Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = geopotential difference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 20176 KiB  
Article
The Impact of Gravity on Different Height Systems: A Case Study on Mt. Medvednica
by Tedi Banković, Lucija Brajković, Antonio Banko and Marko Pavasović
Appl. Sci. 2025, 15(10), 5680; https://doi.org/10.3390/app15105680 - 19 May 2025
Viewed by 581
Abstract
This study examines the influence of gravity on different height systems by integrating Global Navigation Satellite Systems (GNSS), leveling, and gravimetric measurements. Although the theoretical influence of gravity on height systems is well known, empirical studies that quantify these effects along steep terrain [...] Read more.
This study examines the influence of gravity on different height systems by integrating Global Navigation Satellite Systems (GNSS), leveling, and gravimetric measurements. Although the theoretical influence of gravity on height systems is well known, empirical studies that quantify these effects along steep terrain are rare—particularly within the Croatian reference systems. Geometric leveling, recognized for its precision in geodesy, was employed alongside gravimetric data to analyze the relationship between gravity variations and height differences. The research was conducted along Sljeme Road on Mt. Medvednica, Croatia, where altitude-dependent gravity effects were systematically investigated along an elevation profile with a height difference of about 650 m. GNSS measurements provided positional coordinates referenced to the Croatian Terrestrial Reference System 1996 (HTRS96) (EPSG:4888), while leveling and gravimetric data were analyzed within the Croatian Height Reference System 1971 (HVRS71) (EPSG:5610) and Croatian Gravimetric Reference System 2003 (HGRS03), respectively. The results demonstrate that differences between geometric and normal–orthometric heights become more pronounced at higher elevations but remain at the millimeter level. Notably, the impact of gravity is evident in normal and orthometric heights, with differences from geometric heights reaching up to 3.7 cm at the highest points. Additionally, a comparison between normal and orthometric heights reveals that at the beginning of the leveling line, the difference is around 4 mm. However, as the elevation increases, this difference grows, reaching over 1 cm at the end of the leveling line. The study also confirms the theoretical correlation between the geoid–quasigeoid height difference and terrain elevation, with increasing differences observed at higher altitudes. To examine the consistency of different height determination methods, two approaches were applied: one based on adjustment within the geopotential system, and the other involving direct adjustment in the desired height system, with specific height corrections applied. The results confirmed that the height differences between the two methods were 0, to the tenth of a millimeter, indicating that both methods provided identical results. These findings contribute to a deeper understanding of geodetic height systems and the role of gravity in height determination. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
Dynamic Impact of the Southern Annular Mode on the Antarctic Ozone Hole Area
by Jae N. Lee and Dong L. Wu
Remote Sens. 2025, 17(5), 835; https://doi.org/10.3390/rs17050835 - 27 Feb 2025
Viewed by 761
Abstract
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of [...] Read more.
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of aura microwave limb sounder (MLS) geopotential height (GPH) measurements. We employ empirical orthogonal function (EOF) analysis to decompose the GPH variability into distinct spatial patterns. EOF analysis reveals a strong relationship between the first EOF (representing the SAM) and the Antarctic ozone hole area (γ = 0.91). A significant negative lag correlation between the August principal component of the second EOF (PC2) and the September SAM index (γ = −0.76) suggests that lower stratospheric wave activity in August can precondition the polar vortex strength in September. The minor sudden stratospheric warming (SSW) event in 2019 is an example of how strong wave activity can disrupt the polar vortex, leading to significant temperature anomalies and reduced ozone depletion. The coupling of PWs is evident in the lag correlation analysis between different altitudes. A “bottom-up” propagation of PWs from the lower stratosphere to the mesosphere and a potential “top-down” influence from the mesosphere to the lower stratosphere are observed with time lags of 21–30 days. These findings highlight the complex dynamics of PW propagation and their potential impact on the SAM and ozone layer. Further analysis of these correlations could improve one-month lead predictions of the SAM and the ozone hole area. Full article
Show Figures

