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Abstract: The Cook Glacier drains a significant portion of the Wilkes Subglacial Basin, the largest
subglacial basin in East Antarctica—which feeds the Cook Ice Shelf. The ice velocity of the Cook Ice
Shelf needs to be monitored precisely and accurately, as it plays a critical role in determining the
ice discharge from the Wilkes Subglacial Basin. In this study, we measured the annual ice velocities
of the Cook Ice Shelf using the offset tracking technique on Sentinel-1 synthetic aperture radar
images obtained from 2017 to 2022. Time-series offsets in the range and azimuth directions were
determined from the offset tracking pairs with a temporal baseline of 36 days obtained from January
to December of each year. Statistical evaluations of the spatiotemporal variations of the time-series
offsets effectively eliminated the erroneous offsets in the original offset fields; the remaining offsets
were then used to produce two-dimensional annual ice velocities. The direction of the ice flow of the
Cook Ice Shelf was almost constant during the period 2017–2022, and the variations in the magnitude
of annual ice velocities were investigated. The annual ice velocities of the Cook East Ice Shelf (CEIS)
stayed constant and showed a gradual increase from the grounding line to the ice front, except in the
western part. Ice velocities of the western part of the CEIS have not changed much at the grounding
line during the 6-year period, while in the dynamic shelf ice zone, ice velocities accelerated by up to
22% because of the development of numerous crevasses and fractures. The ice velocities of the Cook
West Ice Shelf (CWIS) were about two times higher than those of the CEIS and tended to increase
rapidly from the grounding line to the ice front. The annual ice velocities at the grounding line of
CWIS increased rapidly from 1330 to 1450 m/a over 6 years, with 70% of this acceleration observed
after 2021. This was attributed to a reduction in the ice shelf volume because of the evolution of
surface crevasses and rifts, leading to a decrease in the ice shelf’s buttressing potential. In particular,
the loss of a portion of the dynamic shelf ice zone due to a series of ice front collapses in February
2022 likely caused the rapid speed-up of the ice shelf. The results of this study indicate that the
buttressing potential of the CWIS and the western part of the CEIS has been significantly reduced,
which could mean serious instability of the marine ice sheet in this region.

Keywords: Cook Ice Shelf; ice velocity; Sentinel-1; SAR; offset tracking

1. Introduction

An ice shelf is a floating extension of an ice sheet that is grounded on land. Ice shelves
function as a barrier against seaward ice discharge from inland, thus helping to maintain
the mass balance of the ice sheets [1,2]. However, the instability of the ice shelf as a result
of flow acceleration and collapse at the ice front could weaken the buttressing effect of
the ice shelf and increase ice discharge from marine ice sheets, which could potentially
contribute to the rise in sea levels [3–6]. Therefore, it is essential to monitor the changes in
ice velocities and collapse events on the ice shelves.

Most of the Antarctic ice shelves that show rapid flow acceleration and frequent large-
scale collapses are found in West Antarctica [7–9]. Among them, the ice shelves in the
Amundsen Sea Embayment have been reported to contribute substantially to the rise in sea
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levels [10,11]. The ice velocity of the Pine Island Glacier Ice Shelf, one of the fastest-flowing
ice shelves in the Amundsen Sea Embayment, increased by ~1.5 km/a between 2000 and
2010 due to ice thinning caused by ocean-induced basal melting [12,13]. Between 2017 and
2020, about 20% of the total area of the Pine Island Glacier Ice Shelf collapsed at the ice
front, which resulted in an increase in ice flow of more than 12% [14]. Ice velocities of the
Thwaites Glacier Tongue, another representative ice shelf of the Amundsen Sea Embayment,
increased by 33% between 2006 and 2013, reaching a maximum velocity higher than 4
km/a [13,15–17]. The ice flow accelerations of both these ice shelves have led to increased
ice flux from the West Antarctic Ice Sheet, which is responsible for approximately 50% of
the Antarctic-induced sea level rise over the past several decades [18]. On the other hand,
most of the East Antarctic Ice Sheet is known to be in a state of stable mass balance [19,20].
However, some areas of East Antarctica have shown continuous mass loss. One of the
basins with the largest mass loss in the East Antarctic Ice Sheet, the Wilkes Subglacial Basin,
has a basin area of 840,000 km2 and contains an ice mass capable of raising the global mean
sea level by 3–4 m [18,21–23]. Much of the ice mass in this basin drains into the ocean
through the Cook Glacier, which feeds into the Cook Ice Shelf [18,21,24]. Since 1947, several
large collapses at the ice front of the Cook Ice Shelf have caused dramatic fluctuations in
ice velocities [25]. Variations in ice velocities and ice mass of the Cook Ice Shelf need to be
monitored continuously because they are the result of changes in its buttressing potential
and cause the mass imbalance of the Wilkes Subglacial Basin. However, to the best of our
knowledge, the ice dynamics of the Cook Ice Shelf, including ice velocity variations and ice
collapses, have not been studied since 2017.

