Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = glacier instability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6268 KiB  
Article
The Destabilizing Effect of Glacial Unloading on a Large Volcanic Slope Instability in Southeast Iceland
by Daniel Ben-Yehoshua, Sigurður Erlingsson, Þorsteinn Sæmundsson, Reginald L. Hermanns, Eyjólfur Magnússon, Robert A. Askew and Jóhann Helgason
GeoHazards 2025, 6(1), 1; https://doi.org/10.3390/geohazards6010001 - 6 Jan 2025
Viewed by 1767
Abstract
Since the turn of the 20th century, glacial thinning has been exposing volcanic mountain slopes around Iceland’s outlet glaciers. In the early 2000s, several slope instabilities appeared around the Svínafellsjökull outlet glacier in Southeast Iceland. The largest of these is located on a [...] Read more.
Since the turn of the 20th century, glacial thinning has been exposing volcanic mountain slopes around Iceland’s outlet glaciers. In the early 2000s, several slope instabilities appeared around the Svínafellsjökull outlet glacier in Southeast Iceland. The largest of these is located on a slope called Svarthamrar and is defined by a more than 2 km-long fracture system that separates the northernmost part of the mountain, south of Svínafellsjökull. Here we present updated glacier bed topography, a stratigraphical and structural assessment of the Svarthamrar slope, and quantify the destabilizing effect of glacial unloading from 1890 to deglaciated. Our results show that the slope was predisposed to instability by structural discontinuities and a strongly overdeepened glacial trough. Glacial unloading likely controlled the slope destabilization, potentially exacerbated by temporarily steeper hydraulic gradients due to rapid glacier thinning in the late 1990s and 2000s. The load of older landslide deposits on the glacier acts stabilizing on the slope. We propose that future glacial thinning will reduce the slope stability further, making it more susceptible to external triggers, and resulting in reactivation of the deformation and potential failure. Similar trends of destabilization can be expected for many slopes in Iceland and elsewhere. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

33 pages, 15088 KiB  
Article
A Multi-Criteria GIS-Based Approach for Risk Assessment of Slope Instability Driven by Glacier Melting in the Alpine Area
by Giulia Castellazzi and Mattia Previtali
Appl. Sci. 2024, 14(24), 11524; https://doi.org/10.3390/app142411524 - 11 Dec 2024
Cited by 1 | Viewed by 1844
Abstract
Climate change is resulting in significant transformations in mountain areas all over the world, causing the melting of glacier ice, reduction in snow accumulation, and permafrost loss. Changes in the mountain cryosphere are not only modifying flora and fauna distributions but also affecting [...] Read more.
Climate change is resulting in significant transformations in mountain areas all over the world, causing the melting of glacier ice, reduction in snow accumulation, and permafrost loss. Changes in the mountain cryosphere are not only modifying flora and fauna distributions but also affecting the stability of slopes in those regions. For all these reasons, and because of the risks these phenomena pose to the population, the dentification of dangerous areas is a crucial step in the development of risk reduction strategies. While several methods and examples exist that cover the assessment and computation of single sub-components, there is still a lack of application of risk assessment due to glacier melting over large areas in which the final result can be directly employed in the design of risk mitigation policies at regional and municipal levels. This research is focused on landslides and gravitational movements on slopes resulting from rapid glacier melting phenomena in the Valle d’Aosta region in Italy, with the aim of providing a tool that can support spatial planning in response to climate change in Alpine environments. Through the conceptualization and development of a GIS-based and multi-criteria approach, risk is then estimated by defining hazard indices that consider different aspects, combining the experience acquired from studies carried out in various disciplinary fields, to obtain a framework at the regional level. This first assessment is then deepened for the Lys River Valley, where the mapping of hazardous areas was implemented, obtaining a classification of buildings according to their hazard score to estimate the potential damage and total risk relating to possible slope instability events due to ice melt at the local scale. Full article
Show Figures

