Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = geosynchronous synthetic aperture radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5746 KiB  
Article
A Novel SAR Imaging Method for GEO Satellite–Ground Bistatic SAR System with Severe Azimuth Spectrum Aliasing and 2-D Spatial Variability
by Jingjing Ti, Zhiyong Suo, Yi Liang, Bingji Zhao and Jiabao Xi
Remote Sens. 2024, 16(15), 2853; https://doi.org/10.3390/rs16152853 - 3 Aug 2024
Cited by 1 | Viewed by 1580
Abstract
The satellite–ground bistatic configuration, which uses geosynchronous synthetic aperture radar (GEO SAR) for illumination and ground equipment for reception, can achieve wide coverage, high revisit, and continuous illumination of interest areas. Based on the analysis of the signal characteristics of GEO satellite–ground bistatic [...] Read more.
The satellite–ground bistatic configuration, which uses geosynchronous synthetic aperture radar (GEO SAR) for illumination and ground equipment for reception, can achieve wide coverage, high revisit, and continuous illumination of interest areas. Based on the analysis of the signal characteristics of GEO satellite–ground bistatic SAR (GEO SG-BiSAR), it is found that the bistatic echo signal has problems of azimuth spectrum aliasing and 2-D spatial variability. Therefore, to overcome those problems, a novel SAR imaging method for a GEO SG-BiSAR system with severe azimuth spectrum aliasing and 2-D spatial variability is proposed. Firstly, based on the geometric configuration of the GEO SG-BiSAR system, the time-domain and frequency-domain expressions of the signal are derived in detail. Secondly, in order to avoid the increasing cost caused by traditional multi-channel reception technology and the processing burden caused by inter-channel errors, the azimuth deramping is executed to solve the azimuth spectrum aliasing of the signal under the special geometric structure of GEO SG-BiSAR. Thirdly, based on the investigation of azimuth and range spatial variability characteristics of GEO SG-BiSAR in the Range Doppler (RD) domain, the azimuth spatial variability correction strategy is proposed. The signal corrected by the correction strategy has the same migration characteristics as monostatic radar. Therefore, the traditional chirp scaling function (CSF) is also modified to solve the range spatial variability of the signal. Finally, the two-dimensional spectrum of GEO SG-BiSAR with modified chirp scaling processing is derived, followed by the SPECAN operation to obtain the focused SAR image. Furthermore, the completed flowchart is also given to display the main composed parts for GEO SG-BiSAR imaging. Both azimuth spectrum aliasing and 2-D spatial variability are taken into account in the imaging method. The simulated data and the real data obtained by the Beidou navigation satellite are used to verify the effectiveness of the proposed method. Full article
Show Figures

Graphical abstract

22 pages, 8344 KiB  
Article
Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar
by Xiaoying Sun, Leping Chen, Zhengquan Zhou, Huagui Du and Xiaotao Huang
Remote Sens. 2024, 16(8), 1470; https://doi.org/10.3390/rs16081470 - 21 Apr 2024
Cited by 2 | Viewed by 1545
Abstract
Frequency synchronization error, as one of the inevitable technical challenges in distributed synthetic aperture radar (SAR), has different impacts on different SAR systems. Multi-monostatic SAR is a typical distributed configuration where frequency synchronization errors are tiny in distributed airborne and low earth orbit [...] Read more.
Frequency synchronization error, as one of the inevitable technical challenges in distributed synthetic aperture radar (SAR), has different impacts on different SAR systems. Multi-monostatic SAR is a typical distributed configuration where frequency synchronization errors are tiny in distributed airborne and low earth orbit (LEO) SAR systems. However, due to the long time delay and long synthetic aperture time, the imaging performance of a multi-monostatic geosynchronous (GEO) SAR system is affected by frequency oscillator errors. In this paper, to investigate the frequency synchronization problem in this configuration, we firstly model the echo signals with the frequency synchronization errors, which can be divided into fixed frequency errors and random phase noise. Secondly, we talk about the impacts of the two kinds of errors on imaging performance. To solve the problem, we thirdly propose an autofocus back-projection (ABP) algorithm, which adopts the coordinate descent method and iteratively adjusts the phase error estimation until the image reaches its maximum sharpness. Based on the characteristics of the frequency synchronization errors, we further propose the Node ABP (NABP) algorithm, which greatly reduces the amount of storage and computation compared to the ABP algorithm. Finally, simulations are carried out to validate the effectiveness of the ABP and NABP algorithms. Full article
Show Figures