Figure 1

13 pages, 2526 KiB  
Article
Assessing the Frequency, Duration, and Spatial Extent of Summertime Extreme Dew Point Conditions in the Southeastern USA, 1973–2022
by Alexandra Strelkow, Tyler J. Mitchell, Paul A. Knapp and Jason T. Ortegren
Atmosphere 2025, 16(3), 265; https://doi.org/10.3390/atmos16030265 - 25 Feb 2025
Viewed by 595
Abstract
The population of the southeastern USA is exposed to frequent extreme summertime high heat and humidity and is thus vulnerable to the resulting human thermal stress. Regional dew point variability in the USA is relatively underexplored in the literature compared to extreme heat. [...] Read more.
The population of the southeastern USA is exposed to frequent extreme summertime high heat and humidity and is thus vulnerable to the resulting human thermal stress. Regional dew point variability in the USA is relatively underexplored in the literature compared to extreme heat. Here, we analyze hourly summer dew point data from 34 cities in the region during the period 1973–2022 (n = 50) to identify annual values of extreme dew point hours (EDH) and extreme dew point days (EDD). Regionally, significant (p ≤ 0.05) positive trends for both EDH (rs = 0.28, R2 = 0.078, +1.53 EDH/year) and EDD (rs = 0.30, R2 = 0.086, +0.05 EDD/year) occurred, although not all stations had increased dew point temperatures. Rather, positive changes are most concentrated among stations located along the upper Piedmont of the southern Appalachian Mountains. Conversely, no significant (i.e., p < 0.05) differences in either aggregate mean values of EDH or EDD occurred when splitting the data into early (1973–1997) and late (1998–2022) periods. High summer values of EDH and EDD are associated with variability in the 500 hPa geopotential height flow over North America. In particular, anomalous high pressure over the Gulf of Alaska is associated with the highest frequencies of summer extreme dew points in the study area, and vice versa. This connection to slow-changing ocean–atmosphere variability could lead to enhanced predictability of periods of extreme high dew point conditions in the Southeast, with implications for human well-being. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