Figure 1

22 pages, 8679 KiB  
Article
An Analysis of the Mechanisms Involved in Glacial Lake Outburst Flooding in Nyalam, Southern Tibet, in 2018 Based on Multi-Source Data
by Yixing Zhao, Wenliang Jiang, Qiang Li, Qisong Jiao, Yunfeng Tian, Yongsheng Li, Tongliang Gong, Yanhong Gao and Weishou Zhang
Remote Sens. 2024, 16(15), 2719; https://doi.org/10.3390/rs16152719 - 24 Jul 2024
Cited by 1 | Viewed by 1272
Abstract
Glacial Lake Outburst Flood (GLOF) events, particularly prevalent in Asia’s High Mountain regions, pose a significant threat to downstream regions. However, limited understanding of triggering mechanisms and inadequate observations pose significant barriers for early warnings of impending GLOFs. The 2018 Nyalam GLOF event [...] Read more.
Glacial Lake Outburst Flood (GLOF) events, particularly prevalent in Asia’s High Mountain regions, pose a significant threat to downstream regions. However, limited understanding of triggering mechanisms and inadequate observations pose significant barriers for early warnings of impending GLOFs. The 2018 Nyalam GLOF event in southern Tibet offers a valuable opportunity for retrospective analysis. By combining optical and radar remote sensing images, meteorological data, and seismicity catalogs, we examined the spatiotemporal evolution, triggering factors, and the outburst mechanism of this event. Our analysis reveals a progressive retreat of 400–800 m for the parent glaciers between 1991 and 2018, increasing the runoff areas at glacier termini by 167% from 2015 to 2018 and contributing abundant meltwater to the glacial lake. In contrast, the lake size shrunk, potentially due to a weakening moraine dam confirmed by SAR interferometry, which detected continuous subsidence with a maximum line-of-sight (LOS) rate of ~120 mm/a over the preceding ~2.5 years. Additionally, temperature and precipitation in 2018 exceeded the prior decade’s average. Notably, no major earthquakes preceded the event. Based on these observations, we propose a likely joint mechanism involving high temperatures, heavy precipitation, and dam instability. An elevated temperature and precipitation accelerated glacial melt, increasing lake water volume and seepage through the moraine dam. This ultimately compromised dam stability and led to its failure between 3 August 2018 and 6 August 2018. Our findings demonstrate the existence of precursory signs for impending GLOFs. By monitoring the spatiotemporal evolution of environmental factors and deformation, it is possible to evaluate glacial lake risk levels. This work contributes to a more comprehensive understanding of GLOF mechanisms and is of significant importance for future glacial lake risk assessments. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

25 pages, 18712 KiB  
Article
Spatial Distribution and Variation in Debris Cover and Flow Velocities of Glaciers during 1989–2022 in Tomur Peak Region, Tianshan Mountains
by Weiyong Zhou, Min Xu and Haidong Han
Remote Sens. 2024, 16(14), 2587; https://doi.org/10.3390/rs16142587 - 15 Jul 2024
Cited by 4 | Viewed by 1592
Abstract
In this study, we utilized a feature optimization method combining texture and topographical factors with the random forest (RF) approach to identify changes in the extent of the debris cover around the Tianshan Tomur Peak between 1989 and 2022. Based on Sentinel-1 image [...] Read more.
In this study, we utilized a feature optimization method combining texture and topographical factors with the random forest (RF) approach to identify changes in the extent of the debris cover around the Tianshan Tomur Peak between 1989 and 2022. Based on Sentinel-1 image data, we extracted glacier flow velocities using an offset tracking method and conducted a long-term analysis of flow velocities in combination with existing datasets. The debris identification results for 2022 showed that the debris-covered area in the study region was 409.2 km2, constituting 22.8% of the total glacier area. Over 34 years, the area of debris cover expanded by 69.4 km2, reflecting a growth rate of 20.0%. Analysis revealed that glaciers in the Tomur Peak area have been decelerating at an overall rate of −4.0% per decade, with the complexity of the glacier bed environment and the instability of the glacier’s internal structure contributing to significant seasonal and interannual variability in the movement speeds of individual glaciers. Full article
(This article belongs to the Special Issue Remote Sensing of Cryosphere and Related Processes)
Show Figures