Figure 1

24 pages, 29247 KiB  
Article
An Improved NLCS Algorithm Based on Series Reversion and Elliptical Model Using Geosynchronous Spaceborne–Airborne UHF UWB Bistatic SAR for Oceanic Scene Imaging
by Xiao Hu, Hongtu Xie, Shiliang Yi, Lin Zhang and Zheng Lu
Remote Sens. 2024, 16(7), 1131; https://doi.org/10.3390/rs16071131 - 23 Mar 2024
Cited by 5 | Viewed by 1339
Abstract
Geosynchronous spaceborne–airborne (GEO-SA) ultra-high-frequency ultra-wideband bistatic synthetic aperture radar (UHF UWB BiSAR) provides high-precision images for marine and polar environments, which are pivotal in glacier monitoring and sea ice thickness measurement for polar ocean mapping and navigation. Contrasting with traditional high-frequency BiSAR, it [...] Read more.
Geosynchronous spaceborne–airborne (GEO-SA) ultra-high-frequency ultra-wideband bistatic synthetic aperture radar (UHF UWB BiSAR) provides high-precision images for marine and polar environments, which are pivotal in glacier monitoring and sea ice thickness measurement for polar ocean mapping and navigation. Contrasting with traditional high-frequency BiSAR, it faces unique challenges, such as the considerable spatial variability, significant range–azimuth coupling, and vast volumes of echo data, which impede high-resolution image reconstruction. This paper presents an improved bistatic nonlinear chirp scaling (NLCS) algorithm for imaging oceanic scenes with GEO-SA UHF UWB BiSAR. This methodology extends the two-dimensional (2-D) spectrum up to the sixth order via the method of series reversion (MSR) to meet accuracy demands and then employs an elliptical model to elucidate the alterations in the azimuth frequency modulation (FM) rate mismatch. Initially, the imaging geometry and signal model are introduced, and then a separation of bistatic slant ranges based on the configuration is proposed. In addition, during range processing, after eliminating linear range cell migration (RCM), the derivation process for the sixth-order 2-D spectrum is detailed and an improved filter is applied to correct the high-order RCM. Finally, during azimuth processing, the causes of the FM rate mismatch are analyzed, a cubic perturbation function derived from the elliptical model is used for FM rate equalization, and a unified sixth-order filter is applied to complete the azimuth compression. Experimental results with point targets and natural oceanic scenes validate the outstanding efficacy of the proposed NLCS algorithm, particularly in imaging quality enhancements for GEO-SA UHF UWB BiSAR. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

