Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking
Abstract
:1. Introduction
2. Study Area and Data
2.1. Cook Ice Shelf
2.2. Sentinel-1 SAR
2.3. ICESat-2 Surface Elevation Data
2.4. Auxiliary Data
3. Methods
3.1. Sentinel-1 SAR Time-Series Offset Tracking
3.2. Erroneous Offset Filtering
4. Results
4.1. Evaluation of the Performance of the Sentinel-1 Time-Series Offset Tracking
4.2. Validation of the Sentinel-1 Time-Series Offset Tracking
4.3. Variations in the Annual Ice Velocity of the Cook Ice Shelf
5. Discussion
5.1. Ice Velocity Variations of the Cook East Ice Shelf
5.2. Ice Velocity Variations of the Cook West Ice Shelf
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gagliardini, O.; Durand, G.; Zwinger, T.; Hindmarsh, R.C.A.; Le Meur, E. Coupling of Ice-shelf Melting and Buttressing is a Key Process in Ice-sheets Dynamics. Geophys. Res. Lett. 2010, 37, L14501. [Google Scholar] [CrossRef] [Green Version]
- Fürst, J.J.; Durand, G.; Gillet-Chaulet, F.; Tavard, L.; Rankl, M.; Braun, M.; Gagliardini, O. The Safety Band of Antarctic Ice Shelves. Nat. Clim. Chang. 2016, 6, 479–482. [Google Scholar] [CrossRef]
- Dupont, T.K.; Alley, R.B. Assessment of the Importance of Ice-shelf Buttressing to Ice-sheet Flow. Geophys. Res. Lett. 2005, 32, L04503. [Google Scholar] [CrossRef] [Green Version]
- Khazendar, A.; Rignot, E.; Larour, E. Acceleration and Spatial Rheology of Larsen C Ice Shelf, Antarctic Peninsula. Geophys. Res. Lett. 2011, 38, L09502. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.A.; Young, D.A.; Gwyther, D.E.; Galton-Fenzi, B.K.; Blankenship, D.D. Seasonal Dynamics of Totten Ice Shelf Controlled by Sea Ice Buttressing. Cryosphere 2018, 12, 2869–2882. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Xia, M.; Qiao, G.; Li, Y.; Hai, G.; Lv, D. Calving Cycle of Ninnis Glacier Over the Last 60 Years. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102612. [Google Scholar] [CrossRef]
- Liu, Y.; Moore, J.C.; Cheng, X.; Gladstone, R.M.; Bassis, J.N.; Liu, H.; Wen, J.; Hui, F. Ocean-Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves. Proc. Natl. Acad. Sci. USA 2015, 112, 3263–3268. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Lee, S.; Kim, J.; Kim, S.H.; Kim, H. Changes in a Giant Iceberg Created from the Collapse of the Larsen C Ice Shelf, Antarctic Peninsula, Derived from Sentinel-1 and CryoSat-2 Data. Remote Sens. 2019, 11, 404. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kumar, S.; Kumar, N. Evolution of Iceberg A68 since Its Inception from the Collapse of Antarctica’s Larsen C Ice Shelf Using Sentinel-1 SAR Data. Sustainability 2023, 15, 3757. [Google Scholar] [CrossRef]
- Lhermitte, S.; Sun, S.; Shuman, C.; Wouters, B.; Pattyn, F.; Wuite, J.; Berthier, E.; Nagler, T. Damage Accelerates Ice Shelf Instability and Mass Loss in Amundsen Sea Embayment. Proc. Natl. Acad. Sci. USA 2020, 117, 24735–24741. [Google Scholar] [CrossRef] [PubMed]
- The IMBIE team. Mass Balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Im, J.; Kim, H. Variations in Ice Velocities of Pine Island Glacier Ice Shelf Evaluated Using Multispectral Image Matching of Landsat Time Series Data. Remote Sens. Environ. 2016, 186, 358–371. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Sustained Increase in Ice Discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 2014, 41, 1576–1584. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.; Shapero, D.; Smith, B.; Dutrieux, P.; Barham, M. Ice-shelf Retreat Drives Recent Pine Island Glacier Speedup. Sci. Adv. 2021, 7, eabg3080. [Google Scholar] [CrossRef] [PubMed]
- Sutterley, T.C.; Velicogna, I.; Rignot, E.; Mouginot, J.; Flament, T.; van den Broeke, M.R.; van Wessem, J.M.; Reijmer, C.H. Mass Loss of the Amundsen Sea Embayment of West Antarctica from Four Independent Techniques. Geophys. Res. Lett. 2014, 41, 8421–8428. [Google Scholar] [CrossRef] [Green Version]
- McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Hogg, A.; Wingham, D. Increased Ice Losses from Antarctica Detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Graham, A.G.C.; Wåhlin, A.; Hogan, K.A.; Nitsche, F.O.; Heywood, K.J.; Totten, R.L.; Smith, J.A.; Hillenbrand, C.; Simkins, L.M.; Anderson, J.B.; et al. Rapid Retreat of Thwaites Glacier in the Pre-Satellite Era. Nat. Geosci. 2022, 15, 706–713. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; van Wessem, M.J.; Morlighem, M. Four Decades of Antarctic Ice Sheet Mass Balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Wingham, D.J.; Shepherd, A.; Muir, A.; Marshall, G.J. Mass Balance of the Antarctic Ice Sheet. Phil. Trans. Royal Soc. A 2006, 364, 1627–1635. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Mengel, M.; Levermann, A. Ice Plug Prevents Irreversible Discharge from East Antarctica. Nat. Clim. Chang. 2014, 4, 451–455. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, H.; Shum, C.K.; Jiang, L.; Hsu, H.T.; Dong, J. Recent High-Resolution Antarctic Ice Velocity Maps Reveal Increased Mass Loss in Wilkes Land, East Antarctica. Sci. Rep. 2018, 8, 4477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewry, D.J. Antarctica: Glaciological and Geophysical Folio; University of Cambridge, Scott Polar Research Institute Cambridge: Cambridge, UK, 1983. [Google Scholar]
- Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B. Ice-Shelf Melting Around Antarctica. Science 2013, 341, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Miles, B.W.J.; Stokes, C.R.; Jamieson, S.S.R. Velocity Increases at Cook Glacier, East Antarctica, Linked to Ice Shelf Loss and a Subglacial Flood Event. Cryosphere 2018, 12, 3123–3136. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Lee, H. Surface Strain Rates and Crevassing of Campbell Glacier Tongue in East Antarctica Analysed by Tide-Corrected DInSAR. Remote Sens. Lett. 2017, 8, 330–339. [Google Scholar] [CrossRef]
- Lee, H.; Seo, H.; Han, H.; Ju, H.; Lee, J. Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar. Remote Sens. 2021, 13, 2691. [Google Scholar] [CrossRef]
- Jawak, S.D.; Kumar, S.; Luis, A.J.; Pandit, P.H.; Wankhede, S.F.; Anirudh, T.S. Seasonal Comparison of Velocity of the Eastern Tributary Glaciers, Amery Ice Shelf, Antarctica, using SAR Offset Tracking. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2019, 4, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Zahriban Hesari, M.; Nunziata, F.; Aulicino, G.; Buono, A.; Migliaccio, M. Analysis of Fine-Scale Dynamics of the Drygalski Ice Tongue in Antarctica Using Satellite SAR Data. Int. J. Remote Sens. 2022, 43, 2581–2598. [Google Scholar] [CrossRef]
- Baumhoer, C.A.; Dietz, A.J.; Dech, S.; Kuenzer, C. Remote Sensing of Antarctic Glacier and Ice-Shelf Front Dynamics—A Review. Remote Sens. 2018, 10, 1445. [Google Scholar] [CrossRef] [Green Version]
- Wuite, J.; Nagler, T.; Gourmelen, N.; Escorihuela, M.J.; Hogg, A.E.; Drinkwater, M.R. Sub-Annual Calving Front Migration, Area Change and Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice Shelf, Antarctica. Remote Sens. 2019, 11, 2761. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kim, D.; Kim, H. Progressive Degradation of an Ice Rumple in the Thwaites Ice Shelf, Antarctica, as Observed from High-Resolution Digital Elevation Models. Remote Sens. 2018, 10, 1236. [Google Scholar] [CrossRef] [Green Version]
- Mohr, J.J.; Reeh, N.; Madsen, S.N. Three-Dimensional Glacial Flow and Surface Elevation Measured with Radar Interferometry. Nature 1998, 391, 273–276. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Morlighem, M.; Seroussi, H.; Scheuchl, B. Widespread, Rapid Grounding Line Retreat of Pine Island, Thwaites, Smith, and Kohler Glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 2014, 41, 3502–3509. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Liu, S.; Li, R.; Xie, H.; Liu, S.; Qiao, G.; Feng, T.; Tian, Y.; Ye, Z. Multi-Track Extraction of Two-Dimensional Surface Velocity by the Combined Use of Differential and Multiple-Aperture InSAR in the Amery Ice Shelf, East Antarctica. Remote Sens. Environ. 2018, 204, 122–137. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, C.; Ai, S.; Liang, Q.; Zheng, L.; Liu, R.; Lei, H. Dynamics of Dalk Glacier in East Antarctica Derived from Multisource Satellite Observations Since 2000. Remote Sens. 2020, 12, 1809. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier Motion Estimation Using SAR Offset-Tracking Procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Ji, Y.; Lee, H. Estimation of Annual Variation of Ice Extent and Flow Velocity of Campbell Glacier in East Antarctica Using COSMO-SkyMed SAR Images. Korean J. Remote Sens. 2013, 29, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Chae, S.; Lee, W.; Jung, H.; Zhang, L. Ionospheric Correction of L-Band SAR Offset Measurements for the Precise Observation of Glacier Velocity Variations on Novaya Zemlya. IEEE J. Sel. Top. Appl. Earth Obs. 2017, 10, 3591–3603. [Google Scholar] [CrossRef]