20 pages, 8151 KiB  
Article
Numerical Simulation of Tornado-like Vortices Induced by Small-Scale Cyclostrophic Wind Perturbations
by Yuhan Liu, Yongqiang Jiang, Chaohui Chen, Yun Zhang, Hongrang He, Xiong Chen and Ruilin Zhong
Atmosphere 2025, 16(1), 108; https://doi.org/10.3390/atmos16010108 - 19 Jan 2025
Viewed by 821
Abstract
This study introduces a tornado perturbation model utilizing the cyclostrophic wind model, implemented through a shallow-water equation framework. Four numerical experiments were conducted: a single cyclonic wind perturbation (EXP1), a single low-geopotential height perturbation (EXP2), a cyclonic wind perturbation with a 0 Coriolis [...] Read more.
This study introduces a tornado perturbation model utilizing the cyclostrophic wind model, implemented through a shallow-water equation framework. Four numerical experiments were conducted: a single cyclonic wind perturbation (EXP1), a single low-geopotential height perturbation (EXP2), a cyclonic wind perturbation with a 0 Coriolis parameter (EXP3), and a single anticyclonic wind perturbation (EXP4). The outputs showed that in a static atmosphere setting, a small-scale cyclonic wind perturbation generated a tornado-like pressure structure. The centrifugal force in the central area exceeded the pressure gradient force, causing air particles to flow outward, leading to a pressure drop and strong pressure gradient. The effect of the Coriolis force is negligible for meso-γ-scale and smaller systems, while for meso-β-scale and larger systems, it begins to have a significant impact. The results indicate that a robust cyclonic and an anticyclonic wind field can potentially generate a pair of cyclonic and anticyclonic tornadoes when the horizontal vortex tubes in an atmosphere with strong vertical wind shear tilt, forming a pair of positive and negative vorticities. These tornadoes are similar but have different rotation directions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 7698 KiB  
Article
A Regional Gravimetric and Hybrid Geoid Model in Northern Greece from Dedicated Gravity Campaigns
by Georgios S. Vergos, Dimitrios A. Natsiopoulos, Elisavet G. Mamagiannou, Eleni A. Tzanou, Anastasia I. Triantafyllou, Ilias N. Tziavos, Dimitrios Ramnalis and Vassilios Polychronos
Remote Sens. 2025, 17(2), 197; https://doi.org/10.3390/rs17020197 - 8 Jan 2025
Viewed by 1560
Abstract
The determination of physical heights is of key importance for a wide spectrum of geoscientific applications and, in particular, for engineering projects. The main scope of the present work is focused on the determination of a high-accuracy and high-resolution gravimetric and hybrid geoid [...] Read more.
The determination of physical heights is of key importance for a wide spectrum of geoscientific applications and, in particular, for engineering projects. The main scope of the present work is focused on the determination of a high-accuracy and high-resolution gravimetric and hybrid geoid model, to determine orthometric heights without the need of conventional leveling. Both historical and newly acquired gravity data have been collected during dedicated gravity campaigns, around the location of a dedicated GNSS network as well as areas where the existing land gravity database presented voids. Geoid determination was based on the classical remove–compute–restore (RCR) technique and spectral and stochastic approaches. The low frequencies have been modeled based on the XGM2019e global geopotential model (GGM) and the topographic effects have been evaluated with the residual terrain model (RTM) reduction. The evaluation of the final geoid model was performed over 462 GNSS/leveling benchmarks (BMs), where the newly determined gravimetric geoid has shown an improvement of 3.1 cm, in the std of the differences to the GNSS/leveling BMs, compared to the latest national geoid model. A deterministic and stochastic fit to the GNSS/leveling data has been performed, investigating various choices for the parametric models and analytical covariance functions. The scope was to determine a hybrid geoid model, tailored to the area and GNSS/leveling data, which will be the one used for the direct estimation of high-accuracy orthometric heights from GNSS observations. After the deterministic fit, a std to the GNSS/leveling data of 10.1 cm has been achieved, with 54.8% and 83.1% of the absolute height differences being below the 1 cm and 2 cm per square root km of baseline length. The final hybrid geoid model, i.e., after the stochastic treatment of the adjusted residuals, gave a std of the difference to the GNSS/leveling data of 1.1 cm, with 99.8% and 99.9% of the height difference being smaller than the 1 cm and 2 cm standard errors, thus achieving a 1 cm accuracy regional geoid. Full article
Show Figures

Figure 1

21 pages, 21427 KiB  
Article
Evolution of Synoptic Systems Associated with Lake-Effect Snow Events over Northwestern Pennsylvania
by Jake Wiley and Christopher Elcik
Meteorology 2024, 3(4), 391-411; https://doi.org/10.3390/meteorology3040019 - 20 Nov 2024
Viewed by 2182
Abstract
This study investigates the synoptic conditions associated with lake-effect snow (LES) over northwestern Pennsylvania with a focus on classifying cases based on the tracks of cyclones influencing the region, including Nor’easters (NEs), Alberta Clippers (ACs), Colorado Lows (COs), and Great Lakes Lows (GLs). [...] Read more.
This study investigates the synoptic conditions associated with lake-effect snow (LES) over northwestern Pennsylvania with a focus on classifying cases based on the tracks of cyclones influencing the region, including Nor’easters (NEs), Alberta Clippers (ACs), Colorado Lows (COs), and Great Lakes Lows (GLs). Synoptic composites were constructed using the North American Regional Reanalysis (NARR) for all cases, as well as each cyclone group, using an LES repository spanning from 2006–2020. Additionally, 95 percent bootstrapped confidence intervals were created for each cyclone track to compare the initial mesoscale environmental properties (i.e., surface lake/air temperature and wind direction/speed) and LES impact (i.e., duration, maximum snowfall, and property damage). Synoptic composites of all LES cases exhibited an archetypal LES synoptic pattern consisting of an upper-level low geopotential height anomaly over the Hudson Bay and surface dipole structure centered across the Great Lakes basin. Regarding the different tracks, NEs and COs featured dynamic support in the form of enhanced turbulent mixing and synoptic vertical forcing, while ACs and GLs had greater thermodynamic support in the form of higher lapse rates and heightened heat and moisture fluxes. However, the bootstrapping analysis revealed minimal differences in LES impact between the cyclone types. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Figure 1