25 pages, 4188 KiB  
Article
An Accurate and Efficient BP Algorithm Based on Precise Slant Range Model and Rapid Range History Construction Method for GEO SAR
by Yifan Wu, Lijia Huang, Bingchen Zhang, Xiaochen Wang and Xiyu Qi
Remote Sens. 2023, 15(21), 5191; https://doi.org/10.3390/rs15215191 - 31 Oct 2023
Cited by 5 | Viewed by 1795
Abstract
The Geosynchronous Satellite Synthetic Aperture Radar (GEO SAR) operates at a high orbital altitude, resulting in an extended imaging time and substantial variations in slant range. Additionally, the GEO SAR satellite orbit experiences a bending effect, and the target’s movement, caused by the [...] Read more.
The Geosynchronous Satellite Synthetic Aperture Radar (GEO SAR) operates at a high orbital altitude, resulting in an extended imaging time and substantial variations in slant range. Additionally, the GEO SAR satellite orbit experiences a bending effect, and the target’s movement, caused by the Earth’s rotation, is influenced by the Earth’s curvature. The back-projection (BP) algorithm has been proven to be a highly effective technique for precise imaging with GEO SAR by processing these specific echo signals. However, this approach necessitates considerable computational resources. Existing BP algorithms, such as the fast BP algorithm, do not consider the “Stop-and-Go” error present in GEO SAR. Consequently, we developed a Precise Slant Range Model that considers the motion of both the satellite and targets. The model incorporates velocity and acceleration factors to accurately represent the signal transmission from transmission to reception. Additionally, we propose a Rapid Range History Construction Method to lessen the computational burden of generating the three-dimensional range history array. By utilizing the Precise Slant Range Model and the Rapid Range History Construction Method, and employing parallel processing through aperture segmentation, we propose an Accurate and Efficient BP imaging algorithm suitable for GEO SAR applications. To validate its effectiveness, simulations were conducted using the parameters of a GEO SAR system. The results indicated that the proposed algorithm enhances the imaging quality of GEO SAR, reduces the processing time, and achieves high-precision rapid imaging, thereby improving operational efficiency. Full article
Show Figures

Figure 1

20 pages, 9776 KiB  
Article
Compensation of Background Ionospheric Effect on L-Band Geosynchronous SAR with Fully Polarimetric Data
by Wei Guo, Peng Xiao and Xincheng Gao
Remote Sens. 2023, 15(15), 3746; https://doi.org/10.3390/rs15153746 - 27 Jul 2023
Cited by 4 | Viewed by 1603
Abstract
The L-band geosynchronous synthetic aperture radar (GEO-SAR) has been widely praised for its advantages of short revisit time, wide coverage and stable backscattering information acquisition. However, due to the ultra-long integrated time, the echo will be affected by the time-variant background ionosphere, leading [...] Read more.
The L-band geosynchronous synthetic aperture radar (GEO-SAR) has been widely praised for its advantages of short revisit time, wide coverage and stable backscattering information acquisition. However, due to the ultra-long integrated time, the echo will be affected by the time-variant background ionosphere, leading in particular to defocusing in the azimuth direction. Existing compensation methods suitable for low Earth orbit SAR (LEO-SAR) are based on the SAR image or the semi-focused image at the ionospheric phase screen, assuming that the ionosphere is time-frozen for a short integrated period; thus, accurate reconstruction of the time-variant characteristics for the ionosphere in GEO-SAR cannot be achieved. In this paper, a compensation method of background ionospheric effects on L-band GEO-SAR with fully polarimetric data is proposed. Considering the continuous variation of the ionosphere within the synthetic aperture, a decompression processing is proposed to reconstruct the echo by recovering the temporal sampling according to the imaging geometry. By virtue of the Faraday rotation angle, the time-variant total electron content (TEC) is accurately estimated with the reconstructed echo. Based on the established error model, the ionospheric effects are well compensated with the estimated TEC. Simulations with the real SAR data from ALOS-2 and the measured time-variant TEC from USTEC validate the effectiveness and performance of the proposed method. The impacts from thermal noise and polarimetric calibration error are also quantitatively analyzed. From this, the error thresholds are given to guarantee compensation accuracy, namely 18.96 dB for SNR, −15.63 dB for crosstalk and −1.02 dB to 0.31 dB for the amplitude of the channel imbalance, and the argument of the channel imbalance is suggested to be maintained as close to zero as possible. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

