Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = gill membrane proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9411 KiB  
Article
Localization and Expression of Aquaporin 1 (AQP1) in the Tissues of the Spiny Dogfish (Squalus acanthias)
by Christopher P. Cutler and Bryce MacIver
Int. J. Mol. Sci. 2025, 26(12), 5593; https://doi.org/10.3390/ijms26125593 - 11 Jun 2025
Viewed by 323
Abstract
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version [...] Read more.
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version of the mRNA/protein (AQP1SV1/AQP1SV1). Polymerase chain reaction (PCR) in a range of tissues showed AQP1 to be expressed at very high levels in the rectal gland with ubiquitous mRNA expression at lower levels in other tissues. Northern blotting showed that AQP1 had a mRNA size of 5.3 kb in kidney total RNA. The level of AQP1 mRNA was significantly lower in the rectal glands of fish acclimated to 120% seawater (SW; vs. 75% SW (p = 0.0007) and 100% SW (p = 0.0025)) but was significantly higher in those fish in the kidney (vs. 100% SW (p = 0.0178)) and intestine (vs. 75% SW (p= 0.0355) and 100% SW (p = 0.0285)). Quantitative PCR determined that AQP1SV1 mRNA levels were also significantly lower in the rectal glands of both 120% (p = 0.0134) and 100% SW (p = 0.0343) fish in comparison to 75% SW-acclimated dogfish. Functional expression in Xenopus oocytes showed that AQP1 exhibited significant apparent membrane water permeability (p = 0.000008–0.0158) across a range of pH values, whereas AQP1SV1 showed no similar permeability. Polyclonal antibodies produced against AQP1 (AQP1 and AQP1/2 antibodies) and AQP1SV1 had bands at the expected sizes of 28 kDa and 24 kDa, respectively, as well as some other banding. The weak AQP1 antibody and the stronger AQP1/2 antibody exhibited staining in the apical membranes of rectal gland secretory tubules, particularly towards the periphery of the gland. In the gill, the AQP1/2 antibody in particular showed staining in secondary-lamellar pavement-cell basal membranes, and in blood vessels and connective tissue in the gill arch. In the spiral valve intestine side wall and valve flap, the AQP1/2 antibody stained muscle tissue and blood vessel walls and, after tyramide signal amplification, showed some staining in the apical membranes of epithelial cells at the ends of the luminal surface of epithelial folds. In the rectum/colon, there was also some muscle and blood vessel staining, but the AQP1 and AQP1/2 antibodies both stained a layer of cells at the base of the surface epithelium. In the kidney convoluted bundle zone, all three antibodies stained bundle sheath membranes to variable extents, and the AQP1/2 antibody also showed staining in the straight bundle zone bundle sheath. In the kidney sinus zone, the AQP1/2 antibody stained the apical membranes of late distal tubule (LDT) nephron loop cells most strongly, with the strongest staining in the middle of the LDT loop and in patches towards the start of the LDT loop. There was also a somewhat less strong staining of segments of the first sinus zone nephron loop, particularly in the intermediate I (IS-I) tubule segment. Some tubules appeared to show no or only low levels of staining. The results suggest that AQP1 plays a role in rectal gland fluid secretion, kidney fluid reabsorption and gill pavement-cell volume regulation and probably a minor role in intestinal/rectal/colon fluid absorption. Full article
(This article belongs to the Special Issue New Insights into Aquaporins: 2nd Edition)
Show Figures