24 pages, 9726 KiB  
Article
The Kernel Density Estimation Technique for Spatio-Temporal Distribution and Mapping of Rain Heights over South Africa: The Effects on Rain-Induced Attenuation
by Yusuf Babatunde Lawal, Pius Adewale Owolawi, Chunling Tu, Etienne Van Wyk and Joseph Sunday Ojo
Atmosphere 2024, 15(11), 1354; https://doi.org/10.3390/atmos15111354 - 11 Nov 2024
Cited by 3 | Viewed by 1686
Abstract
The devastating effects of rain-induced attenuation on communication links operating above 10 GHz during rainy events can significantly degrade signal quality, leading to interruptions in service and reduced data throughput. Understanding the spatial and seasonal distribution of rain heights is crucial for predicting [...] Read more.
The devastating effects of rain-induced attenuation on communication links operating above 10 GHz during rainy events can significantly degrade signal quality, leading to interruptions in service and reduced data throughput. Understanding the spatial and seasonal distribution of rain heights is crucial for predicting these attenuation effects and for network performance optimization. This study utilized ten years of atmospheric temperature and geopotential height data at seven pressure levels (1000, 850, 700, 500, 300, 200, and 100 hPa) obtained from the Copernicus Climate Data Store (CDS) to deduce rain heights across nine stations in South Africa. The kernel density estimation (KDE) method was applied to estimate the temporal variation of rain height. A comparison of the measured and estimated rain heights shows a correlation coefficient of 0.997 with a maximum percentage difference of 5.3%. The results show that rain height ranges from a minimum of 3.5 km during winter in Cape Town to a maximum of about 5.27 km during the summer in Polokwane. The spatial variation shows a location-dependent seasonal trend, with peak rain heights prevailing at the low-latitude stations. The seasonal variability indicates that higher rain heights dominate in the regions (Polokwane, Pretoria, Nelspruit, Mahikeng) where there is frequent occurrence of rainfall during the winter season and vice versa. Contour maps of rain heights over the four seasons (autumn, spring, winter, and summer) were also developed for South Africa. The estimated seasonal rain heights show that rain-induced attenuations were grossly underestimated by the International Telecommunication Union (ITU) recommended rain heights at most of the stations during autumn, spring, and summer but fairly overestimated during winter. Durban had a peak attenuation of 15.9 dB during the summer, while Upington recorded the smallest attenuation of about 7.7 dB during winter at a 0.01% time exceedance. Future system planning and adjustments of existing infrastructure in the study stations could be improved by integrating these localized, seasonal radio propagation data in link budget design. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