27 pages, 20567 KiB  
Article
Fast Factorized Backprojection Algorithm in Orthogonal Elliptical Coordinate System for Ocean Scenes Imaging Using Geosynchronous Spaceborne–Airborne VHF UWB Bistatic SAR
by Xiao Hu, Hongtu Xie, Lin Zhang, Jun Hu, Jinfeng He, Shiliang Yi, Hejun Jiang and Kai Xie
Remote Sens. 2023, 15(8), 2215; https://doi.org/10.3390/rs15082215 - 21 Apr 2023
Cited by 14 | Viewed by 2623
Abstract
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious [...] Read more.
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious range–azimuth coupling, large spatial variance, and complex motion error, which increases the difficulty of the high-efficiency and high-precision imaging. In this paper, we present an improved bistatic fast factorization backprojection (FFBP) algorithm for ocean scene imaging using the GEO satellite-unmanned aerial vehicle (GEO-UAV) VHF UWB BiSAR, which can solve the above issues with high efficiency and high precision. This method reconstructs the subimages in the orthogonal elliptical polar (OEP) coordinate system based on the GEO satellite and UAV trajectories as well as the location of the imaged scene, which can further reduce the computational burden. First, the imaging geometry and signal model of the GEO-UAV VHF UWB BiSAR are established, and the construction of the OEP coordinate system and the subaperture imaging method are proposed. Moreover, the Nyquist sampling requirements for the subimages in the OEP coordinate system are derived from the range error perspective, which can offer a near-optimum tradeoff between precision and efficiency. In addition, the superiority of the OEP coordinate system is analyzed, which demonstrates that the angular dimensional sampling rate of the subimages is significantly reduced. Finally, the implementation processes and computational burden of the proposed algorithm are provided, and the speed-up factor of the proposed FFBP algorithm compared with the BP algorithm is derived and discussed. Experimental results of ideal point targets and natural ocean scenes demonstrate the correctness and effectiveness of the proposed algorithm, which can achieve near-optimal imaging performance with a low computational burden. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 4870 KiB  
Communication
Interferometric Orbit Determination System for Geosynchronous SAR Missions: Experimental Proof of Concept
by Jorge Nicolás-Álvarez, Xavier Carreño-Megias, Estel Ferrer, Miquel Albert-Galí, Judith Rodríguez-Tersa, Albert Aguasca and Antoni Broquetas
Remote Sens. 2022, 14(19), 4871; https://doi.org/10.3390/rs14194871 - 29 Sep 2022
Cited by 7 | Viewed by 2742
Abstract
Future Geosynchronous Synthetic Aperture Radar (GEOSAR) missions will provide permanent monitoring of continental areas of the planet with revisit times of less than 24 h. Several GEOSAR missions have been studied in the USA, Europe, and China with different applications, including water cycle [...] Read more.
Future Geosynchronous Synthetic Aperture Radar (GEOSAR) missions will provide permanent monitoring of continental areas of the planet with revisit times of less than 24 h. Several GEOSAR missions have been studied in the USA, Europe, and China with different applications, including water cycle monitoring and early warning of disasters. GEOSAR missions require unprecedented orbit determination precision in order to form focused Synthetic Aperture Radar (SAR) images from Geosynchronous Orbit (GEO). A precise orbit determination technique based on interferometry is proposed, including a proof of concept based on an experimental interferometer using three antennas separated 10–15 m. They provide continuous orbit observations of present communication satellites operating at GEO as illuminators of opportunity. The relative phases measured between the receivers are used to estimate the satellite position. The experimental results prove the interferometer is able to track GEOSAR satellites based on the transmitted signals. This communication demonstrates the consistency and feasibility of the technique in order to foster further research with longer interferometric baselines that provide observables delivering higher orbital precision. Full article
Show Figures

Graphical abstract

24 pages, 7119 KiB  
Article
A Novel Frequency-Domain Focusing Method for Geosynchronous Low-Earth-Orbit Bistatic SAR in Sliding-Spotlight Mode
by Zhichao Sun, Tianfu Chen, Huarui Sun, Junjie Wu, Zheng Lu, Zhongyu Li, Hongyang An and Jianyu Yang
Remote Sens. 2022, 14(13), 3178; https://doi.org/10.3390/rs14133178 - 1 Jul 2022
Cited by 9 | Viewed by 2671
Abstract
The low-earth-orbit synthetic aperture radar (SAR) can achieve enhanced remote-sensing capabilities by exploiting the large-scale and long-duration beam coverage of a geosynchronous (GEO) SAR illuminator. Different bistatic imaging modes can be implemented by the steering of an antenna beam onboard the LEO receiver, [...] Read more.
The low-earth-orbit synthetic aperture radar (SAR) can achieve enhanced remote-sensing capabilities by exploiting the large-scale and long-duration beam coverage of a geosynchronous (GEO) SAR illuminator. Different bistatic imaging modes can be implemented by the steering of an antenna beam onboard the LEO receiver, such as high-resolution sliding-spotlight mode. In this paper, the accurate focusing of GEO-LEO bistatic SAR (GEO-LEO BiSAR) in sliding-spotlight mode is investigated. First, the two major problems of the accurate bistatic range model, i.e., curved trajectory within long integration time and ‘stop-and-go’ assumption error, for sliding-spotlight GEO-LEO BiSAR are analyzed. Then, a novel bistatic range model based on equivalent circular orbit trajectory is proposed to accurately represent the range history of GEO-LEO BiSAR in sliding-spotlight mode. Based on the proposed range model, a frequency-domain imaging method is put forward. First, a modified two-step preprocessing method is implemented to remove the Doppler aliasing caused by azimuth variance of Doppler centroid and beam steering. Then, an azimuth trajectory scaling is formulated to remove the azimuth variance of motion parameters due to curved trajectory. A modified frequency-domain imaging method is derived to eliminate the 2-D spatial variance and achieve accurate focusing of the echo data. Finally, imaging results and analysis on both simulated data and real data from an equivalent BiSAR experiment validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

20 pages, 6678 KiB  
Article
Modeling and Analysis of RFI Impacts on Imaging between Geosynchronous SAR and Low Earth Orbit SAR
by Xichao Dong, Yi Sui, Yuanhao Li, Zhiyang Chen and Cheng Hu
Remote Sens. 2022, 14(13), 3048; https://doi.org/10.3390/rs14133048 - 25 Jun 2022
Cited by 3 | Viewed by 2532
Abstract
Due to the short revisit time and large coverage of Geosynchronous synthetic aperture radars (GEO SARs) and the increasing number of low earth orbit synthetic aperture radar (LEO SAR) constellations, radio frequency interference (RFI) between GEO SARs and LEO SARs may occur, deteriorating [...] Read more.
Due to the short revisit time and large coverage of Geosynchronous synthetic aperture radars (GEO SARs) and the increasing number of low earth orbit synthetic aperture radar (LEO SAR) constellations, radio frequency interference (RFI) between GEO SARs and LEO SARs may occur, deteriorating the quality of SAR images. Traditional methods only simplify RFI to noise-like interference without considering the signal characteristics. In this paper, to accurately evaluate the impacts of GEO-to-LEO RFI and LEO-to-GEO RFI on imaging quantitatively, an RFI-impact quantitative analysis model is established. Taking account of the chirp signal form of SAR systems, the RFI power and image Signal-to-Interference-plus-Noise Ratio (SINR) are theoretically deduced and validated by numerical experiments. Based on the proposed method, the SAR image quality under different system parameters and bistatic configurations is estimated, and the probability of different configurations is also given. The results show that specular bistatic scattering RFI between GEO SARs and LEO SARs has serious effects on imaging, and the probability can approach 2% for certain orbital parameters and will become higher as LEO SAR constellations increase in the future, implying the necessity to suppress the RFI between the GEO SAR and the LEO SAR system. Full article
(This article belongs to the Special Issue Radar Techniques and Imaging Applications)
Show Figures

Graphical abstract

21 pages, 6202 KiB  
Article
The Staring Mode Properties and Performance of Geo-SAR Satellite with Reflector Antenna
by Bingji Zhao and Qingjun Zhang
Remote Sens. 2022, 14(7), 1609; https://doi.org/10.3390/rs14071609 - 28 Mar 2022
Cited by 4 | Viewed by 2822
Abstract
Geosynchronous synthetic aperture radar (Geo-SAR) with a short revisit time can obtain wide-area images. This paper advances a new two-dimensional pitch and roll squint controlling (2D-PRSC) method that can make satellites continuously stare at any scene in the whole orbital period. The maximum [...] Read more.
Geosynchronous synthetic aperture radar (Geo-SAR) with a short revisit time can obtain wide-area images. This paper advances a new two-dimensional pitch and roll squint controlling (2D-PRSC) method that can make satellites continuously stare at any scene in the whole orbital period. The maximum attitude steering angle is less than ±7.6 degrees, and the attitude controlling time can be greatly shortened compared with the yaw steering method. Furthermore, a Geo-SAR staring mode model is illustrated and compared with that of low earth orbital SAR (Leo-SAR). Finally, Geo-SAR’s ambiguity property is discussed. The simulation results illuminate that the cross-term ambiguity to signal ratio (CASR) also needs to be considered in addition to the azimuth and range ambiguity to signal ratio (AASR, RASR), and the whole orbital ergodic analysis should be carried out. To ensure that RASR, AASR, and CASR meet the requirement of −20 dB, it is necessary to select an appropriate PRF in the range of a few hundred Hertz. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

15 pages, 3454 KiB  
Technical Note
An In-Orbit Measurement Method for Elevation Antenna Pattern of MEO Synthetic Aperture Radar Based on Nano Calibration Satellite
by Tian Qiu, Yu Wang, Jun Hong, Kaichu Xing, Shaoyan Du and Jingwen Mu
Remote Sens. 2022, 14(3), 741; https://doi.org/10.3390/rs14030741 - 5 Feb 2022
Cited by 2 | Viewed by 3373
Abstract
The medium-Earth-orbit synthetic aperture radar (MEO-SAR) is deployed at orbit altitude above low-Earth-orbit synthetic aperture radar (LEO-SAR, around 2000 km) and below the geosynchronous orbit SAR (GEO-SAR, near 35786 km) to cover a wide swath, which is four to five times larger than [...] Read more.
The medium-Earth-orbit synthetic aperture radar (MEO-SAR) is deployed at orbit altitude above low-Earth-orbit synthetic aperture radar (LEO-SAR, around 2000 km) and below the geosynchronous orbit SAR (GEO-SAR, near 35786 km) to cover a wide swath, which is four to five times larger than LEO-SAR. Therefore, the measurement method for the LEO-SAR elevation antenna pattern using the SAR data acquired over the Amazon tropical rainforest (ground-based method), where the typical width of rainforest area is approximately 150 km, can hardly meet the requirement of a wide swath to determine the MEO-SAR antenna elevation pattern. Moreover, several new MEO-SAR systems are now proposed that will use low frequency, and the low frequency penetration characteristics may affect the elevation antenna pattern determination using homogenous distributed targets such as the Amazon rainforest. This paper proposes a novel space-based method for the in-orbit measurement of the elevation antenna pattern of MEO-SAR based on one nano calibration satellite mounted with a receiver. Through appropriate orbit design, the nano calibration satellite can fly across the entire MEO-SAR swath along the range direction, and the elevation antenna pattern envelope can be extracted from the data recorded by the receiver. Simulation work is performed to verify the feasibility of the proposed space-based method, and the measurement accuracy of this method is analyzed. Full article
Show Figures

Figure 1

22 pages, 7297 KiB  
Article
A Long-Time Coherent Integration STAP for GEO Spaceborne-Airborne Bistatic SAR
by Chang Cui, Xichao Dong, Zhiyang Chen, Cheng Hu and Weiming Tian
Remote Sens. 2022, 14(3), 593; https://doi.org/10.3390/rs14030593 - 26 Jan 2022
Cited by 11 | Viewed by 2959
Abstract
A geosynchronous spaceborne-airborne bistatic synthetic aperture radar (GEO SA-BSAR) system is an important technique to achieve long-time moving target monitoring over a wide area. However, due to special bistatic configuration of GEO SA-BSAR, two major challenges, i.e., severe range migration and space-variant Doppler [...] Read more.
A geosynchronous spaceborne-airborne bistatic synthetic aperture radar (GEO SA-BSAR) system is an important technique to achieve long-time moving target monitoring over a wide area. However, due to special bistatic configuration of GEO SA-BSAR, two major challenges, i.e., severe range migration and space-variant Doppler parameters for moving targets, hinder the moving target indication (MTI) processing. Traditional SAR MTI methods, which do not take the challenges into consideration, will defocus the moving targets, leading to a loss of the signal-to-noise ratio (SNR). To focus moving targets and estimate motion parameters accurately, long-time coherent integration space-time adaptive processing (LTCI-STAP) is proposed for GEO SA-BSAR MTI in this paper. First, a modified adaptive spatial filtering based on the bistatic signal model is performed to suppress the clutter. Then, an LTCI filter bank is constructed to achieve range migration correction and moving target focusing, which yields the optimal output signal and filtering parameters. Finally, constant false alarm rate (CFAR) detection is carried out to determine the targets, and the space-variant Doppler parameters, solved from the filtering parameters, are used for estimating moving target positions and velocities. Simulations verify the effectiveness of our method. Full article
(This article belongs to the Special Issue Distributed Spaceborne SAR: Systems, Algorithms, and Applications)
Show Figures

Graphical abstract

23 pages, 4600 KiB  
Article
Parasitic Surveillance Potentialities Based on a GEO-SAR Illuminator
by Fabrizio Santi, Giovanni Paolo Blasone, Debora Pastina, Fabiola Colone and Pierfrancesco Lombardo
Remote Sens. 2021, 13(23), 4817; https://doi.org/10.3390/rs13234817 - 27 Nov 2021
Cited by 6 | Viewed by 2784
Abstract
Synthetic aperture radar systems operating with satellites in geosynchronous orbits (GEO-SAR) can provide a permanent coverage of wide specific areas of the Earth’s surface. As well as for primary applications in remote sensing areas such as soil moisture and deformation monitoring, the wide [...] Read more.
Synthetic aperture radar systems operating with satellites in geosynchronous orbits (GEO-SAR) can provide a permanent coverage of wide specific areas of the Earth’s surface. As well as for primary applications in remote sensing areas such as soil moisture and deformation monitoring, the wide availability of the signal emitted by a GEO-SAR on a regional scale makes it an appealing illuminator of opportunity for bistatic radars. Different types of receiving-only devices located on or near the Earth could exploit the same signal source, noticeably already conceived for radar purposes, for applications in the framework of both military and civil surveillance. This paper provides an overview of possible parasitic applications enabled by a GEO-SAR illuminator in different operative scenarios, including aerial, ground and maritime surveillance. For each selected scenario, different receiver configurations are proposed, providing an assessment of the achievable performance with discussions about the expected potentialities and challenges. This research aims at serving as a roadmap for designing parasitic systems relying on GEO-SAR signals, and also aims at extending the net of potential users interested in investing in GEO-SAR missions. Full article
Show Figures

Figure 1

10 pages, 3368 KiB  
Communication
An Accurate Doppler Parameters Calculation Method of Geosynchronous SAR Considering Real-Time Zero-Doppler Centroid Control
by Faguang Chang, Chunrui Yu, Dexin Li, Yifei Ji and Zhen Dong
Remote Sens. 2021, 13(20), 4061; https://doi.org/10.3390/rs13204061 - 11 Oct 2021
Cited by 3 | Viewed by 2568
Abstract
The zero-Doppler centroid control in geosynchronous synthetic aperture radar (GEO SAR) is beneficial to reduce the imaging complexity (reduces range-azimuth coupling in received data), which can be realized by adjusting the radar line of sight (RLS). In order to maintain the zero-Doppler centroid [...] Read more.
The zero-Doppler centroid control in geosynchronous synthetic aperture radar (GEO SAR) is beneficial to reduce the imaging complexity (reduces range-azimuth coupling in received data), which can be realized by adjusting the radar line of sight (RLS). In order to maintain the zero-Doppler centroid throughout the whole orbit of the GEO SAR satellite, the RLS needs to be adjusted in real-time. Due to the ultra-long synthetic aperture time of GEO SAR, the RLS variation during the synthetic aperture time cannot be neglected. However, in the previous related papers, the real-time variation of RLS during the synthetic aperture time was not taken into account in the calculation of Doppler parameters, which are closely related to the RLS, resulting in inaccurate calculation of Doppler parameters. Considering this issue, an accurate Doppler model (the model of relative motion between satellite and ground target) of GEO SAR is proposed in this paper for the accurate calculation of Doppler parameters (Doppler centroid and Doppler bandwidth and other parameters). Finally, simulation experiments are designed to confirm the effectiveness and necessity of the proposed model. The results indicate that the RLS variation during the synthetic aperture time has a considerable effect on Doppler parameters performance of the GEO SAR, and refers to a more stable azimuth resolution performance (the resolution is kept near a relatively stable value at most positions of the elliptical orbit) compared with the case that does not consider the real-time zero-Doppler centroid control. Full article
(This article belongs to the Special Issue Advances in Spaceborne SAR – Technology and Applications)
Show Figures

Figure 1

18 pages, 23703 KiB  
Technical Note
Elevation Spatial Variation Error Compensation in Complex Scene and Elevation Inversion by Autofocus Method in GEO SAR
by Faguang Chang, Dexin Li, Zhen Dong, Yang Huang and Zhihua He
Remote Sens. 2021, 13(15), 2916; https://doi.org/10.3390/rs13152916 - 24 Jul 2021
Cited by 4 | Viewed by 2214
Abstract
Due to the high altitude of geosynchronous synthetic aperture radar (GEO SAR), its synthetic aperture time can reach up to several hundred seconds, and its revisit cycle is very short, which makes it of great application worth in the remote sensing field, such [...] Read more.
Due to the high altitude of geosynchronous synthetic aperture radar (GEO SAR), its synthetic aperture time can reach up to several hundred seconds, and its revisit cycle is very short, which makes it of great application worth in the remote sensing field, such as in disaster monitoring and vegetation measurements. However, because of the elevation of the target, elevation spatial variation error is caused in the GEO SAR imaging. In this paper, we focus on the compensation of the elevation space-variant error in the fast variant part with the autofocus method and utilize the error to carry out elevation inversing in complex scenes. For a complex scene, it can be broken down into a slow variant slope and the remaining fast variant part. First, the phase error caused by the elevation spatial variation is analyzed. Second, the spatial variant error caused by the slowly variant slope is compensated with the improved imaging algorithm. The error caused by the remaining fast variable part is the focus of this paper. We propose a block map-drift phase gradient autofocus (block-MD-PGA) algorithm to compensate for the random phase error part. By dividing sub-blocks reasonably, the elevation spatial variant error is compensated for by an autofocus algorithm in each sub-block. Because the errors of different elevations are diverse, the proposed algorithm is suitable for the scene where the target elevations are almost the same after the sub-blocks are divided. Third, the phase error obtained by the autofocus method is used to inverse the target elevation. Finally, simulations with dot-matrix targets and targets based on the high-resolution TerraSAR-X image verify the excellent effect of the proposed method and the accuracy of the elevation inversion. Full article
(This article belongs to the Special Issue 2nd Edition Radar and Sonar Imaging and Processing)
Show Figures

Figure 1

Back to TopTop