Figure 1

14 pages, 21715 KiB  
Article
Calculation Method of Material Accumulation Rate at the Front of Trunk Glaciers Based on Satellite Monitoring
by Zhang Wang, Kaiheng Hu, Zhengzheng Li, Changhu Li and Yao Li
Sustainability 2024, 16(1), 284; https://doi.org/10.3390/su16010284 - 28 Dec 2023
Viewed by 1742
Abstract
Glaciers continue to erode and transport material, forming an accumulation area at the front of the glacier. The trunk glacier, which has many tributary glaciers upstream and converges on the main channel, deposits vast amounts of material in the main channel. It blocks [...] Read more.
Glaciers continue to erode and transport material, forming an accumulation area at the front of the glacier. The trunk glacier, which has many tributary glaciers upstream and converges on the main channel, deposits vast amounts of material in the main channel. It blocks the main channel, forming barrier lakes, and eventually turns into mountain disasters, such as debris flows or outburst floods. Therefore, the accumulation rate of the material is a major parameter in such disasters and can determine the frequency of disasters. The material usually comes from bedrock erosion by glaciers, weathering of bedrock walls, and upstream landslides, and the material loss depends on river erosion. Based on this, we set up a method to calculate the material accumulation rate in the glacier front based on satellite images. Then, the Peilong catchment was taken as an example to validate the proposed method. The results indicate that climatic fluctuations may increase landslides, resulting in more actual accumulation than the calculated value according to the average rate of bedrock retreat. The material provided by the retreat of bedrock accounts for 92% of the total volume. Our method provides a practical reference for the mid- and long-term prediction of glacial catastrophic mass movement, as global warming seriously threatens glacier instability and downstream communities. Full article
Show Figures

Figure 1

30 pages, 19865 KiB  
Article
Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data
by Davide Donati, Doug Stead, Bernhard Rabus, Jeanine Engelbrecht, John J. Clague, Stephen D. Newman and Mirko Francioni
Remote Sens. 2024, 16(1), 117; https://doi.org/10.3390/rs16010117 - 27 Dec 2023
Cited by 5 | Viewed by 1713
Abstract
The characterization of landslides located in remote areas poses significant challenges due to the costs of reaching the sites and the lack of reliable subsurface data to constrain geological interpretations. In this paper, the advantages of combining field and remote sensing techniques to [...] Read more.
The characterization of landslides located in remote areas poses significant challenges due to the costs of reaching the sites and the lack of reliable subsurface data to constrain geological interpretations. In this paper, the advantages of combining field and remote sensing techniques to investigate the deformation and stability of rock slopes are demonstrated. The characterization of the Fels landslide, a large, slowly deforming rock slope in central Alaska, is described. Historical aerial imagery is used to highlight the relationship between glacier retreat and developing instability. Airborne laser scanning (ALS) and Structure-from-Motion (SfM) datasets are used to investigate the structural geological setting of the landslide, revealing a good agreement between structural discontinuities at the outcrop and slope scales. The magnitude, plunge, and direction of slope surface displacements and their changes over time are studied using a multi-temporal synthetic aperture radar speckle-tracking (SAR ST) dataset. The analyses show an increase in displacement rates (i.e., an acceleration of the movement) between 2010 and 2020. Significant spatial variations of displacement direction and plunge are noted and correlated with the morphology of the failure surface reconstructed using the vector inclination method (VIM). In particular, steeper displacement vectors were reconstructed in the upper slope, compared to the central part, thus suggesting a change in basal surface morphology, which is largely controlled by rock mass foliation. Through this analytical approach, the Fels landslide is shown to be a slow-moving, compound rockslide, the displacement of which is controlled by structural geological features and promoted by glacier retreat. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