31 pages, 7057 KiB  
Article
Local Gravity and Geoid Improvements around the Gavdos Satellite Altimetry Cal/Val Site
by Georgios S. Vergos, Ilias N. Tziavos, Stelios Mertikas, Dimitrios Piretzidis, Xenofon Frantzis and Craig Donlon
Remote Sens. 2024, 16(17), 3243; https://doi.org/10.3390/rs16173243 - 1 Sep 2024
Cited by 1 | Viewed by 2653
Abstract
The isle of Gavdos, and its wider area, is one of the few places worldwide where the calibration and validation of altimetric satellites has been carried out during the last, more than, two decades using dedicated techniques at sea and on land. The [...] Read more.
The isle of Gavdos, and its wider area, is one of the few places worldwide where the calibration and validation of altimetric satellites has been carried out during the last, more than, two decades using dedicated techniques at sea and on land. The sea-surface calibration employed for the determination of the bias in the satellite altimeter’s sea-surface height relies on the use of a gravimetric geoid in collocation with data from tide gauges, permanent global navigation satellite system (GNSS) receivers, as well as meteorological and oceanographic sensors. Hence, a high-accuracy and high-resolution gravimetric geoid model in the vicinity of Gavdos and its surrounding area is of vital importance. The existence of such a geoid model resides in the availability of reliable, in terms of accuracy, and dense, in terms of spatial resolution, gravity data. The isle of Gavdos presents varying topographic characteristics with heights larger than 400 m within small spatial distances of ~7 km. The small size of the island and the significant bathymetric variations in its surrounding marine regions make the determination of the gravity field and the geoid a challenging task. Given the above, the objective of the present work was two-fold. First, to collect new land gravity data over the isle of Gavdos in order to complete the existing database and cover parts of the island where voids existed. Relative gravity campaigns have been designed to cover as homogenously as possible the entire island of Gavdos and especially areas where the topographic gradient is large. The second focus was on the determination of a high-resolution, 1×1, and high-accuracy gravimetric geoid for the wider Gavdos area, which will support activities on the determination of the absolute altimetric bias. The relative gravity campaigns have been designed and carried out employing a CG5 relative gravity meter along with geodetic grade GNSS receivers to determine the geodetic position of the acquired observations. Geoid determination has been based on the newly acquired and historical gravity data, GNSS/Leveling observations, and topography and bathymetry databases for the region. The modeling was based on the well-known remove–compute–restore (RCR) method, employing least-squares collocation (LSC) and fast Fourier transform (FFT) methods for the evaluation of the Stokes’ integral. Modeling of the long wavelength contribution has been based on EIGEN6c4 and XGM2019e global geopotential models (GGMs), while for the contribution of the topography, the residual terrain model correction has been employed using both the classical, space domain, and spectral approaches. From the results achieved, the final geoid model accuracy reached the ±1–3 cm level, while in terms of the absolute differences to the GNSS/Leveling data per baseline length, 28.4% of the differences were below the 1cmSij [km] level and 55.2% below the 2cmSij [km]. The latter improved drastically to 52.8% and 81.1%, respectively, after deterministic fit to GNSS/Leveling data, while in terms of the relative differences, the final geoid reaches relative uncertainties of 11.58 ppm (±1.2 cm) for baselines as short as 0–10 km, which improves to 10.63 ppm (±1.1 cm) after the fit. Full article
Show Figures

Figure 1

16 pages, 3527 KiB  
Article
Comparative Study οf the Frequencies οf Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania
by Konstantia Tolika, Christina Anagnostopoulou, Myriam Traboulsi, Liliana Zaharia, Dana Maria (Oprea) Constantin, Ioannis Tegoulias and Panagiotis Maheras
Atmosphere 2024, 15(9), 1027; https://doi.org/10.3390/atmos15091027 - 24 Aug 2024
Viewed by 1132
Abstract
The primary aim of this study is to examine the characteristics of atmospheric circulation patterns at various geopotential levels and their relationship with precipitation in southern Romania during the period from 1961 to 2020. Daily geopotential heights (1000 hPa, 850 hPa, 700 hPa [...] Read more.
The primary aim of this study is to examine the characteristics of atmospheric circulation patterns at various geopotential levels and their relationship with precipitation in southern Romania during the period from 1961 to 2020. Daily geopotential heights (1000 hPa, 850 hPa, 700 hPa and 500 hPa) were utilized in an automatic updated atmospheric circulation scheme for the creation of daily calendars of 12 circulation types (5 anticyclonic and 7 cyclonic) as well as daily time series derived from five stations over the domain of interest. To assess the influence of the atmospheric circulation on precipitation, correlations and time trends were explored between the rainfall totals and the different circulation types. The findings reveal a rising trend in anticyclonic circulation types across the region, while cyclonic types exhibit a consisted decrease. Precipitation and number of rain days percentages associated with specific cyclonic types depend on the geopotential levels, while annual and seasonal precipitation linked to cyclonic types decreases progressively from higher to lower levels. The strongest correlations in circulation type frequencies are observed between adjacent circulation types. Taylor diagram analysis indicates that the relationships between circulation types and precipitation vary both seasonally and across different atmospheric levels. Notably, the two rainiest circulation types are more accurately simulated at higher atmospheric levels (700 hPa and 500 hPa). Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