Satellite remote sensing is an effective tool for making periodic observations of areas
that are relatively inaccessible, such as Antarctica. In particular, synthetic aperture radar
(SAR) is useful for observing Antarctic ice shelves because it can provide high resolution
images regardless of weather conditions and sun altitudes [26–32]. Ice velocity can be
measured by applying interferometric SAR (InSAR) or offset tracking techniques to SAR
images [33–36]. InSAR is a technique for measuring surface displacement and topography
by calculating the phase difference between two or more SAR images acquired at different
times on the same area. InSAR can measure surface displacement with a precision of a
few millimeters in the absence of interferometric phase errors and noise. However, the
InSAR technique has some disadvantages that it is difficult to apply in fast-flowing glaciers
because of low coherence, and that it can only measure displacement in the radar look
direction. Offset tracking is a technique for measuring two-dimensional (range and azimuth
direction) displacement by calculating the cross-correlation between image patches of two
SAR images. The precision of displacement measurements using offset tracking is several
meters to tens of meters, which is inferior compared to InSAR. Nevertheless, since offset
tracking can measure large displacement, it is effectively used to monitor the ice velocities
of fast-flowing glaciers and ice shelves [37–41]. However, erroneous results can be obtained
using offset tracking when misregistration of SAR images occurs due to a few surface
features, such as crevasses, or when inaccurate topographic information is used as ancillary
data for image registration [42]. To measure ice velocities accurately, these erroneous offsets
should be removed. However, identifying and removing such erroneous offsets caused by
image misregistration is still difficult.

To accurately measure ice velocity, many studies have been performed to come up
with methods for removing erroneous offsets from the offset tracking results of satellite
images. In most of the suggested methods, erroneous offsets were identified and eliminated
by setting thresholds for signal-to-noise ratio and the correlation of the offsets [43–46] or by
statistical evaluations of the offset fields, assuming that the ice velocity of glaciers and ice
shelves does not spatially vary significantly [12,47,48]. However, these methods are not
applicable when the local variation in ice velocity is too significant, or when the erroneous
offsets are spatially widely distributed. A better way to remove these erroneous offsets is
needed to accurately measure ice velocity through offset tracking of SAR images.
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In this study, the annual ice velocities from 2017 to 2022 of the Cook Ice Shelf were
determined using the Senitnel-1 time-series SAR images, and the mechanisms and impli-
cations of the changes in ice velocity were investigated. An offset tracking technique was
applied to the Sentinel-1 time-series SAR images to determine the annual ice velocities. We
proposed a method to remove erroneous offsets from time-series offset maps and evaluated
the method’s performance. The effects of the development of crevasses, fractures, rifts, and
the resulting collapse events on the changes in the ice velocity were also studied. Moreover,
changes in the buttressing potential of the Cook Ice Shelf in terms of the ice velocity change
were estimated.

2. Study Area and Data
2.1. Cook Ice Shelf

The Cook Ice Shelf (68◦39′S, 152◦29′E) has an area of ~3500 km2 located between Cape
Hudson and Cape Freshfield in the George V Coast, in East Antarctica (Figure 1). It is one
of the major ice shelves that drain most of the ice in the Wilkes Subglacial Basin, which
contains the most marine ice in East Antarctica [21,24]. The Cook Ice Shelf consists of the
Cook East Ice Shelf (CEIS) and the Cook West Ice Shelf (CWIS). In December 2022, CEIS
was measured to be ~60 km long and ~65 km wide, while CWIS was ~2.5 km long and
~15 km wide. The western part of CEIS has numerous crevasses and fractures (Figure 1),
and collapses are common due to their development.
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Figure 1. Sentinel-1 SAR image of the Cook Ice Shelf on 23 December 2022. The red and blue
solid lines represent the grounding line [49] and the ice front position in 1973 determined from the
Landsat-1 images on 1 and 4 November 1973. The red dotted line represents the boundary between
the dynamic shelf ice zone and the passive shelf ice zone. The yellow solid line indicates the ICESat-2
ground track used to analyze crevasse advance. The background is the Landsat Image Mosaic
of Antarctica.
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The ice front of CEIS retreated about 20 km because of large-scale calving events
that occurred between 1963 and 1973. It continued to advance without significant col-
lapse until 2017 [25,50]. From 2001 to 2016, the ice velocity of the CEIS remained nearly
constant at about 490 m/a, except in the period 2006–2007 [25], when the ice velocity
increased by about 12% compared to that in 2001–2016 due to the enhanced lubrication
at the bed of the Cook Glacier caused by the drainage of the CookE2 subglacial lake
(5.2 ± 1.5 km3) located ~450 km upstream [25,51]. The CWIS experienced massive
calving events between 1947–1963 and 1973–1989, and the ice front retreated by
~34 km. The current area of the CWIS is only approximately ~60 km2. An embayment
formed by the retreat of the CWIS, hereafter referred to as the Cook West Embayment,
is covered by landfast sea ice during the winter.