26 pages, 8153 KiB  
Article
Geophysics in Antarctic Research: A Bibliometric Analysis
by Yuanyuan Zhang, Changchun Zou, Cheng Peng, Xixi Lan and Hongjie Zhang
Remote Sens. 2023, 15(16), 3928; https://doi.org/10.3390/rs15163928 - 8 Aug 2023
Cited by 3 | Viewed by 3625
Abstract
Antarctica is of great importance in terms of global warming, the sustainability of resources, and the conservation of biodiversity. However, due to 99.66% of the continent being covered in ice and snow, geological research and geoscientific study in Antarctica face huge challenges. Geophysical [...] Read more.
Antarctica is of great importance in terms of global warming, the sustainability of resources, and the conservation of biodiversity. However, due to 99.66% of the continent being covered in ice and snow, geological research and geoscientific study in Antarctica face huge challenges. Geophysical surveys play a crucial role in enhancing comprehension of the fundamental structure of Antarctica. This study used bibliometric analysis to analyze citation data retrieved from the Web of Science for the period from 1982 to 2022 with geophysical research on Antarctica as the topic. According to the analysis results, the amount of Antarctic geophysical research has been steadily growing over the past four decades as related research countries/regions have become increasingly invested in issues pertaining to global warming and sustainability, and international cooperation is in sight. Moreover, based on keyword clustering and an analysis of highly cited papers, six popular research topics have been identified: Antarctic ice sheet instability and sea level change, Southern Ocean and Sea Ice, tectonic activity of the West Antarctic rift system, the paleocontinental rift and reorganization, magmatism and volcanism, and subglacial lakes and subglacial hydrology. This paper provides a detailed overview of these popular research topics and discusses the applications and advantages of the geophysical methods used in each field. Finally, based on keywords regarding abrupt changes, we identify and examine the thematic evolution of the nexus over three consecutive sub-periods (i.e., 1990–1995, 1996–2005, and 2006–2022). The relevance of using geophysics to support numerous and diverse scientific activities in Antarctica becomes very clear after analyzing this set of scientific publications, as is the importance of using multiple geophysical methods (satellite, airborne, surface, and borehole technology) to revolutionize the acquisition of new data in greater detail from inaccessible or hard-to-reach areas. Many of the advances that they have enabled be seen in the Antarctic terrestrial areas (detailed mapping of the geological structures of West and East Antarctica), ice, and snow (tracking glaciers and sea ice, along with the depth and features of ice sheets). These valuable results help identify potential future research opportunities in the field of Antarctic geophysical research and aid academic professionals in keeping up with recent advances. Full article
Show Figures

Figure 1

27 pages, 101698 KiB  
Article
Landslide Risk Mapping Using the Weight-of-Evidence Method in the Datong Mining Area, Qinghai Province
by He Yang, Qihong Wu, Jianhui Dong, Feihong Xie and Qixue Zhang
Sustainability 2023, 15(14), 11330; https://doi.org/10.3390/su151411330 - 20 Jul 2023
Cited by 4 | Viewed by 2401
Abstract
Qinghai is rich in mineral resources, but frequent and large-scale mineral mining has caused secondary damage to the fragile primary surface and produced a large number of landslide disasters. In complex geological environments such as glacier ablation and frequent tectonic movements, a complete [...] Read more.
Qinghai is rich in mineral resources, but frequent and large-scale mineral mining has caused secondary damage to the fragile primary surface and produced a large number of landslide disasters. In complex geological environments such as glacier ablation and frequent tectonic movements, a complete quantitative evaluation method for landslide risk in high-cold mining areas has not yet been formed. In view of this, this article uses the field survey and remote sensing data of the Datong mining area in Qinghai Province in 2012 as the basic data. We comprehensively considered five first-level factors (13 s-level factors) including topography, lithological structure, mining engineering activities, land use, and dynamic deformation as evaluation indicators for landslide susceptibility in mining areas, and used the Topographic Wetness Index (TWI) and the Human Engineering Activity Intensity (HEAI) to quantitatively estimate the hazard of landslide according to the landslide trigger mechanism. The weight-of-evidence approach was used for landslide hazard and risk mapping under different landslide--inducing conditions. The results indicate that the extremely high-hazard areas induced by human engineering activities account for 14% of the total area, and the extremely high-risk areas account for 13% of the total area in the Datong mining area, and the area of the extremely high-risk area is large; the landslide risk assessment mapping model constructed in this study can effectively evaluate the probability of slope instability caused by rainfall and human engineering activities. The effective value of the receiver operating characteristic (ROC) curve of the sensitivity assessment model reaches 0.863, and the evaluation results are consistent with reality; using the weight-of-evidence model for landslide risk assessment is more in line with the actual situation in alpine mining areas, and is more suitable for guiding landslide risk management and disaster prevention and mitigation in mining areas. Full article
Show Figures