Graphical abstract

20 pages, 7256 KiB  
Article
Function of lamp2 Gene Response to Vibrio vulnificus Infection and LPS Stimulation in the Half-Smooth Tongue Sole (Cynoglossus semilaevis)
by Tian Han, Yufeng Liu, Mengchao Li, Yitong Zhang, Zhongwei He, Yuqin Ren, Wei Cao, Jiangong Ren, Yufen Wang, Guixing Wang, Chunguang Gong and Jilun Hou
Int. J. Mol. Sci. 2025, 26(5), 1999; https://doi.org/10.3390/ijms26051999 - 25 Feb 2025
Viewed by 687
Abstract
Lysosome-associated membrane glycoproteins (LAMPs), including lysosomal membrane protein 1 (Lamp1) and lysosomal membrane protein 2 (Lamp2), are involved in phagocytosis, chaperone-mediated autophagy (CMA), and other pathways that interact with lysosomal activity. However, the role of Lamp2 in teleosts has not been clarified. In [...] Read more.
Lysosome-associated membrane glycoproteins (LAMPs), including lysosomal membrane protein 1 (Lamp1) and lysosomal membrane protein 2 (Lamp2), are involved in phagocytosis, chaperone-mediated autophagy (CMA), and other pathways that interact with lysosomal activity. However, the role of Lamp2 in teleosts has not been clarified. In this study, we investigated the functions of lamp2 genes during Vibrio vulnificus infection. We achieved subcellular localization of the lamp2 gene at the cellular level and performed overexpression and RNA interference experiments followed by Lipopolysaccharides (LPS) stimulation to probe the expression changes of related genes. Ultrapathology analysis of the head-kidney revealed an increase in lysosomes and the formation of autophagosomal vesicles after V. vulnificus infection, suggesting that lysosomes bind to autophagosomes. The lamp2 gene, encoding 401 amino acids in Cynoglossus semilaevis, was constitutively expressed in all examined tissues of healthy half-smooth tongue sole, with the highest expression in blood. A challenge test was conducted to assess the response of half-smooth tongue sole (Cynoglossus semilaevis) to different concentrations of V. vulnificus. The results showed that the relative expression of lamp2 and its related genes—lc3, rab7, vamp8, atg14, stx17, snap29, ctsb, and ctsd—varied with time and concentration in the gill, spleen, head-kidney, blood, liver, and gut tissues. From the results of lamp2 gene overexpression and RNA interference experiments, it is hypothesized that lamp2 positively regulates lc3, rab7, vamp8, snap29, and stx17, and negatively regulates ctsd and ctsb. Our findings provide new primary data for the function of lamp2 gene in the half-smooth tongue sole., particularly its role in regulating the immune response against V. vulnificus. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 5251 KiB  
Article
Pathogenicity of Citrobacter freundii Causing Mass Mortalities of Macrobrachium rosenbergii and Its Induced Host Immune Response
by Anting Chen, Qieqi Qian, Xiaoyu Cai, Jia Yin, Yan Liu, Qi Dong, Xiaojian Gao, Qun Jiang and Xiaojun Zhang
Microorganisms 2024, 12(10), 2079; https://doi.org/10.3390/microorganisms12102079 - 17 Oct 2024
Cited by 4 | Viewed by 2157
Abstract
Citrobacter freundii is an opportunistic pathogen of freshwater aquatic animals, which severely restricts the sustainable development of the aquaculture industry. In this study, a dominant strain, named FSNM-1, was isolated from the hepatopancreas of diseased Macrobrachium rosenbergii. This strain was identified as [...] Read more.
Citrobacter freundii is an opportunistic pathogen of freshwater aquatic animals, which severely restricts the sustainable development of the aquaculture industry. In this study, a dominant strain, named FSNM-1, was isolated from the hepatopancreas of diseased Macrobrachium rosenbergii. This strain was identified as C. freundii based on a comprehensive analysis of its morphological, physiological, and biochemical features and molecular identification. Challenge experiments were conducted to assess the pathogenicity of C. freundii to M. rosenbergii. The results showed that the FSNM-1 strain had high virulence to M. rosenbergii with a median lethal dose (LD50) of 1.1 × 106 CFU/mL. Histopathological analysis revealed that C. freundii infection caused different degrees of inflammation in the hepatopancreas, gills, and intestines of M. rosenbergii. The detection of virulence-related genes revealed that the FSNM-1 strain carried colonization factor antigen (cfa1, cfa2), ureases (ureG, ureF, ureD, ureE), and outer membrane protein (ompX), and virulence factor detection showed that the FSNM-1 strain had lecithinase, amylase, lipase, gelatinase, and hemolysin activities but did not produce protease and DNase activities. To investigate the immune response of M. rosenbergii to C. freundii, the expression levels of ALF3, MyD88, SOD, proPO, TRAF6, and TNF immune-related genes were monitored at different points of time in the hepatopancreas, gills, intestines, and hemocytes of M. rosenbergii after infection. The results demonstrated a significant upregulation in the expression levels of the ALF3, MyD88, SOD, proPO, TRAF6, and TNF genes in M. rosenbergii at the early stage of C. freundii infection. This study highlights C. freundii as a major pathogen causing mass mortality in M. rosenbergii and provides valuable insights into its virulence mechanisms and the host’s immune response. Full article
(This article belongs to the Special Issue Pathogens and Aquaculture)
Show Figures