2.2. Sentinel-1 SAR

Sentinel-1 SAR images have been used to measure the ice velocity of the Cook Ice
Shelf. Sentinel-1, which is operated by the European Space Agency (ESA), is a constellation
of two satellites (Sentinel-1A and -1B) equipped with a C-band SAR with a center frequency
of 5.405 GHz [52]. The two satellites have the same orbit and have a revisit time of 12 days.
If both satellites continuously observe the same area, it is possible to obtain images every
6 days. In this study, we used HH-polarized SAR images (10 m ground resolution), which
were acquired in Interferometric Wide swath mode at the ascending node of Sentinel-1A
and -1B (Path 10, Frame 944) from 4 February 2017 to 27 April 2022, and distributed in the
Ground Range Detected High Resolution format with a spatial resolution of 10 m (Table 1).
No observations were made on the Cook Ice Shelf through the Sentinel-1 satellites from
6 June 2018 to 17 July 2019 and from 4 November 2019 to 12 February 2020.

Table 1. Sentinel-1 SAR images used to determine the annual ice velocity of the Cook Ice Shelf based
on offset tracking.

Year Satellite Path/Frame No. Scenes No. Offset Tracking Pairs

2017
Sentinel-1A 10/944 26

36
Sentinel-1B 10/944 14

2018
Sentinel-1A 10/944 8

13
Sentinel-1B 10/944 13

2019
Sentinel-1A 10/944 1

7
Sentinel-1B 10/944 10

2020
Sentinel-1A 10/944 24

34
Sentinel-1B 10/944 16

2021
Sentinel-1A 10/944 29

27
Sentinel-1B 10/944 -

2022
Sentinel-1A 10/944 30

27
Sentinel-1B 10/944 -

2.3. ICESat-2 Surface Elevation Data

Crevassing and rifting of the ice shelf can make it vulnerable to collapse and
weaken its buttressing potential [53]. Over the past few decades, the ice velocity of
the CWIS has changed because of the development of fractures such as crevasses
and rifts [25]. Large-scale calving events of CWIS attributed to the development
of rifts occurred between 1973 and 1989, which caused the ice front to retreat by
13 km and increased the ice velocity from 692 ± 450 to 1438 ± 51 m/a [25]. In this
study, surface elevation profiles from the Ice, Cloud, and land Elevation Satelite-2
(ICESat-2), equipped with the Advanced Topographic Laser Altimeter System (ATLAS)
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and operated by the National Aeronautics and Space Administration, were used to
investigate the evolution and migration of surface crevasses on the CWIS. The repeat
cycle of ICESat-2 is 91 days. The ATLAS creates three pairs of beams with a track
spacing of ~3.3 km [54]. Each beam consists of a strong and a weak beam separated
90 m apart. A total of five ICESat-2 Land Ice Along-Track Height Products (ATL06,
track number 108) obtained along a ground track that is approximately parallel to
the main flow line of the CWIS from 4 January 2019 to 29 September 2021 were used.
All ICESat-2 data used were obtained from the strong beam of the ground track pair
number 2. The ICESat-2 ATL06 product provides the surface elevation measurements
on the ice sheet with a precision of ~9 cm and an accuracy of ~3 cm, respectively [55].

2.4. Auxiliary Data

The Global Earth Topography and Sea Surface Elevation 30 (GETASSE30) Digital
Elevation Model (DEM) was employed for the coregistration of the SAR images and for the
orthorectification of the offset maps. The GETASSE30 DEM has a grid size of 1 km, but it
has been effectively used for precise coregistration and accurate orthorectification of SAR
images [56–59].

The Making Earth System Data Records for Use in Research Environments (MEa-
SUREs) multisensor-based [60] and the Inter-mission Time Series Land Ice Velocity and
Elevation (ITS_LIVE) project-derived annual Antarctic ice velocity maps [61,62] were uti-
lized to validate the ice velocities of the Cook Ice Shelf determined by the Sentinel-1 offset
tracking conducted in this study. The MEaSUREs annual ice velocity maps were generated
by a weighted average of the ice velocities obtained from the feature tracking of optical
images and the SAR interferometry with a grid spacing of 1 × 1 km and temporal coverage
from 2000 to 2001 and from 2005 to 2020 [60]. The ITS_LIVE annual ice velocities were
estimated by a weighted average of the ice velocities derived from Landsat image pairs
and are provided with a grid spacing of 240 × 240 m from 1985 to 2018 [61,62].