- Moon, J.; Cho, Y.; Lee, H. Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method. Korean J. Remote Sens. 2021, 37, 1–11. [Google Scholar] [CrossRef]
- Tomar, K.S.; Kumari, S.; Luis, A.J. Seasonal Ice Flow Velocity Variations of Polar Record Glacier, East Antarctica during 2016–2019 Using Sentinel-1 Data. Geocarto Int. 2022, 37, 4671–4686. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Chen, X.; Huang, X.; Huang, Y.; Peng, Y.; Zhang, Y.; Zhen, J. Monitoring Glacier Terminus and Surface Velocity Changes Over Different Time Scales Using Massive Imagery Analysis and Offset Tracking at the Hoh Xil World Heritage Site, Qinghai-Tibet Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102913. [Google Scholar] [CrossRef]
- Li, S.; Leinss, S.; Hajnsek, I. Cross-Correlation Stacking for Robust Offset Tracking Using SAR Image Time-Series. IEEE J. Select. Top. App. Earth Obs. Rem. Sens. 2021, 14, 4765–4778. [Google Scholar] [CrossRef]
- Sánchez-Gámez, P.; Navarro, F.J. Glacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sens. 2017, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.; Salvador, P.; Sanz, J.; Urbazaev, M.; Casanova, J.L. Analyzing Ice Dynamics Using Sentinel-1 Data at the Solheimajoküll Glacier, Iceland. GIsci. Remote Sens. 2020, 57, 813–829. [Google Scholar] [CrossRef]
- Leinss, S.; Li, S.; Frey, O. Measuring Glacier Velocity by Autofocusing Temporally Multilooked SAR Time Series. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 5493–5496. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Q. Capturing the Crack Process of the Antarctic A74 Iceberg with Sentinel-1 Based Offset Tracking and Radar Interferometry Techniques. Int. J. Digit. Earth 2022, 15, 397–415. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Antarctic Grounding Line Mapping from Differential Satellite Radar Interferometry. Geophys. Res. Lett. 2011, 38, L10504. [Google Scholar] [CrossRef] [Green Version]
- Frezzotti, M.; Cimbelli, A.; Ferrigno, J.G. Ice-Front Change and Iceberg Behaviour Along Oates and George V Coasts, Antarctica, 1912–1996. Ann. Glaciol. 1998, 27, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Flament, T.; Berthier, E.; Rémy, F. Cascading Water Underneath Wilkes Land, East Antarctic Ice Sheet, Observed Using Altimetry and Digital Elevation Models. Cryosphere 2014, 8, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 System Capabilities and Applications. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar] [CrossRef]
- Cathles, L.M.; Abbot, D.S.; Bassis, J.N.; MacAyeal, D.R. Modeling Surface-Roughness/Solar-Ablation Feedback: Application to Small-Scale Surface Channels and Crevasses of the Greenland Ice Sheet. Ann. Glaciol. 2011, 52, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Brunt, K.M.; Neumann, T.A.; Smith, B.E. Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet. Geophys. Res. Lett. 2019, 46, 13072–13078. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Han, H.; Lee, H. Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by Using DDInSAR Imagery. Korean J. Remote Sens. 2019, 35, 933–944. [Google Scholar] [CrossRef]
- Bartsch, A.; Pointner, G.; Ingeman-Nielsen, T.; Lu, W. Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2. Remote Sens. 2020, 12, 2368. [Google Scholar] [CrossRef]
- Dabiri, Z.; Hölbling, D.; Abad, L.; Helgason, J.K.; Sæmundsson, Þ.; Tiede, D. Assessment of Landslide-Induced Geomorphological Changes in Hítardalur Valley, Iceland, Using Sentinel-1 and Sentinel-2 Data. Appl Sci. 2020, 10, 5848. [Google Scholar] [CrossRef]
- Dabiri, Z.; Hölbling, D.; Abad, L.; Guðmundsson, S. Comparing the Applicability of Sentinel-1 and Sentinel-2 for Mapping the Evolution of Ice-Marginal Lakes in Southeast Iceland. GI_Forum 2021, 9, 46–52. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote Sens. 2017, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Fahnstock, M.; Scambos, T. Update to Time of Data Download: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities; National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and Unchanged East Antarctic Ice Discharge over the Last 7 Years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Rott, H.; Stuefer, M.; Siegel, A.; Skvarca, P.; Eckstaller, A. Mass Fluxes and Dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys. Res. Lett. 1998, 25, 1407–1410. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of Image Cross-Correlation to the Measurement of Glacier Velocity Using Satellite Image Data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Greene, C.A.; Gardner, A.S.; Andrews, L.C. Detecting Seasonal Ice Dynamics in Satellite Images. Cryosphere 2020, 14, 4365–4378. [Google Scholar] [CrossRef]
- Boxall, K.; Chrisite, F.D.W.; Willis, I.C.; Wuite, J.; Nagler, T. Seasonal Land-ice-flow Variability in the Antarctic Peninsula. Cryosphere 2022, 16, 3907–3932. [Google Scholar] [CrossRef]
- Wallis, B.J.; Hogg, A.E.; van Wessem, J.M.; Davison, B.J.; van den Broeke, M.R. Widespread Seasonal Speed-up of West Antarctic Peninsula Glaciers from 2014 to 2021. Nature Geosci. 2023, 16, 231–237. [Google Scholar] [CrossRef]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved Ice Bed, Surface and Thickness Datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; et al. Capabilities and Performance of Elmer/Ice, a New-Generation Ice Sheet Model. Geosci. Model Dev. 2013, 6, 1299–1318. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Casassa, G.; Gogineni, P.; Krabill, W.; Rivera, A.U.; Thomas, R. Accelerated Ice Discharge from the Antarctic Peninsula Following the Collapse of Larsen B Ice Shelf. Geophys. Res. Lett. 2004, 31, L18401. [Google Scholar] [CrossRef] [Green Version]
- Royston, S.; Gudmundsson, G.H. Changes in Ice-Shelf Buttressing Following the Collapse of Larsen A Ice Shelf, Antarctica, and the Resulting Impact on Tributaries. J. Glaciol. 2016, 62, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.A.; Bohlander, J.A.; Shuman, C.A.; Skvarca, P. Glacier Acceleration and Thinning After Ice Shelf Collapse in the Larsen B Embayment, Antarctica. Geophys. Res. Lett. 2004, 31, L18402. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Howat, I.M.; Bassis, J.N. Accelerated Ice Shelf Rifting and Retreat at Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 2016, 43, 11720–11725. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Pei, L.; Zhang, S.; Tang, X.; Yao, J. Extraction and Analysis of the Three-Dimensional Features of Crevasses in the Amery Ice Shelf Based on ICESat-2 ATL06 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5796–5806. [Google Scholar] [CrossRef]
- Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. Glacier Crevasses: Observations, Models, and Mass Balance Implications. Rev. Geophys. 2016, 54, 119–161. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Ligtenberg, S.R.M.; Fricker, H.A.; Vaughan, D.G.; van den Broeke, M.R.; Padman, L. Antarctic Ice-Sheet Loss Driven by Basal Melting of Ice Shelves. Nature 2012, 484, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, G.H.; Paolo, F.S.; Adusumilli, S.; Fricker, H.A. Instantaneous Antarctic Ice Sheet Mass Loss Driven by Thinning Ice Shelves. Geophys. Res. Lett. 2019, 46, 13903–13909. [Google Scholar] [CrossRef] [Green Version]
Year | Satellite | Path/Frame | No. Scenes | No. Offset Tracking Pairs |
---|---|---|---|---|
2017 | Sentinel-1A | 10/944 | 26 | 36 |
Sentinel-1B | 10/944 | 14 | ||
2018 | Sentinel-1A | 10/944 | 8 | 13 |
Sentinel-1B | 10/944 | 13 | ||
2019 | Sentinel-1A | 10/944 | 1 | 7 |
Sentinel-1B | 10/944 | 10 | ||
2020 | Sentinel-1A | 10/944 | 24 | 34 |
Sentinel-1B | 10/944 | 16 | ||
2021 | Sentinel-1A | 10/944 | 29 | 27 |
Sentinel-1B | 10/944 | - | ||
2022 | Sentinel-1A | 10/944 | 30 | 27 |
Sentinel-1B | 10/944 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, S.; An, H.; Han, H. Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking. Remote Sens. 2023, 15, 3079. https://doi.org/10.3390/rs15123079
Lee S, Kim S, An H, Han H. Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking. Remote Sensing. 2023; 15(12):3079. https://doi.org/10.3390/rs15123079
Chicago/Turabian StyleLee, Siung, Seohyeon Kim, Hyunjun An, and Hyangsun Han. 2023. "Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking" Remote Sensing 15, no. 12: 3079. https://doi.org/10.3390/rs15123079
APA StyleLee, S., Kim, S., An, H., & Han, H. (2023). Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking. Remote Sensing, 15(12), 3079. https://doi.org/10.3390/rs15123079