Figure 1

32 pages, 6256 KiB  
Article
Cadmium Highlights Common and Specific Responses of Two Freshwater Sentinel Species, Dreissena polymorpha and Dreissena rostriformis bugensis
by Florence Bultelle, Aimie Le Saux, Elise David, Arnaud Tanguy, Simon Devin, Stéphanie Olivier, Agnès Poret, Philippe Chan, Fanny Louis, Laurence Delahaut, Sandrine Pain-Devin, Romain Péden, David Vaudry, Frank Le Foll and Béatrice Rocher
Proteomes 2024, 12(2), 10; https://doi.org/10.3390/proteomes12020010 - 26 Mar 2024
Viewed by 2359
Abstract
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel’s use in environmental survey. To better characterise [...] Read more.
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel’s use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L−1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM. Full article
Show Figures

Figure 1

12 pages, 3854 KiB  
Article
Molecular Characterization and Response of Silver Carp (Hypophthalmichthys molitrix) GLUT1 under Hypoxia Stress
by Zewen Zhang, Xiaohui Li, Guiwei Zou and Hongwei Liang
Fishes 2023, 8(8), 425; https://doi.org/10.3390/fishes8080425 - 20 Aug 2023
Viewed by 1721
Abstract
As an important freshwater species with economic and ecological benefits, silver carp (Hypophthalmichthys molitrix) exhibits poor tolerance to hypoxia. Glucose transporters (GLUTs) are core membrane proteins that transport glucose to tissues and regulate essential life activities. Its expression is regulated by [...] Read more.
As an important freshwater species with economic and ecological benefits, silver carp (Hypophthalmichthys molitrix) exhibits poor tolerance to hypoxia. Glucose transporters (GLUTs) are core membrane proteins that transport glucose to tissues and regulate essential life activities. Its expression is regulated by HIF-1α and cells in hypoxic conditions to maintain energy demand through GLUTs inducing enhanced glucose transport. We cloned H. molitrix glut1 (SLC2A1) and analyzed its sequence using bioinformatics tools. The glut1 cDNA was 2104 base pairs long and encoded a 490 amino acid protein. Phylogenetic analysis revealed that sliver carp glut1 is evolutionarily conserved and exhibited the highest sequence similarity with Ctenopharyngodon idella glut1. Glut1 expression was the highest and lowest in the gills and liver, respectively. Hypoxic stress significantly increased glut1 expression in the brain (p < 0.05); in the gills, it was the highest and lowest in the semi-asphyxia and asphyxia groups, respectively; in the liver, it was significantly higher under hypoxia than that of the normoxia group; and in the heart, it was significantly higher in the floating head, semi-asphyxia, and asphyxia groups than in the normoxia group (p < 0.05). The proposed mechanism may thus provide the basis for elucidating the molecular basis of silver carp’s hypoxia stress response mediated by glut1. Full article
(This article belongs to the Special Issue Response of Aquatic Animals to Environmental Changes)
Show Figures