3. Methods
3.1. Sentinel-1 SAR Time-Series Offset Tracking

The SAR offset tracking is a technique that measures two-dimensional displace-
ments in the range and azimuth directions by determining the cross-correlation of
subimage patches between consecutive images acquired at different times over the
same area [37,63]. In this study, an offset tracking based on normalized cross-
correlation [37,64] was applied to the Sentinel-1 time-series SAR images to obtain
the annual ice velocities of the Cook Ice Shelf. The offset tracking procedure was
conducted through the Sentinel Application Platform (SNAP) software. The overall
flowchart of the offset tracking is presented in Figure 2. First, the orbital information
of the SAR image was updated using the Sentinel-1 precise orbit state vectors. The
reference and secondary SAR images were coregistered using the GETASSE30 DEM,
and the images were then subset into the region including the whole Cook Ice Shelf
(Figure 1). To measure the ice velocity using offset tracking, it is important to select
image pairs that have a suitable temporal baseline. In fast-flowing regions, image
pairs with a short temporal baseline of several days are needed for offset tracking,
while in regions with slow motion and little surface features such as crevasses, image
pairs with a longer temporal baseline are acceptable. The Sentinel-1 SAR images of the
study area include not only fast-flowing ice shelf regions but also slow-moving regions
with few surface features. We tested Sentinel-1 SAR offset tracking with temporal
baselines of 12, 24, and 36 days. In regions of Cook Ice Shelf with high ice velocities, the
offset tracking results from all three temporal baselines produced dense and reliable
ice velocities. However, in regions of ice sheet and ice shelf with slow motions, the
offset tracking with the temporal baseline of 36 days produce more reliable ice veloci-
ties than the offset tracking with 12- and 24-day baselines. Therefore, offset tracking
was performed using image pairs with a temporal baseline of 36 days to obtain as
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many accurate offsets as possible for the region of interest. Offset tracking was per-
formed in a reference window of 40 × 40 pixels (400 × 400 m) and a search window of
256 × 256 pixels (2560 × 2560 m); offsets with a correlation coefficient lower than
0.05 was empirically determined to be unreliable and thus removed. Offset maps with
a grid spacing of 400 × 400 m were generated for the range and azimuth directions,
which were then used to create the maps of ice velocity in the x and y directions (Vx
and Vy) on the polar stereographic coordinate. The Vx and Vy for the period between
January and December of each year are used to produce the annual ice velocity maps
for that year.
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3.2. Erroneous Offset Filtering

Erroneous offsets can result from offset tracking due to misregistration of image
pairs when large changes occur on the ice surface or if there are few surface features [42].
To generate a reliable map of ice shelf velocity, the erroneous offsets should be de-
termined and removed. Although offsets with a cross-correlation coefficient of less
than 0.05 were removed through the previous process, it is likely that incorrect offsets
remain. Focusing on the advantage of the Sentinel-1 observation that offset tracking of
a 36-day temporal baseline is possible every 12 days, we proposed a spatiotemporal
filtering method for the determination and removal of erroneous offsets (Figure 3).

The filtering method for the erroneous offsets proposed in this study proceeds
in two steps: (1) spatial filtering and (2) temporal filtering for the Vx and Vy fields,
respectively. First, spatial filtering is conducted to remove erroneous Vx and Vy fields,
assuming that the ice velocity of the ice shelf does not spatially vary significantly.
Setting a 5 × 5 moving grid window (2 × 2 km) for the Vx and Vy fields, the standard de-
viation

(
σvx, σvy

)
, median

(
µvx, µvy

)
, and median absolute deviation (MADvx, MADvy)

are calculated for the window. Two criteria are used to check if the value of Vx or
Vy that corresponds to the center grid of the moving window is erroneous. First,
for each of the Vx and Vy fields, if the value of the center grid differs from the µvx
and µvy within the moving window by more than MADvx and MADvy, it is regarded
as an outlier and removed. Second, if the σvx and σvy within the moving window
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are greater than 150 m/a, the velocity values (Vx and Vy) corresponding to the cen-
ter grid are deemed to be erroneous and removed. The threshold of 150 m/a was
chosen based on the investigation of the MEaSUREs ice velocities, which showed
that ice velocities of the Cook Ice Shelf vary spatially by up to 100 m/a within a
2 × 2 km region. This spatial filtering process is applied to the Vx and Vy fields gener-
ated from all offset maps with a 36-day temporal baseline.
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If erroneous velocity fields are distributed over a large area, some of them could remain
even after the spatial filtering. To overcome this limitation, we propose a temporal filtering
method operated in the time-series offset tracking results. Ice velocities can show temporal
variations, such as seasonal fluctuations [65–67]. With the exception of ice shelves in the
Antarctic Peninsula and the Amundsen Sea Embayment, the interannual variations in ice
velocities would be insignificant relative to the time series mean velocity, provided there are
no factors that cause a rapid variation in the velocity in a short period of time. There were
no massive changes in the Cook Ice Shelf during our observation period. After the spatial
filtering, the Vx and Vy maps generated from the offset tracking pairs between January
and December of each year were compiled, and then the median (µt

vx, µt
vy) and median

absolute deviation (MADt
vx, MADt

vy) were calculated for the compiled Vx and Vy fields.
The ice velocity values (Vx and Vy) that deviates more than MADt

vx and MADt
vy from µt

vx
and µt

vy, respectively, are deemed to be erroneous and removed. This temporal filtering
process is conducted annually on the Vx and Vy velocities, after which the remaining
Vx and Vy velocities are averaged and used to determine the annual ice velocities of the
Cook Ice Shelf.