21 pages, 5512 KiB  
Article
Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains
by Carlos M. Carrillo and Francisco Muñoz-Arriola
Atmosphere 2024, 15(7), 858; https://doi.org/10.3390/atmos15070858 - 20 Jul 2024
Viewed by 1330
Abstract
This study leverages the relationships between the Great Plains low-level jet (GP-LLJ) and the circumglobal teleconnection (CGT) to assess the enhancement of 30-day rainfall forecast in the Northern Great Plains (NGP). The assessment of 30-day simulated precipitation using the Climate Forecast System (CFS) [...] Read more.
This study leverages the relationships between the Great Plains low-level jet (GP-LLJ) and the circumglobal teleconnection (CGT) to assess the enhancement of 30-day rainfall forecast in the Northern Great Plains (NGP). The assessment of 30-day simulated precipitation using the Climate Forecast System (CFS) is contrasted with the North American Regional Reanalysis, searching for sources of precipitation predictability associated with extended wet and drought events. We analyze the 30-day sources of precipitation predictability using (1) the characterization of dominant statistical modes of variability of 900 mb winds associated with the GP-LLJ, (2) the large-scale atmospheric patterns based on 200 mb geopotential height (HGT), and (3) the use of GP-LLJ and CGT conditional probability distributions using a continuous correlation threshold approach to identify when and where the forecast of NGP precipitation occurs. Two factors contributing to the predictability of precipitation in the NGP are documented. We found that the association between GP-LLJ and CGT occurs at two different scales—the interdiurnal and the sub-seasonal, respectively. The CFS reforecast suggests that the ability to forecast sub-seasonal precipitation improves in response to the enhanced simulation of the GP-LLJ and CGT. Using these modes of climate variability could improve predictive frameworks for water resources management, governance, and water supply for agriculture. Full article
(This article belongs to the Special Issue Prediction and Modeling of Extreme Weather Events)
Show Figures

Figure 1

11 pages, 7224 KiB  
Article
Connection between Winter East Asia Flow Patterns and Stratospheric Polar Vortex Anomalies
by Masakazu Taguchi
Atmosphere 2024, 15(7), 844; https://doi.org/10.3390/atmos15070844 - 17 Jul 2024
Viewed by 1112
Abstract
Using a reanalysis dataset, this work investigates the possible connection of winter East Asia (EA) flow patterns to stratospheric polar vortex (SPV) anomalies. Cluster analysis is performed on the principal components of daily 500 hPa geopotential height fields to identify five distinct flow [...] Read more.
Using a reanalysis dataset, this work investigates the possible connection of winter East Asia (EA) flow patterns to stratospheric polar vortex (SPV) anomalies. Cluster analysis is performed on the principal components of daily 500 hPa geopotential height fields to identify five distinct flow patterns. SPV anomalies are considered in terms of the occurrence of major sudden stratospheric warmings (MSSWs). The results reveal that for the 15 days before the MSSWs, one of the five patterns occurs more frequently than usual, whereas another occurs less frequently. The former constructively interferes with the climatological EA trough in the troposphere and strengthens the planetary wave activity (heat flux) in the extratropical troposphere and stratosphere. It has a similar pattern in the 500 hPa height to the composite leading to the MSSWs, implying that such strengthening can contribute to the forcing of the MSSWs. The latter is in the opposite sense (destructive interference) and is disadvantageous before the MSSWs. Evidence of a stratospheric downward influence on the five flow patterns is relatively unclear. These results suggest a potential coupling between flow patterns or weather regimes in different regions through the SPV, as well as warrant further investigation of the downward influence on EA weather regimes. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 36245 KiB  
Article
Geopotential Difference Measurement Using Two Transportable Optical Clocks’ Frequency Comparisons
by Daoxin Liu, Lin Wu, Changliang Xiong and Lifeng Bao
Remote Sens. 2024, 16(13), 2462; https://doi.org/10.3390/rs16132462 - 5 Jul 2024
Cited by 4 | Viewed by 1620
Abstract
High-accuracy optical clocks have garnered increasing attention for their potential application in various fields, including geodesy. According to the gravitational red-shift effect, clocks at lower altitudes on the Earth’s surface run slower than those at higher altitudes due to the differential gravitational field. [...] Read more.
High-accuracy optical clocks have garnered increasing attention for their potential application in various fields, including geodesy. According to the gravitational red-shift effect, clocks at lower altitudes on the Earth’s surface run slower than those at higher altitudes due to the differential gravitational field. Consequently, the geopotential difference can be determined by simultaneously comparing the frequency of two optical clocks at disparate locations. Here, we report geopotential difference measurements conducted using a pair of transportable 40Ca+ optical clocks with uncertainties at the 1017 level. After calibrating the output frequencies of two optical clocks in the horizontal position, frequency comparison is realized by moving Clock 2 to two different positions using a high-precision optical fiber time–frequency transmission link with Clock 1. The elevation difference of the two different positions, as processed by ensemble empirical mode decomposition (EEMD), is measured as −88.4 cm ± 16.7 cm and 104.5 cm ± 20.1 cm, respectively, which is consistent with the geometric measurement results within the error range. This experimental result validates the credibility of the optical clock time–frequency comparison used in determining geopotential differences, thereby providing a novel measurement model for the establishment of a global unified elevation datum. Full article
Show Figures

Figure 1

16 pages, 6539 KiB  
Article
Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Events, Precipitation, and Heat Waves—Part 1: Theory
by Jean-Louis Pinault
Atmosphere 2024, 15(5), 608; https://doi.org/10.3390/atmos15050608 - 17 May 2024
Cited by 3 | Viewed by 1747
Abstract
The purpose of this first article is to provide a physical basis for atmospheric Rossby waves at the tropopause to clarify their properties and improve our knowledge of their role in the genesis of extreme precipitation and heat waves. By analogy with the [...] Read more.
The purpose of this first article is to provide a physical basis for atmospheric Rossby waves at the tropopause to clarify their properties and improve our knowledge of their role in the genesis of extreme precipitation and heat waves. By analogy with the oceanic Rossby waves, the role played by the pycnocline in ocean Rossby waves is replaced here by the interface between the polar jet and the ascending air column at the meeting of the polar and Ferrel cell circulation or between the subtropical jet and the descending air column at the meeting of the Ferrel and Hadley cell circulation. In both cases, the Rossby waves are suitable for being resonantly forced in harmonic modes by tuning their natural period to the forcing period. Here, the forcing period is one year as a result of the variation in insolation due to solar declination. A search for cause-and-effect relationships is performed from the joint representation of the amplitude and phase of (1) the velocity of the cold or warm modulated airflows at 250 mb resulting from Rossby waves, (2) the geopotential height at 500 mb, and (3) the precipitation rate or ground air temperature. This is for the dominant harmonic mode whose period can be 1/16, 1/32, or 1/64 year, which reflects the intra-seasonal variations in the rising and falling air columns at the meeting of the polar, Ferrel, and Hadley cell circulation. Harmonics determine the duration of blocking. Two case studies referring to extreme cold and heat waves are presented. Dual cyclone–anticyclone systems seem to favor extreme events. They are formed by two joint vortices of opposite signs reversing over a period, concomitantly with the involved modulated airflows at the tropopause. A second article will be oriented toward (1) the examination of different case studies in order to ascertain the common characteristics of Rossby wave patterns leading to extreme events and (2) a map of the globe revealing future trends in the occurrence of extreme events. Full article
(This article belongs to the Special Issue Prediction and Modeling of Extreme Weather Events)
Show Figures

Figure 1

12 pages, 7943 KiB  
Article
Subgrid-Scale Topographic Effects on Radiation for Global Weather Forecast Models
by Sunghye Baek and Junghan Kim
Atmosphere 2024, 15(4), 479; https://doi.org/10.3390/atmos15040479 - 12 Apr 2024
Viewed by 1476
Abstract
The incoming solar radiation arriving the Earth’s surface is strongly influenced by surface terrain. Conventional global weather forecast models, with grid scales of about 10 km, lack the resolution to accurately capture terrain-induced variations. We devised a new parameterization method to incorporate high-resolution [...] Read more.
The incoming solar radiation arriving the Earth’s surface is strongly influenced by surface terrain. Conventional global weather forecast models, with grid scales of about 10 km, lack the resolution to accurately capture terrain-induced variations. We devised a new parameterization method to incorporate high-resolution subgrid-scale terrain data into grid-scale radiative flux calculations without averaging or smoothing topographic features. Utilizing a 15″ digital elevation model from the Shuttle Radar Topography Mission, we computed subgrid-scale data and transformed them onto the Korean Integrated Model’s cubed sphere grid using a Voronoi diagram to maintain geographical accuracy. The new scheme was initially evaluated through offline ideal tests and case studies. The results demonstrated that the scheme accurately captured the variations in downward shortwave flux, keeping the mean flux on a global scale nearly constant. The global mean flux difference in all skies was less than 0.01%. Statistical analyses demonstrated improved temperature and geopotential height predictions compared to reanalysis data. The anomaly correlation coefficient for East Asia at 850 hPa increased by 0.036 at 240 forecast hours. Overall, the anomaly correlation coefficient and root mean square error of geopotential height and temperature showed enhancements, particularly in the Northern Hemisphere and tropics. Importantly, the scheme introduces negligible additional memory and CPU requirements, making it suitable for both regional and global models. Only a 0.58% increase in CPU time was observed for the 10-day forecast. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 15836 KiB  
Article
The Relationship between the Typhoons Affecting South China and the Pacific Decadal Oscillation
by Weijian Qin, Yuexing Cai and Liyang He
Atmosphere 2024, 15(3), 285; https://doi.org/10.3390/atmos15030285 - 26 Feb 2024
Cited by 3 | Viewed by 3024
Abstract
Using typhoon data from the Shanghai Typhoon Institute of the China Meteorological Administration, the Japan Meteorological Agency’s annual Pacific decadal oscillation (PDO) index, and NCEP/NCAR reanalysis data from 1951 to 2021, correlation and composite analyses were carried out to study the relationship between [...] Read more.
Using typhoon data from the Shanghai Typhoon Institute of the China Meteorological Administration, the Japan Meteorological Agency’s annual Pacific decadal oscillation (PDO) index, and NCEP/NCAR reanalysis data from 1951 to 2021, correlation and composite analyses were carried out to study the relationship between the variability among tropical cyclones of different magnitudes affecting South China and the PDO. The results show that there is an obvious out-of-phase relationship between the proportion of tropical cyclones reaching a typhoon-level intensity or above in South China and the PDO index. When the PDO is in a cold (warm) phase, the sea surface temperature in the eastern and central equatorial Pacific is cold (warm), similar to the eastern Pacific La Niña (El Niño) phenomenon, and the SST in the eastern and western tropical Pacific Ocean shows a negative (positive) gradient; the subtropical high in the western Pacific Ocean is weaker (stronger) than normal, with the western ridge point to the east (west), and the 500 hPa geopotential height in the South China Sea and the area east of the Philippines is weaker (stronger), which is conducive to (unfavorable to) the formation of a monsoon trough; and the westerly (easterly) winds at high altitudes and the southwesterly (northeasterly) winds at low altitudes from the South China Sea to the Philippines are abnormally strong, and a positive (negative) vorticity at low altitudes, a low (high) sea level pressure, and strong (weak) convection are shown. These conditions are favorable (unfavorable) for the intensification of typhoons affecting South China, and as a result, the number of tropical cyclones reaching the level of typhoons or above account for a greater (smaller) proportion of those affecting South China. Full article
(This article belongs to the Special Issue Advances in Tropical Cyclone Climate Research)
Show Figures

Figure 1

Back to TopTop