Graphical abstract

13 pages, 1145 KiB  
Article
The Relationship between Lifespan of Marine Bivalves and Their Fatty Acids of Mitochondria Lipids
by Aleksandra Anatolyevna Istomina, Avianna Fayazovna Zhukovskaya, Andrey Nikolaevich Mazeika, Ekaterina Andreevna Barsova, Victor Pavlovich Chelomin, Marina Alexandrovna Mazur, Olesya Alexandrovna Elovskaya, Andrey Alexandrovich Mazur, Nadezda Vladimirovna Dovzhenko, Yuliya Vladimirovna Fedorets and Alexander Alexandrovich Karpenko
Biology 2023, 12(6), 837; https://doi.org/10.3390/biology12060837 - 9 Jun 2023
Cited by 6 | Viewed by 2195
Abstract
Marine bivalves belonging to the Mytilidae and Pectinidae Families were used in this research. The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill membranes in bivalves with different lifespans, belonging to the same family, and to [...] Read more.
Marine bivalves belonging to the Mytilidae and Pectinidae Families were used in this research. The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill membranes in bivalves with different lifespans, belonging to the same family, and to calculate their peroxidation index; to compare the levels of ROS generation, malondialdehyde (MDA), and protein carbonyls in the mitochondria of gills, in vitro, during the initiation of free-radical oxation; to investigate whether the FAs of mitochondria gill membranes affect the degree of their oxidative damage and the maximum lifespan of species (MLS). The qualitative membrane lipid composition was uniform in the studied marine bivalves, regardless of their MLS. In terms of the quantitative content of individual FAs, the mitochondrial lipids differed significantly. It is shown that lipid matrix membranes of the mitochondria of long-lived species are less sensitive to in vitro-initiated peroxidation compared with the medium and short-lived species. The differences in MLS are related to the peculiarities of FAs of mitochondrial membrane lipids. Full article
Show Figures

Figure 1

14 pages, 3345 KiB  
Article
Cloning, Expression, and Functional Characterization of FUT1, a Key Gene for Histo-Blood Group Antigens Synthesis in Crassostrea gigas
by Binbin Gui, Lin Yao, Meng Qu, Weiran Zhang, Mingyu Li, Yanhua Jiang and Lianzhu Wang
Curr. Issues Mol. Biol. 2023, 45(5), 4200-4213; https://doi.org/10.3390/cimb45050267 - 9 May 2023
Cited by 2 | Viewed by 2217
Abstract
Histo-blood group antigens (HBGAs) comprise a family of cell-surface carbohydrates that are considered norovirus-specific binding receptors or ligands. HBGA-like molecules have also been detected in oysters as common norovirus carriers, although the pathway involved in the synthesis of these molecules in oysters has [...] Read more.
Histo-blood group antigens (HBGAs) comprise a family of cell-surface carbohydrates that are considered norovirus-specific binding receptors or ligands. HBGA-like molecules have also been detected in oysters as common norovirus carriers, although the pathway involved in the synthesis of these molecules in oysters has yet to be elucidated. We isolated and identified a key gene involved in the synthesis of HBGA-like molecules, FUT1, from Crassostrea gigas, named CgFUT1. Real-time quantitative polymerase chain reaction analysis showed that CgFUT1 mRNA was expressed in the mantle, gill, muscle, labellum, and hepatopancreatic tissues of C. gigas, with the hepatopancreas exhibiting the highest expression level. A recombinant CgFUT1 protein with a molecular mass of 38.0 kDa was expressed in Escherichia coli using a prokaryotic expression vector. A eukaryotic expression plasmid was constructed and transfected into Chinese hamster ovary (CHO) cells. The expression of CgFUT1 and membrane localization of type H-2 HBGA-like molecules in CHO cells were detected using Western blotting and cellular immunofluorescence, respectively. This study indicated that CgFUT1, expressed in C. gigas tissues, can synthesize type H-2 HBGA-like molecules. This finding provides a new perspective for analyzing the source and synthetic pathway of HBGA-like molecules in oysters. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

