specimens included low- and normal-strength concrete, fiber-reinforced concrete (with basalt, polypropylene, and glass fibers), lime mortars (NHL-2 and -3.5), plaster, and clay bricks (light and dark). Compressive and flexural strength tests complemented dynamic resonance testing on the same samples to ensure full mechanical characterization. Flexural and torsional resonance frequencies were used to calculate dynamic elastic modulus, shear modulus, and Poisson’s ratio. Strong correlations were observed between dynamic elastic modulus and shear modulus, supporting the compatibility of dynamic results with the classical elasticity theory. Flexural frequencies were more sensitive to material differences than torsional ones. Fiber additives, particularly basalt and polypropylene, significantly improved dynamic stiffness, increasing the dynamic elastic modulus/compressive strength ratio by up to 23%. In contrast, normal-strength concrete exhibited limited stiffness improvement despite higher strength. These findings highlight the reliability of IEV in mechanical properties across diverse material types and provide comparative reference data for concrete and masonry applications. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials—2nd Edition)
Show Figures

Figure 1

30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 324
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 419
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

12 pages, 6639 KiB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 229
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 409
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

19 pages, 3913 KiB  
Article
Temperature-Dependent Elastic and Damping Properties of Basalt- and Glass-Fabric-Reinforced Composites: A Comparative Study
by Hubert Rahier, Jun Gu, Guillermo Meza Hernandez, Gulsen Nazerian and Hugo Sol
Fibers 2025, 13(8), 99; https://doi.org/10.3390/fib13080099 - 24 Jul 2025
Viewed by 260
Abstract
Fiber-reinforced composite materials exhibit orthotropic behavior, characterized by complex orthotropic engineering constants such as Young’s modulus, Poisson’s ratio, and shear modulus. It is widely recognized that basalt fibers possess superior resistance to elevated temperatures compared to glass fibers. However, the behavior of these [...] Read more.
Fiber-reinforced composite materials exhibit orthotropic behavior, characterized by complex orthotropic engineering constants such as Young’s modulus, Poisson’s ratio, and shear modulus. It is widely recognized that basalt fibers possess superior resistance to elevated temperatures compared to glass fibers. However, the behavior of these fibers within composites at typical operational temperatures for automotive and consumer goods applications has not been thoroughly investigated. A novel measurement setup based on the non-destructive impulse excitation method has been developed for the automated identification of complex orthotropic engineering constants as a function of temperature. This study provides a comparative analysis of the identified engineering constants of bidirectionally fabric-reinforced glass and basalt composites with an epoxy matrix, across a temperature range from −20 °C to 60 °C. The results reveal only minimal differences in stiffness and damping behavior between the examined glass and basalt samples. Full article
Show Figures

Figure 1

28 pages, 5525 KiB  
Article
Synthesis and Evaluation of a Photocatalytic TiO2-Ag Coating on Polymer Composite Materials
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
J. Compos. Sci. 2025, 9(8), 383; https://doi.org/10.3390/jcs9080383 - 22 Jul 2025
Viewed by 402
Abstract
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the [...] Read more.
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the coatings was evaluated. The TiO2-Ag coating showed the best performance and was tested under UV-A irradiation and visible light (Vis), with high efficiency in VOC degradation, self-cleaning, and microbial activity. The tests were repeated in multiple runs, showing high reproducibility in the results obtained. In GFRP, pollutant and microorganism removal ratios of more than 90% were observed. In contrast, GFRE showed a lower adhesion and stability of the coating. This result is attributed to incompatibility problems with the epoxy matrix, which significantly limited its functional performance. The results highlight the feasibility of using the TiO2-Ag coating on GFRP substrates, even under visible light. Under real-world conditions for 351 days, the coating on GFRP maintained its stability. This type of material has high potential for application in modular building systems using sandwich panels, as well as in facades and automotive components, where self-cleaning and contaminant-control properties are essential. Full article
Show Figures

Figure 1

21 pages, 2152 KiB  
Article
Effect of 2000-Hour Ultraviolet Irradiation on Surface Degradation of Glass and Basalt Fiber-Reinforced Laminates
by Irina G. Lukachevskaia, Aisen Kychkin, Anatoly K. Kychkin, Elena D. Vasileva and Aital E. Markov
Polymers 2025, 17(14), 1980; https://doi.org/10.3390/polym17141980 - 18 Jul 2025
Viewed by 394
Abstract
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies [...] Read more.
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies in the need to improve the reliability of composite materials under extended exposure to harsh climatic conditions. Experimental tests were conducted in a laboratory UV chamber over 2000 h, simulating accelerated weathering. Mechanical properties were evaluated using three-point bending, while surface conditions were assessed via profilometry and microscopy. It was shown that GFRPs exhibit a significant reduction in flexural strength—down to 59–64% of their original value—accompanied by increased surface roughness and microdefect depth. The degradation mechanism of GFRPs is attributed to the photochemical breakdown of the polymer matrix, involving free radical generation, bond scission, and oxidative processes. To verify these mechanisms, FTIR spectroscopy was employed, which enabled the identification of structural changes in the polymer phase and the detection of mass loss associated with matrix decomposition. In contrast, BFRP retained up to 95% of their initial strength, demonstrating high resistance to UV-induced aging. This is attributed to the shielding effect of basalt fibers and their ability to retain moisture in microcavities, which slows the progress of photo-destructive processes. Comparison with results from natural exposure tests under extreme climatic conditions (Yakutsk) confirmed the reliability of the accelerated aging model used in the laboratory. Full article
Show Figures

Figure 1

39 pages, 4364 KiB  
Review
Bond Behavior of Glass Fiber-Reinforced Polymer (GFRP) Bars Embedded in Concrete: A Review
by Saad Saad and Maria Anna Polak
Materials 2025, 18(14), 3367; https://doi.org/10.3390/ma18143367 - 17 Jul 2025
Viewed by 305
Abstract
Glass Fiber-Reinforced Polymer (GFRP) bars are becoming increasingly common in structural engineering applications due to their superior material properties, mainly their resistance to corrosion due to their metallic nature in comparison to steel reinforcement and their improved durability in alkaline environments compared to [...] Read more.
Glass Fiber-Reinforced Polymer (GFRP) bars are becoming increasingly common in structural engineering applications due to their superior material properties, mainly their resistance to corrosion due to their metallic nature in comparison to steel reinforcement and their improved durability in alkaline environments compared to CFRP and BFRP reinforcement. However, GFRP bars also suffer from a few limitations. One of the main issues that affects the performance of GFRP reinforcing bars is their bond with concrete, which may differ from the bond between traditional steel bars and concrete. However, despite the wide attention of researchers, there has not been a critical review of the recent research progress on bond behavior between GFRP bars and concrete. The objective of this paper is to provide an overview of the current state of research on bond in GFRP-reinforced concrete in an attempt to systematize the existing scientific knowledge. The study summarizes experimental investigations that directly measure bond strength and investigates the different factors that influence it. Additionally, an overview of the analytical and empirical models used to simulate bond behavior is then presented. The findings indicate the dependence of the bond on several factors that include bar diameter, bar surface, concrete strength, and embedment length. Additionally, it was concluded that both traditional and more recent bond models do not explicitly account for the effect of different factors, which highlights the need for improved bond models that do not require calibration with experimental tests. Full article
Show Figures

Figure 1

Back to TopTop