Figure 1

22 pages, 14069 KiB  
Article
Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking
by Siung Lee, Seohyeon Kim, Hyunjun An and Hyangsun Han
Remote Sens. 2023, 15(12), 3079; https://doi.org/10.3390/rs15123079 - 12 Jun 2023
Cited by 4 | Viewed by 3096
Abstract
The Cook Glacier drains a significant portion of the Wilkes Subglacial Basin, the largest subglacial basin in East Antarctica—which feeds the Cook Ice Shelf. The ice velocity of the Cook Ice Shelf needs to be monitored precisely and accurately, as it plays a [...] Read more.
The Cook Glacier drains a significant portion of the Wilkes Subglacial Basin, the largest subglacial basin in East Antarctica—which feeds the Cook Ice Shelf. The ice velocity of the Cook Ice Shelf needs to be monitored precisely and accurately, as it plays a critical role in determining the ice discharge from the Wilkes Subglacial Basin. In this study, we measured the annual ice velocities of the Cook Ice Shelf using the offset tracking technique on Sentinel-1 synthetic aperture radar images obtained from 2017 to 2022. Time-series offsets in the range and azimuth directions were determined from the offset tracking pairs with a temporal baseline of 36 days obtained from January to December of each year. Statistical evaluations of the spatiotemporal variations of the time-series offsets effectively eliminated the erroneous offsets in the original offset fields; the remaining offsets were then used to produce two-dimensional annual ice velocities. The direction of the ice flow of the Cook Ice Shelf was almost constant during the period 2017–2022, and the variations in the magnitude of annual ice velocities were investigated. The annual ice velocities of the Cook East Ice Shelf (CEIS) stayed constant and showed a gradual increase from the grounding line to the ice front, except in the western part. Ice velocities of the western part of the CEIS have not changed much at the grounding line during the 6-year period, while in the dynamic shelf ice zone, ice velocities accelerated by up to 22% because of the development of numerous crevasses and fractures. The ice velocities of the Cook West Ice Shelf (CWIS) were about two times higher than those of the CEIS and tended to increase rapidly from the grounding line to the ice front. The annual ice velocities at the grounding line of CWIS increased rapidly from 1330 to 1450 m/a over 6 years, with 70% of this acceleration observed after 2021. This was attributed to a reduction in the ice shelf volume because of the evolution of surface crevasses and rifts, leading to a decrease in the ice shelf’s buttressing potential. In particular, the loss of a portion of the dynamic shelf ice zone due to a series of ice front collapses in February 2022 likely caused the rapid speed-up of the ice shelf. The results of this study indicate that the buttressing potential of the CWIS and the western part of the CEIS has been significantly reduced, which could mean serious instability of the marine ice sheet in this region. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications)
Show Figures

Figure 1

20 pages, 30169 KiB  
Article
The Precursory 3D Displacement Patterns and Their Implicit Collapse Mechanism of the Ice-Rock Avalanche Events Occurred in Sedongpu Basin Revealed by Optical and SAR Observations
by Chao Ding, Guangcai Feng, Lu Zhang, Qiang Shen, Zhiqiang Xiong and Mingsheng Liao
Remote Sens. 2023, 15(11), 2818; https://doi.org/10.3390/rs15112818 - 29 May 2023
Cited by 2 | Viewed by 2267
Abstract
Quantifying the kinematic evolution patterns of mountain glaciers near Yarlung Tsanpo River performs a major role in evaluating the glacial instability and the secondary disasters. For the Sedongpu Basin near the Yarlung Tsanpo River Valley, the dramatic geomorphic landscape variations triggered by the [...] Read more.
Quantifying the kinematic evolution patterns of mountain glaciers near Yarlung Tsanpo River performs a major role in evaluating the glacial instability and the secondary disasters. For the Sedongpu Basin near the Yarlung Tsanpo River Valley, the dramatic geomorphic landscape variations triggered by the ice-rock avalanche events were visually identified as the dominant texture deficiencies in time-series optical images. To improve the image correlation quality broken by these image texture deficiencies, the Landsat-8/Sentinel-2 optical images were divided into different groups, then a stepwise combination strategy was innovatively proposed to derive the glacier time-series displacement velocities in different temporal stages. The standard deviations (STD) of the optical measurements in the stable area maintained around 0.04 m/yr for the normalized displacement velocity and maintained from 0.6 to 1.7 m for the cumulative displacement time series. The obvious variations in glacier displacement velocity were identified before each collapse event. Subsequently, the offset-tracking procedures were performed on 7 Sentinel-1A Synthetic Aperture Radar (SAR) images to acquire the range and azimuth displacement velocities. To better reveal the dynamic mechanism of the glacier activity, the three-dimensional (3D) glacial displacement velocity was also derived by using optical and SAR results. The precipitation, temperature, and seismic activities were assumed as the main triggering factors of controlling the glacial dynamic mechanism and final collapse events. Additionally, the dynamic mechanism of the active glaciers in Sedongpu Basin conformed to a power law, which was limited by the changes of the internal stress friction force on the sliding base surface. The aim of this study is to shed a light on interpreting the precursory displacement patterns and their implicit failure mechanism of these ice-rock avalanche events with the conventional freely optical and SAR observations. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

18 pages, 6038 KiB  
Review
Impacts of Loss of Cryosphere in the High Mountains of Northwest North America
by John J. Clague and Dan H. Shugar
Quaternary 2023, 6(1), 1; https://doi.org/10.3390/quat6010001 - 1 Jan 2023
Cited by 4 | Viewed by 3579
Abstract
Global atmospheric warming is causing physical and biotic changes in Earth’s high mountains at a rate that is likely unprecedented in the Holocene. We summarize changes in the presently glacierized mountains of northwest North America, including a rapid and large reduction in glacier [...] Read more.
Global atmospheric warming is causing physical and biotic changes in Earth’s high mountains at a rate that is likely unprecedented in the Holocene. We summarize changes in the presently glacierized mountains of northwest North America, including a rapid and large reduction in glacier ice and permafrost, a related increase in slope instability and landslides, river re-routing and other hydrological changes, and changing aquatic ecosystems. Atmospheric greenhouse gas concentrations continue to rise and will likely do so for at least the next several decades, if not longer, and mountains will continue to warm, perhaps reaching temperatures up to several degrees Celsius warmer than present over the remainder of this century. As a result, the rate of physical and biotic changes documented in this paper is very likely to dramatically increase and transform high-mountain environments. Full article
Show Figures