15 pages, 1415 KiB  
Article
Differential Cell Metabolic Pathways in Gills and Liver of Fish (White Seabream Diplodus sargus) Coping with Dietary Methylmercury Exposure
by Giuseppe De Marco, Barbara Billè, Fátima Brandão, Mariachiara Galati, Patrícia Pereira, Tiziana Cappello and Mário Pacheco
Toxics 2023, 11(2), 181; https://doi.org/10.3390/toxics11020181 - 16 Feb 2023
Cited by 11 | Viewed by 3020
Abstract
Mercury (Hg) is a dangerous and persistent trace element. Its organic and highly toxic form, methylmercury (MeHg), easily crosses biological membranes and accumulates in biota. Nevertheless, understanding the mechanisms of dietary MeHg toxicity in fish remains a challenge. A time-course experiment was conducted [...] Read more.
Mercury (Hg) is a dangerous and persistent trace element. Its organic and highly toxic form, methylmercury (MeHg), easily crosses biological membranes and accumulates in biota. Nevertheless, understanding the mechanisms of dietary MeHg toxicity in fish remains a challenge. A time-course experiment was conducted with juvenile white seabreams, Diplodus sargus (Linnaeus, 1758), exposed to realistic levels of MeHg in feed (8.7 μg g−1, dry weight), comprising exposure (E; 7 and 14 days) and post-exposure (PE; 28 days) periods. Total Hg levels increased with time in gills and liver during E and decreased significantly in PE (though levels of control fish were reached only for gills), with liver exhibiting higher levels (2.7 times) than gills. Nuclear magnetic resonance (NMR)-based metabolomics revealed multiple and often differential metabolic changes between fish organs. Gills exhibited protein catabolism, disturbances in cholinergic neurotransmission, and changes in osmoregulation and lipid and energy metabolism. However, dietary MeHg exposure provoked altered protein metabolism in the liver with decreased amino acids, likely for activation of defensive strategies. PE allowed for the partial recovery of both organs, even if with occurrence of oxidative stress and changes of energy metabolism. Overall, these findings support organ-specific responses according to their sensitivity to Hg exposure, pointing out that indications obtained in biomonitoring studies may depend also on the selected organ. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

14 pages, 10277 KiB  
Article
Identification and Functional Analysis of MAPKAPK2 in Hyriopsis cumingii
by Yang Gu, Meiling Liu, Yayu Wang, Yingduo Huo, Zongyu Liu, Wu Jin and Guiling Wang
Genes 2022, 13(11), 2060; https://doi.org/10.3390/genes13112060 - 7 Nov 2022
Cited by 3 | Viewed by 2037
Abstract
MAPKAPK2 (MK2) is an important regulator of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, which is involved in a plethora of cellular processes concluding the development of gamete cells in meiosis and resisting pathogenic bacterial infestation. Hyriopsis cumingii is a [...] Read more.
MAPKAPK2 (MK2) is an important regulator of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, which is involved in a plethora of cellular processes concluding the development of gamete cells in meiosis and resisting pathogenic bacterial infestation. Hyriopsis cumingii is a significant mussel resource in China and a good material for pearl breeding. To explore the role of MK2 in H. cumingii, MK2 was identified and cloned, whose full-length cDNA was 1568 bp, including 87 bp in 5′ UTR, 398 bp in 3′ UTR, and 1083 bp in the open reading frame (ORF) region, encoding 360 amino acids. The expression of MK2 was the highest in the gills. Meanwhile, there was a significant difference in the gonads. After Aeromonas hydrophila and Lipopolysaccharide (LPS) infestation, the transcript level of the MK2 was upregulated in the gills. It indicated that MK2 might be involved in the innate immune response of H. cumingii after a pathogenic attack. After quantifying H. cumingii of different ages, it was found that the expression of MK2 was highest at 1 year old. In situ hybridization (ISH) results showed that the blue-purple hybridization signal was very significant in the oocytes and egg membranes of the female gonads of H. cumingii. The expression of MK2 increased gradually at the age of 1 to 5 months and showed a downward trend at the age of 5 to 8 months. It was suggested that MK2 might play an important role in the formation of primitive germ cells in H. cumingii. To sum up, MK2 might not only be involved in the immune response against pathogenic bacterial infection but also might play an important role in the development of the gonads in H. cumingii. Full article
(This article belongs to the Special Issue Genetic Breeding and Genomics of Marine Shellfish)
Show Figures