4. Results
4.1. Evaluation of the Performance of the Sentinel-1 Time-Series Offset Tracking

To evaluate the precision of the annual ice velocity of the Cook Ice Shelf derived from
the Sentinel-1 time-series offset tracking, we investigated the magnitude of the annual
mean velocity and its SD determined from the original offset fields, the offset fields with
spatial filtering only, and the offset fields with spatial and temporal filtering. Figure 4a,b
shows the annual ice velocity and its SD calculated from the original offset fields of the
36-day temporal baseline image pairs from January to December 2022. The annual velocity
over the ice sheet varied significantly between 20 and 300 m/a, with SDs ranging from
100 to 1100 m/a. In the ice shelf region, especially at the ice front of the CEIS, very high
annual velocities exceeding 1500 m/a and SDs larger than 900 m/a were locally calculated.
These velocities were attributed to erroneous offsets. The annual ice velocity and its
SD calculated from the spatially filtered offset fields are presented in Figure 4c,d. The
number of velocity vectors decreased by 40% from 118,811 before the spatial filtering to
71,457 after filtering. We validated that the extremely high velocities in the CEIS were
removed using the spatial filtering process. In the ice sheet region, however, there are still
annual ice velocities with a large SD of 50–250 m/a, which is largely deviated from the
surroundings. This means that it is difficult to adequately remove the erroneous offsets in
the time-series offset fields using spatial filtering alone.

In the 2022 annual ice velocity calculated from the time-series offsets remaining after
performing the spatiotemporal filtering proposed in this study (Figure 4e), there were
almost no velocities that could be considered as erroneous, and the SDs of the annual ice
velocities were also very small (<15 m/a) in most areas (Figure 4f). The annual ice velocity
for some regions of the ice sheet was not derived after the spatiotemporal filtering because
of the elimination of all offsets in the regions. Nevertheless, precise annual ice velocities
were obtained for most regions within the Cook Ice Shelf, which is the region of interest in
this study.
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Figure 4. Annual (2022) mean ice velocity in the flow direction and its standard variation of the Cook
Ice Shelf calculated from (a,b) the original time-series offsets, (c,d) the time-series offsets with the
spatial filtering alone, and (e,f) the time-series offsets with the spatiotemporal filtering. The black
arrows in (a,c,e) represent the ice flow directions.

4.2. Validation of the Sentinel-1 Time-Series Offset Tracking

The precision of the annual ice velocity generated by averaging the velocity vectors
determined from the offset tracking pairs within one year was evaluated through its
magnitude and the standard deviation (SD) of the velocity vectors used to estimate the
annual velocity. The SD of the annual ice velocity can represent the temporal variability of
the ice flow. The accuracy of the annual ice velocity obtained from the time-series offset
tracking was analyzed by comparing it with the MEaSUREs and ITS_LIVE annual ice
velocity data. The MEaSUREs data were obtained from multisensor images acquired from
July to June of the following year. Therefore, to reliably assess the accuracy of the annual
ice velocity, Sentinel-1 SAR images should be acquired from July to June of the following
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year with no data void periods. The only period that meets this requirement was from July
2017 to June 2018. Therefore, the time-series offset tracking was applied to the Sentinel-1
SAR images acquired from 10 July 2017 to 5 June 2018, and spatiotemporal filtering was
conducted on the original offsets to remove the erroneous ones. We then determined the
annual ice velocity of the Cook Ice Shelf for July 2017 to June 2018, and compared it to the
MEaSUREs annual ice velocity for 2017–2018. The annual coverage of the ITS_LIVE ice
data is nearly complete for the years. The 2017 annual mean ice velocity determined from
the Sentinel-1 time-series offset tracking was compared to the ITS_LIVE annual ice velocity
for 2017. Our ice velocity maps have a grid spacing of 400 m, whereas the MEaSUREs and
ITS_LIVE data has a grid spacing of 1 km and 240 m, respectively. To match the grid sizes
of the two datasets, the MEaSUREs and ITS_LIVE ice velocity maps were resampled to a
400 m grid spacing using the nearest neighbor method.

The 2017–2018 annual ice velocity of the Cook Ice Shelf was obtained by applying offset
tracking to the Sentinel-1 time-series SAR images obtained from July 2017 to June 2018 and
the spatiotemporal filtering on the retrieved time-series offsets, which was compared with
the 2017–2018 MEaSUREs annual ice velocity (Figure 5a–c). The differences (Sentinel-1 time-
series offset tracking velocity—MEaSUREs velocity) in the image x-direction (Figure 5a),
the image y-direction (Figure 5b), and the velocity magnitude (Figure 5c) between the two
annual ice velocity data were smaller than ±45 m/a in most areas. However, on the Cape
Hudson and Cape Freshfield, the relative differences in the velocities between the two
data were significant, ranging from 50% to 120%. This is because the magnitude of the
ice velocity is very small in these regions, and the differences in the velocity magnitude
were only ~20 m/a. The difference in Vx between the two data was larger than that
in Vy. Nevertheless, the velocity differences were smaller than 50 m/a in most of the
ice shelf regions.
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The differences in the 2017 annual ice velocity fields between the ITS_LIVE data
and that from the Sentinel-1 time-series SAR offset tracking (Sentinel-1 time-series offset
tracking velocity—ITS_LIVE velocity) are shown in Figure 5d–f. Our annual ice velocities
showed smaller differences (~±15 m/a in most of the ice shelf regions) from the ITS_LIVE
velocities than the MEaSUREs velocities. The difference in Vx (Figure 5d) was slightly
larger than that in Vy (Figure 5e), but only ~±20 m/a in the ice shelf regions.

The comparison of the annual ice velocity determined from the Sentinel-1 time-series
SAR offset tracking with that from the reference data (the MEaSUREs and ITS_LIVE
velocities) showed that the velocity difference in Vx was larger than that in Vy. This is
because the image x-direction is more parallel to the Sentinel-1 SAR azimuth direction,
where the sensitivity of displacement measurement by the offset tracking is lower than
that in the SAR range direction. The annual ice velocity determined from the Sentinle-1
time-series SAR offset tracking deviated significantly from the MEaSUREs velocity near the
grounding line and the ice front of the CWIS. This was possibly caused by the inaccuracy
of the MEaSUREs data.

The evaluation results of the precision and accuracy of the ice velocity derived from
the Sentinel-1 SAR images confirmed that the reliable annual ice velocities of the Cook Ice
Shelf can be determined by the time-series offset tracking algorithm, implementing the
spatiotemporal filtering method proposed in this study.

4.3. Variations in the Annual Ice Velocity of the Cook Ice Shelf

The annual ice velocities of the Cook Ice Shelf from 2017 to 2022 were determined by
the time-series offset tracking of Sentinel-1 SAR images (Figure 6). Figure 6 demonstrates
that the CEIS has had nearly constant ice velocity over the past 6 years, while the ice
velocity in the CWIS has varied both spatially and temporally. The changes in the annual
flow direction of the ice shelf were smaller than ± 3◦, and its streamline remained nearly
constant. Therefore, we focused on the variations in the velocity magnitude instead of the
variations in annual Vx and Vy. The variations in velocity magnitude were investigated
along the main flow lines of the CEIS (the profile A–A′ in Figure 4e) and the CWIS (the
profile C–C′ in Figure 4e). Additionally, the velocity variations were studied for the western
CEIS (the profile B–B′ in Figure 4e), where crevasses and fractures are common.

5. Discussion
5.1. Ice Velocity Variations of the Cook East Ice Shelf

Figure 7 presents the annual ice velocity magnitudes from 2017 to 2022 determined
along profile A–A′ marked in Figure 4e, a straight extension of the main streamline of the
Cook East Glacier to the ice front of the CEIS. The black vertical dotted line denotes the
location of the grounding line, and the vertical error bars in each velocity profile represent
the SD of the annual ice velocity. The red vertical dotted line indicates the boundary
between the dynamic shelf ice zone and the passive shelf ice zone defined by Fürst et al. [2].
The Bedmap2 bed elevation [68] along the profile A–A′ (the black solid line in Figure 7)
indicates that the bed of the ice sheet is below sea level. The annual ice velocity was not
measured in the 19–23 km section of the profile A–A′ because all offsets in the section were
filtered out. From 2017 to 2022, the annual ice velocity of the CEIS was almost constant,
with the SD of the annual velocity less than 10 m/a. The annual ice velocity from 7 km
upstream of the grounding line to the grounding line itself increases significantly from
~350 m/a to ~550 m/a every year, which is attributed to the rapid decrease in bed elevation.
The ice velocity along the profile A–A′ increases by ~200 m/a, while the ice flows over a
distance of 50 km from the grounding line to the ice front, and the variations in velocity
along the flow direction are very small compared to upstream of the grounding line.
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location of the grounding line and the boundary between the dynamic shelf ice zone and the passive
shelf ice zone.
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Fürst et al. [2] studied the buttressing effect of ice shelves using the Elmer/Ice flow
model [69], surface and bed elevations from the Bedmap2 [68], ice velocities, and the
location of grounding lines from MEaSUREs projects [51]. Additionally, they distinguished
between dynamic shelf ice zones that are well buttressed and passive shelf ice zones that
have little influence on the buttressing potential of the ice shelves. The dynamic shelf ice
zones play a critical role in the overall dynamic state of the ice shelves. Ice mass loss in the
dynamic shelf ice zones as a result of calving and ice acceleration has a significant negative
impact on the buttressing potential [2]. Within the dynamic shelf ice zone, the variation in
annual ice velocity along the main streamline of the CEIS over the past 6 years has been
~25 m/a, which is only 4% of the time series mean velocity, suggesting that there has been
little change in the buttressing potential of the ice shelf.

The annual ice velocities from 2017 to 2022 along the profile B–B′ in Figure 4e, which is
along the flow line of the western part of the CEIS where numerous crevasses and fractures
have formed, are shown in Figure 8. The ice velocities measured on the profile B–B′ showed
large spatiotemporal variability and an irregular trend. At the grounding line, the annual
ice velocities were similar over the last 6 years, around 480 m/a. The ice velocity from the
grounding line to 8 km downstream, which is the section that includes the dynamic shelf
ice zone, increased by a maximum of ~100 m/a from 2017 to 2019, which stayed constant
until 2020. In 2021, it increased slightly by ~20 m/a and stayed constant through 2022. In
the passive shelf ice zone, the annual ice velocity fluctuated. This was attributed to the
irregular movement of the ice shelf caused by crevasses and fractures. Figure 9 shows the
time-series SAR images with a time interval of about 1 year for the area containing the
section that showed large velocity variations in Figure 8 (the section indicated by a gray box
in Figure 8). We could confirm from Figure 9 that ice in the section has moved irregularly
with time.
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Figure 9. Sentinel-1 time-series SAR images of the western CEIS. The red and black lines indicate the
grounding line and the profile B–B′, respectively. (a) 4 June 2017, (b) 5 June 2018, (c) 18 July 2019,
(d) 12 June 2020, (e) 7 June 2021, (f) 2 June 2022.

The annual ice velocity of the western CEIS increased downstream and stayed nearly
constant from 14 km downstream of the grounding line to the ice front. The boundary
between the dynamic shelf ice zone and the passive shelf ice zone, defined by Fürst et al. [2],
is located 5.3 km downstream of the grounding line. Ice velocities in the dynamic shelf ice
zone have accelerated by up to 22% during the 6 years (from 562 m/a in 2017 to 686 m/a in
2022 at the boundary between the dynamic shelf ice zone and the passive shelf ice zone).

5.2. Ice Velocity Variations of the Cook West Ice Shelf

Figure 10 shows the annual ice velocity measured along the profile C–C in Figure 4e,
which is parallel to the main flow line of the CWIS. The ice front position of CWIS was more
variable from year to year compared to that of CEIS because of frequent collapse at the ice
front. The SDs of the annual ice velocities increased toward the ice front. This was because
the ice velocity changed due to the development of crevasses and rifts that trigger collapses
near the ice front. The dynamic shelf ice zone is located within 1.8 km downstream of
the grounding line. The annual ice velocity of the CWIS has been about twice as fast as
the CEIS (Figures 7 and 8) and has fluctuated over the past 6 years, with a sharp increase
from the grounding line to the ice front. From 4 km upstream of the grounding line to the
grounding line itself, the ice velocity accelerated from 2017 (1160 m/a at 4 km upstream
to 1330 m/a at the grounding line) to 2019 (1210 m/a at 4 km upstream to 1390 m/a at
the grounding line) and decreased in 2020 (1160 m/a at 4 km upstream to 1360 m/a at
the grounding line). Then, the ice velocity in the grounded ice stayed constant until 2021
and increased again in 2022 (1180 m/a at 4 km upstream). In particular, the ice velocity
at the grounding line in 2022 was 1450 m/a, which was 80 m/a faster than in 2021. This
increase in velocity is more than twice as large as that in 2017 to 2021. The variations in ice
velocity at the grounding line can be related to changes in the buttressing effect of the ice
shelf possibly caused by collapse at the ice front [2,3,70,71].
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Figure 10. Annual ice velocities of CWIS from 2017 to 2022 and bed elevation (black solid line) along
the profile marked as C–C′ in Figure 4e. The vertical black and red dotted lines, respectively, indicate
the location of the grounding line and the boundary between the dynamic shelf ice zone and the
passive shelf ice zone.

Figure 11 shows time-series Senitnel-1 SAR images of the CWIS from 2017 to 2022,
from which we can confirm the changes in the ice front position as a result of vari-
ous calving events. Crevasse A observed in February 2017 at 5.7 km on the profile C–
C′ was completely developed in January 2018, leading to the collapse of the ice front
(Figure 11a–c). Figure 11c,d shows that the ice front collapsed between June 2018 and
July 2019 as a result of the development of rift B and other fractures, but the exact timing
of the collapse could not be determined for lack of images. Successive ice front collapse
can reduce the volume of the ice shelf, which weakens its buttressing potential and could
contribute to flow acceleration of the grounded ice [14,72]. From 2019 to 2021, the ice
front continued to advance (Figure 11d–f), and the annual ice velocity of the grounded
ice decreased and stayed constant through 2021 (Figure 10). However, several fractures,
including crevasses and rifts, caused successive collapses of the ice front in February 2022
(Figure 11g), resulting in a retreat of the ice front by about 2.5 km. It is noteworthy that part
of the dynamic shelf ice zone, which plays a critical role in buttressing, was lost as a result
of the collapse in February 2022 (Figures 10 and 11g). This could be a result of the faster
acceleration of ice velocity between 2021 and 2022 rather than the acceleration between 2017
and 2021. Since March 2022, the ice front has continued to advance (Figure 11h); however,
multiple fractures have been observed on the ice shelf surface, which indicates the potential
for further collapse.

The annual ice velocities of the CWIS showed distinct acceleration after 2020, with
the magnitude of the acceleration increasing toward the ice front. The acceleration of ice
flow at the grounding line between 2020 and 2021 was only 1.5% (1350 to 1370 m/a), while
it increased dramatically downstream, reaching 11.9% at the ice front (1550 to 1735 m/a
at the location of the ice front in 2020) (Figure 12). This was due to the development of a
number of crevasses formed by the increased ice velocity in the grounded part from 2019
onwards as they migrated downstream (Figure 11d–f). The development of crevasses and
the resulting fracturing can accelerate the ice velocity of the ice shelf [6,73].
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Crevasses on the CWIS were observed from the ICESat-2 ATL06 products and their
development characteristics were studied. When crevasses form perpendicular to the
ground track of an altimeter, they can be detected as “V” features in the altimeter-observed
elevation profile [74,75]. The crevasses on the CWIS were longitudinal crevasses that
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formed perpendicular to the flow direction of the ice shelf. The ground track of the ICESat-
2 observations investigated in this study is nearly parallel to the flow direction of the
CWIS. This made it possible to detect crevasses on the ice shelf from the “V” feature of the
ICESat-2 ATL06 elevation profiles. In the elevation profiles, we defined the section where
the elevation shows a “V” shape as the width of the crevasse, and the lowest elevation
within the section as the depth of the crevasse [74]. Variations in the width and depth of
the crevasse were analyzed from the elevation profiles from 2019 to 2021. The reliability of
the crevasse detection from the ICESat-2 ATL06 data was evaluated using the location of
crevasses observed in Sentinel-1 SAR images acquired within a few days of the altimeter
observations. Figure 13 shows the ice surface elevation measured along the ICESat-2
ground track, as indicated in the blue line in Figure 11a. The crevasse that appears as a
“V” feature between 6 and 6.5 km of the elevation profile on 4 October 2019 (Figure 13a)
corresponds to crevasse C indicated in Figure 10e. Figure 11b–d shows that crevasse
C advanced with increasing depth over time, and new crevasses (crevasses D, E, and
F in Figure 11e) formed at the grounded region and continued to develop. Notably, the
crevasses deepened substantially after 2020, which could contribute to the large acceleration
of ice velocity between 2020 and 2021 (Figure 12). The depth of the crevasses would be
deeper than analyzed in Figure 13 because the ICESat-2 ground track was not parallel
to the advance direction of crevasses and may not have passed over the deepest point
of the crevasses.
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6. Conclusions

The annual ice velocity of the Cook Ice Shelf in East Antarctica from 2017 to 2022 was
measured by applying the offset tracking method to the Sentinel-1 time-series SAR images,
and the spatiotemporal variations in the velocity and its mechanisms were studied. To
reduce the influence of mismatches in the time-series offset fields on the measurement of
the annual ice velocity, we proposed an erroneous offset filtering method based on the
statistical evaluation of the spatiotemporal characteristics of the offsets. The proposed
filtering method effectively removed the erroneous offsets in the original offset fields,
allowing for precise and accurate measurements of the annual ice velocity. Our annual ice
velocity estimations were in better agreement with the ITS_LIVE velocities than with the
MEaSUREs velocities. Since the MEaSUREs data is spatially smoothed with a 1 km grid
size and the ITS_LIVE data accurately represents the spatial variation of ice velocity with a
240 m grid size, we believe that our annual ice velocities determined from the Sentinel-1
time-series SAR offset tracking are reliable.

The CEIS has shown almost constant ice velocity during the past 6 years, except in
the western part. The western CEIS, characterized by numerous fractures and frequent
collapses, showed large spatiotemporal variations in the annual ice velocities, with up
to 22% acceleration in the dynamic shelf ice zone. The CWIS flowed more than twice as
fast as the CEIS, with 10% acceleration over the past 6 years at the grounding line. The
flow acceleration of the CWIS could be the result of the reduction in ice volume because of
the development of crevasses and ice front collapses. On the CWIS, the flow acceleration
between 2021 and 2022 was more than twice that of the preceding 5 years, which was
possibly due to a series of ice front collapses in February 2022 that wiped out some areas
of the dynamic shelf ice zone. These results suggest that the buttressing potential of the
western CEIS and CWIS has decreased and that the marine ice sheet in these regions can
become more unstable. Given the evolution of crevasses and fractures on the western
CEIS and CWIS, which have resulted in a series of ice shelf calving events, the buttressing
potential could be further reduced in the near future. The buttressing effect of ice shelves
is strongly influenced not only by changes in ice velocity and collapse events but also by
changes in ice thickness as a result of ocean-induced basal and surface melting [76,77].
Therefore, the buttressing potential of the Cook Ice Shelf should be further analyzed by
assessing the mass balance of the ice shelf.

The time-series offset tracking proposed in this study could not be used for glaciers
and ice shelves with rapidly changing flow velocities over short time periods and dramatic
seasonal fluctuations in ice velocities. In addition, a sufficient number of offset tracking
pairs in time-series should be obtained to effectively eliminate erroneous offset fields
and gather precise and accurate ice velocity information. Nevertheless, the time-series
offset tracking proposed in this study is expected to be highly applicable to ice shelf flow
monitoring. This is because most Antarctic ice shelves typically show little variations in the
velocity during short time periods, and the systematic observation missions of Sentinel-1
continue. The combination of the systematic observations of the Sentinel-1 and the time-
series offset tracking can contribute to the monitoring of the stability of Antarctic marine ice
sheets and ice shelves as well as to the prediction of tipping points of ice shelf buttressing.
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