Figure 1

17 pages, 17332 KiB  
Article
Changes in Glaciers and Glacial Lakes in the Bosula Mountain Range, Southeast Tibet, over the past Two Decades
by Jia Li, Yunyang Gu, Lixin Wu, Lei Guo, Haodong Xu and Zelang Miao
Remote Sens. 2022, 14(15), 3792; https://doi.org/10.3390/rs14153792 - 6 Aug 2022
Cited by 5 | Viewed by 2459
Abstract
Glaciers and glacial lakes in the Bosula Mountain Range need special attention, because their instability may cause disastrous consequences to the downstream settlements and the Sichuan-Tibet Road. The latter is a pivotal traffic line in the Southeast Tibetan Plateau. In order to investigate [...] Read more.
Glaciers and glacial lakes in the Bosula Mountain Range need special attention, because their instability may cause disastrous consequences to the downstream settlements and the Sichuan-Tibet Road. The latter is a pivotal traffic line in the Southeast Tibetan Plateau. In order to investigate the state of glaciers and glacial lakes in the Bosula Mountain Range, we estimated the changes in glacier/glacial lake boundaries, glacier surface elevation, and glacier flow velocity between 2000 and 2021 based on multisource remote sensing data. Our results showed that, from the period 2000–2013 to the period 2013–2021, the average shrinking rate of glacier area increased from 0.99 km2/a to 1.74 km2/a, and the average expanding rate of glacial lake area increased from 0.04 km2/a to 0.06 km2/a. From the period 1990–2011 to the period 2015–2019, the average thinning rate of glaciers increased from 0.83 m/a to 1.58 m/a. These results indicate the Bosula Mountain Range is one of the fastest melting glacierized regions in the High Mountain Asia, and the factors that account for this may include quick temperature rise, abundant summer rainfall, and thin debris cover. In spite of strong ice melting, the observed changes in glacier boundaries, surface elevation, and flow velocity show no sign of surge activity, and the frequency of glacier lake outburst has not increased since 1989. Currently, three proglacial lakes that expanded quickly during 2000–2021 are now prominent hazards. They are directly threatened by accidental ice calving and ice avalanche, and their outburst could cause considerable damage to the downstream settlements and the Sichuan-Tibet Road. Full article
Show Figures

Figure 1

16 pages, 8697 KiB  
Article
Long-Term Monitoring and Change Analysis of Pine Island Ice Shelf Based on Multi-Source Satellite Observations during 1973–2020
by Shijie Liu, Shu Su, Yuan Cheng, Xiaohua Tong and Rongxing Li
J. Mar. Sci. Eng. 2022, 10(7), 976; https://doi.org/10.3390/jmse10070976 - 16 Jul 2022
Cited by 4 | Viewed by 2683
Abstract
Pine Island Glacier (PIG) is one of the largest contributors to sea level rise in Antarctica. Continuous thinning and frequent calving imply significant destabilization of Pine Island Glacier Ice Shelf (PIGIS). To understand the mechanism of its accelerated disintegration and its future development, [...] Read more.
Pine Island Glacier (PIG) is one of the largest contributors to sea level rise in Antarctica. Continuous thinning and frequent calving imply significant destabilization of Pine Island Glacier Ice Shelf (PIGIS). To understand the mechanism of its accelerated disintegration and its future development, we conducted a long-term monitoring and comprehensive analysis of PIGIS, including ice flow velocity, ice shelf fronts, ocean water temperature, rifts, and surface strain rates, based on multi-source satellite observations during 1973–2020. The results reveal that: (1) ice flow velocities of PIGIS increased from 2.3 km/yr in 1973 to 4.5 km/yr in 2020, with two rapid acceleration periods of 1995–2009 and 2017–2020, and its change was highly correlated to the ocean water temperature variation. (2) At least 13 calving events occurred during 1973–2020, with four unprecedented successive retreats in 2015, 2017, 2018, and 2020. (3) The acceleration of ice shelf rifting and calving may correlate to the destruction of shear margins, while this damage was likely a response to the warming of bottom seawater. The weakening southern shear margin may continue to recede, indicating that the instability of PIGIS will continue. Full article
Show Figures

Figure 1

16 pages, 18087 KiB  
Article
Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau
by Le Gao, Xiaofeng Yang, Jifeng Qi and Wenfeng Chen
Remote Sens. 2022, 14(11), 2634; https://doi.org/10.3390/rs14112634 - 31 May 2022
Cited by 2 | Viewed by 2499
Abstract
Mass balance observations are beneficial for assessing climate change in different world regions. This study analyzed the glacier elevation change, ice flux divergence, and surface mass balance (SMB) in the West Kunlun Mountains (WKM) on the Tibetan Plateau using remote sensing data, including [...] Read more.
Mass balance observations are beneficial for assessing climate change in different world regions. This study analyzed the glacier elevation change, ice flux divergence, and surface mass balance (SMB) in the West Kunlun Mountains (WKM) on the Tibetan Plateau using remote sensing data, including satellite altimetry, glacier surface velocity, and thickness fields. Seventeen local glaciers were examined in detail and showed varying surface elevation changes from −0.39 ± 0.11 to 0.83 ± 0.10 m/a. Overall, we obtained a reasonably rapid elevation trend of 0.21 ± 0.14 m/a. By combining the ice flux divergence and surface mass balance, the overall thickness change of the WKM glacier over time is almost zero, and the WKM glacier shows a positive mass balance of 0.21 ± 0.98 m/a. Moreover, the ice flux divergence is more significant on the ice tongue than in the flat region due to the more considerable gradient of surface velocity and thickness fields. We found that glacier heterogeneity dynamics were associated with a surging dynamic mechanism concentrated in the glacier tongue and were induced by inner terrain instabilities. The glacier surging causes a drastic drop in glacier elevation but does not cause a glacier mass gain or loss, and it has an enhanced effect on the ice flux divergence. Therefore, glacier surging is the main reason for the decline of the two glaciers monitored. In addition, the long-term meteorological data analysis found that, since 2000, the air temperature warming hiatus may have balanced the three glaciers, and significantly increasing precipitation variation may cause the glacier to thicken the most. Full article
(This article belongs to the Special Issue Remote Sensing of Ice Loss Tracking at the Poles)
Show Figures

Figure 1

19 pages, 7049 KiB  
Article
The Evolution of the Glacier Surges in the Tuanjie Peak, the Qilian Mountains
by Yongpeng Gao, Shiyin Liu, Miaomiao Qi, Xiaojun Yao, Yu Zhu, Fuming Xie, Kunpeng Wu and Muhammad Saifullah
Remote Sens. 2022, 14(4), 852; https://doi.org/10.3390/rs14040852 - 11 Feb 2022
Cited by 11 | Viewed by 2666
Abstract
Glacier surges (GSs) are a manifestation of glacier instability and one of the most striking phenomena in the mountain cryosphere. Here, we utilize optical images acquired between 1973 and 2021 to map changes in glacier surface velocity and morphology and characterize differences in [...] Read more.
Glacier surges (GSs) are a manifestation of glacier instability and one of the most striking phenomena in the mountain cryosphere. Here, we utilize optical images acquired between 1973 and 2021 to map changes in glacier surface velocity and morphology and characterize differences in surface elevation using multi-source DEMs in the Tuanjie Peak (TJP), located in the Qilian Mountains (QLMs). These data provide valuable insights into the recent dynamic evolution of glaciers and hint at how they might evolve in the next few years. We identified a confirmed surge-type glacier (STG), three likely STGs, and three possible STGs. Our observations show that TJP GSs are generally long-term, although they are shorter in some cases. During the active phase, all glaciers exhibit thickened reservoir areas and thinned receiving areas, or vice-versa. The ice volume transfer was between 0.11 ± 0.13 × 107 m3 to 5.71 ± 0.69 × 107 m3. Although it was impossible to obtain integrated velocity profiles throughout the glacier surge process due to the limitations of available satellite imagery, our recent observations show that winter velocities were much higher than summer velocities, suggesting an obvious correlation between surge dynamics and glacial hydrology. However, the initiation and termination phase of GSs in this region was slow, which is similar to Svalbard-type STGs. We hypothesize that both thermal and hydrological controls are crucial. Moreover, we suggest that the regional warming trend may potentially increase glacier instability and the possibility of surge occurrence in this region. Full article
(This article belongs to the Special Issue Remote Sensing in Glaciology and Cryosphere Research)
Show Figures

Figure 1

Back to TopTop