Figure 1

19 pages, 4431 KiB  
Article
Peripheral Blood B-Lymphocytes Are Involved in Lymphocystis Disease Virus Infection in Flounder (Paralichthys olivaceus) via Cellular Receptor-Mediated Mechanism
by Xiuzhen Sheng, Jing Zeng, Ying Zhong, Xiaoqian Tang, Jing Xing, Heng Chi and Wenbin Zhan
Int. J. Mol. Sci. 2022, 23(16), 9225; https://doi.org/10.3390/ijms23169225 - 17 Aug 2022
Cited by 4 | Viewed by 2199
Abstract
Previous studies imply that peripheral blood leukocytes (PBLs) may play an important role in systemic lymphocystis disease virus (LCDV) dissemination, but whether the PBLs are susceptible and permissive to LCDV infection and the dissemination mechanism need to be clarified. In this study, LCDV [...] Read more.
Previous studies imply that peripheral blood leukocytes (PBLs) may play an important role in systemic lymphocystis disease virus (LCDV) dissemination, but whether the PBLs are susceptible and permissive to LCDV infection and the dissemination mechanism need to be clarified. In this study, LCDV was firstly confirmed to infect the PBLs in flounder (Paralichthys olivaceus) in vivo, and to replicate in PBLs in vitro. Subsequently, the 27.8 kDa receptor protein (27.8R), a functional receptor mediating LCDV infection in flounder gill cells, was shown to locate on the cell membrane of PBLs and co-localize with LCDV in PBLs, while blocking of the 27.8R via pre-incubation of anti-27.8R MAb with the PBLs could obviously inhibit LCDV infection, revealing the 27.8R as a receptor for LCDV entry into PBLs. Multicolor fluorescence imaging studies verified that IgM+ and IgD+ B-lymphocyte were involved in LCDV infection. In the sorted IgM+ B-cells, 27.8R+ and LCDV+ signals were simultaneously observed, and LCDV copy numbers increased with time, indicating that IgM+ B-cells expressed the 27.8R and were permissive to LCDV infection. Furthermore, the dynamic changes of IgM+, 27.8R+, LCDV+ and LCDV+/IgM+ PBLs were monitored during the early phase of LCDV infection. It was found that the percentage of IgM+ B-cells in PBLs clearly declined first and then increased, suggesting LCDV infection facilitated damage to B-cells, whereas the amounts of 27.8R+ and LCDV+ PBLs, as well as LCDV-infected IgM+ B-cells, showed an opposite trend. These results proved that IgM+ B-lymphocytes could be infected by LCDV via a receptor-mediated mechanism and support viral replication, which provided novel insights for the first time into the role of B-lymphocytes in LCDV dissemination and pathogenesis in teleost fish. Full article
(This article belongs to the Special Issue Aquatic Organisms as Disease Models)
Show Figures

Figure 1

9 pages, 702 KiB  
Article
NM23 Is a CP-Binding Protein Involved in Infectious Hypodermal and Hematopoietic Necrosis Virus Infection in Shrimp
by Xiaotong Yin, Xiaoshan Wang, Hui Sun and Rongmei Fei
Animals 2022, 12(5), 621; https://doi.org/10.3390/ani12050621 - 1 Mar 2022
Cited by 1 | Viewed by 2235
Abstract
The aim of this study was to identify the putative host cell receptor for Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) CP in the gill membrane of L. vannamei. Putative CP binding partners were screened first using a 2-dimensional Virus Overlay Protein [...] Read more.
The aim of this study was to identify the putative host cell receptor for Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) CP in the gill membrane of L. vannamei. Putative CP binding partners were screened first using a 2-dimensional Virus Overlay Protein Blot Assay (VOPBA) to probe isolated gill membrane proteins using recombinant CP. Putative binding partners were identified using mass spectrometry. A Phage Display Random Dodecapeptide Library was used to screen for dodecapeptides and motifs that bound to CP. Finally, putative binding pairs were confirmed using GST(glutathione-S-transferase) pulldown assays. 2-Dimensional VOPBA identified NM23 as a putative binding partner for IHHNV CP. GST pulldown experiments confirmed the direct interaction of NM23 and IHHNV CP. The phage display library was used to identify six groups of dodecapeptides that bound to CP. From these peptides, three characteristic binding motifs were identified, SW*Y, SKWV, and PQR. Interestingly, the SW*Y motif was also found in NM23. We are the first to implicate NM23 in IHHNV infection and postulate that it may bind to the CP using the SW*Y motif, although this remains to be confirmed. Full article
Show Figures

Figure 1

16 pages, 1437 KiB  
Article
Organ-Specific Metabolome Deciphering Cell Pathways to Cope with Mercury in Wild Fish (Golden Grey Mullet Chelon auratus)
by Giuseppe De Marco, Fátima Brandão, Patrícia Pereira, Mário Pacheco and Tiziana Cappello
Animals 2022, 12(1), 79; https://doi.org/10.3390/ani12010079 - 30 Dec 2021
Cited by 18 | Viewed by 2753
Abstract
Metabolomics is a powerful approach in evaluating the health status of organisms in ecotoxicological studies. However, metabolomics data reflect metabolic variations that are attributable to factors intrinsic to the environment and organism, and it is thus crucial to accurately evaluate the metabolome of [...] Read more.
Metabolomics is a powerful approach in evaluating the health status of organisms in ecotoxicological studies. However, metabolomics data reflect metabolic variations that are attributable to factors intrinsic to the environment and organism, and it is thus crucial to accurately evaluate the metabolome of the tissue/organ examined when it is exposed to no stressor. The metabolomes of the liver and gills of wild golden grey mullet (Chelon auratus) from a reference area were analyzed and compared by proton nuclear magnetic resonance (1H NMR)-based metabolomics. Both organs were characterized by amino acids, carbohydrates, osmolytes, nucleosides and their derivatives, and miscellaneous metabolites. However, similarities and differences were revealed in their metabolite profile and related to organ-specific functions. Taurine was predominant in both organs due to its involvement in osmoregulation in gills, and detoxification and antioxidant protective processes in liver. Environmental exposure to mercury (Hg) triggered multiple and often differential metabolic alterations in fish organs. Disturbances in ion-osmoregulatory processes were highlighted in the gills, whereas differential impairments between fish organs were pointed out in energy-producing metabolic pathways, protein catabolism, membrane stabilization processes, and antioxidant defense system, reflecting the induction of organ-specific adaptive and defensive strategies. Overall, a strict correlation between metabolites and organ-specific functions of fish gills and liver were discerned in this study, as well as organ-specific cytotoxicity mechanisms of Hg in fish. Full article
(This article belongs to the Collection Effects of Pollutants on Fish)
Show Figures

Figure 1

15 pages, 2348 KiB  
Communication
Proteome Response of Meretrix Bivalves Hepatopancreas Exposed to Paralytic Shellfish Toxins Producing Dinoflagellate Gymnodinium catenatum
by Kin-Ka Chan, Nora Fung-Yee Tam, Christie Ng, Celia Sze-Nga Kwok, Steven Jing-Liang Xu, Eric Tung-Po Sze and Fred Wang-Fat Lee
J. Mar. Sci. Eng. 2021, 9(9), 1039; https://doi.org/10.3390/jmse9091039 - 21 Sep 2021
Cited by 5 | Viewed by 3122
Abstract
Paralytic shellfish toxins (PSTs) contamination of seafood has become a growing global problem. However, the molecular response of bivalves, some of the most popular seafoods, to PSP toxins has seldom been reported and the underlying molecular mechanisms of the interactions between Meretrix meretrix [...] Read more.
Paralytic shellfish toxins (PSTs) contamination of seafood has become a growing global problem. However, the molecular response of bivalves, some of the most popular seafoods, to PSP toxins has seldom been reported and the underlying molecular mechanisms of the interactions between Meretrix meretrix bivalves and PSTs-producing dinoflagellates are scarcely known. This study compared the protein expression profiles between PSP toxin-contaminated and non-PSP toxin contaminated M. meretrix, determined proteome responses and identified potential biomarkers based on feeding experiments. Results showed that the content of total PSP toxins in contaminated bivalves was 40.63 ± 4.08 μg saxitoxin (STX) equivalents per gram, with 95.3% in hepatopancreas, followed by gill (1.82%) and foot (1.79%). According to two-dimensional gel electrophoresis (2-DE), 15 differentially expressed proteins (at least 2-fold difference) between the hepatopancreas of bivalves with and without PSP toxins were detected. Eight of them were successfully identified by MALDI-TOF MS. These were catalase, protein ultraspiracle homolog, G2 and S phase-expression protein, paramyosin, Mn-superoxide dismutase, response regulator receiver domain-containing protein, sarcoplasmic calcium-binding protein and major facilitator superfamily transporters. The differences in the expression levels of the last three proteins involving in cell signaling, structure and membrane transport were 4.2, 5.3 and 4.9-fold, respectively. These proteins could be further developed as potential biomarkers. The other two up-regulated proteins, Mn-superoxide dismutase and catalase, were involved in cell defence mechanisms against oxidative stress, suggesting PSP toxin acts as xenobiotics and poses oxidative stress in bivalves. This study gives insights into the response of bivalves to PSP toxin-producing dinoflagellate at the proteomic level and the potential of using 2-DE to develop specific protein markers in bivalves. Full article
(This article belongs to the Special Issue Marine Omics & Biotechnology)
Show Figures

Figure 1

14 pages, 4959 KiB  
Article
Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus)
by Xiuzhen Sheng, Ronghua Wu, Xiaoqian Tang, Jing Xing and Wenbin Zhan
Int. J. Mol. Sci. 2015, 16(11), 26506-26519; https://doi.org/10.3390/ijms161125974 - 5 Nov 2015
Cited by 13 | Viewed by 6705
Abstract
The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder [...] Read more.
The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder and turbot (Scophthalmus maximus). Indirect immunofluorescence assay (IIFA) and immunohistochemistry showed that 27.8R was widely expressed in tested tissues of healthy turbot. The indirect enzyme-linked immunosorbent assay indicated that 27.8R expression was relatively higher in stomach, gill, heart, and intestine, followed by skin, head kidney, spleen, blood cells, kidney and liver, and lower in ovary and brain in healthy turbot, and it was significantly up-regulated after LCDV infection. Meanwhile, real-time quantitative PCR demonstrated that LCDV was detected in heart, peripheral blood cells, and head kidney at 3 h post infection (p.i.), and then in other tested tissues at 12 h p.i. LCDV copies increased in a time-dependent manner, and were generally higher in the tissues with higher 27.8R expression. Additionally, IIFA showed that 27.8R and LCDV were detected at 3 h p.i. in some leukocytes. These results suggested that 27.8R also served as a receptor in turbot, and LCDV can infect some leukocytes which might result in LCDV spreading to different tissues in turbot. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop