Geopotential Difference Measurement Using Two Transportable Optical Clocks’ Frequency Comparisons
Abstract
:1. Introduction
2. Method
2.1. Theoretical Principles
2.2. Experimental Process
2.3. Data Processing
2.3.1. Optical Clock Uncertainty Analysis
2.3.2. EEMD Method
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Principle of the EEMD Method
References
- Sánchez, L.; Sideris, M.G. Vertical datum unification for the international height reference system (IHRS). Geophys. J. Int. 2017, 209, 570–586. [Google Scholar] [CrossRef]
- Brewer, S.M.; Chen, J.S.; Hankin, A.M.; Clements, E.R.; Chou, C.w.; Wineland, D.J.; Hume, D.B.; Leibrandt, D.R. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 2019, 123, 033201. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 2020, 14, 411–415. [Google Scholar] [CrossRef]
- Zhiqiang, Z.; Arnold, K.J.; Kaewuam, R.; Barrett, M.D. 176Lu+ clock comparison at the 10−18 level via correlation spectroscopy. Sci. Adv. 2023, 9, eadg1971. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, B.; Zeng, M.; Hao, Y.; Ma, Z.; Zhang, H.; Guan, H.; Chen, Z.; Wang, M.; Gao, K. Liquid-nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3 × 10−18. Phys. Rev. Appl. 2022, 17, 034041. [Google Scholar] [CrossRef]
- Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 2016, 116, 063001. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, T.; Kedar, D.; Oelker, E.; Robinson, J.M.; Bromley, S.L.; Tew, W.L.; Ye, J.; Kennedy, C.J. JILA SrI optical lattice clock with uncertainty of 2 × 10−18. Metrologia 2019, 56, 065004. [Google Scholar] [CrossRef]
- Ushijima, I.; Takamoto, M.; Das, M.; Ohkubo, T.; Katori, H. Cryogenic optical lattice clocks. Nat. Photonics 2015, 9, 185–189. [Google Scholar] [CrossRef]
- Cui, K.; Chao, S.; Sun, C.; Wang, S.; Zhang, P.; Wei, Y.; Yuan, J.; Cao, J.; Shu, H.; Huang, X. Evaluation of the systematic shifts of a 40 Ca+-−27Al+ optical clock. Eur. Phys. J. D 2022, 76, 140. [Google Scholar] [CrossRef]
- McGrew, W.; Zhang, X.; Fasano, R.; Schäffer, S.; Beloy, K.; Nicolodi, D.; Brown, R.; Hinkley, N.; Milani, G.; Schioppo, M.; et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 2018, 564, 87–90. [Google Scholar] [CrossRef]
- Tofful, A.; Baynham, C.F.; Curtis, E.A.; Parsons, A.O.; Robertson, B.I.; Schioppo, M.; Tunesi, J.; Margolis, H.S.; Hendricks, R.; Whale, J.; et al. 171Yb+ optical clock with 2.2 × 10−18 systematic uncertainty and absolute frequency measurements. arXiv 2024, arXiv:2403.14423. [Google Scholar]
- Aeppli, A.; Kim, K.; Warfield, W.; Safronova, M.S.; Ye, J. A clock with 8 × 10−19 systematic uncertainty. arXiv 2024, arXiv:2403.10664. [Google Scholar]
- Hausser, H.N.; Keller, J.; Nordmann, T.; Bhatt, N.M.; Kiethe, J.; Liu, H.; von Boehn, M.; Rahm, J.; Weyers, S.; Benkler, E.; et al. An 115In+-172Yb+ Coulomb crystal clock with 2.5 × 10−18 systematic uncertainty. arXiv 2024, arXiv:2402.16807. [Google Scholar]
- Riehle, F. Optical clock networks. Nat. Photonics 2017, 11, 25–31. [Google Scholar] [CrossRef]
- Riedel, F.; Al-Masoudi, A.; Benkler, E.; Dörscher, S.; Gerginov, V.; Grebing, C.; Häfner, S.; Huntemann, N.; Lipphardt, B.; Lisdat, C.; et al. Direct comparisons of European primary and secondary frequency standards via satellite techniques. Metrologia 2020, 57, 045005. [Google Scholar] [CrossRef]
- Pizzocaro, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hachisu, H.; Nemitz, N.; Tsutsumi, M.; Kondo, T.; Kawai, E.; Ichikawa, R.; et al. Intercontinental comparison of optical atomic clocks through very long baseline interferometry. Nat. Phys. 2021, 17, 223–227. [Google Scholar] [CrossRef]
- Raupach, S.M.; Koczwara, A.; Grosche, G. Brillouin amplification supports 1 × 10−20 uncertainty in optical frequency transfer over 1400 km of underground fiber. Phys. Rev. A 2015, 92, 021801. [Google Scholar] [CrossRef]
- Xu, D.; Lee, W.K.; Stefani, F.; Lopez, O.; Amy-Klein, A.; Pottie, P.E. Studying the fundamental limit of optical fiber links to the 10−21 level. Opt. Express 2018, 26, 9515–9527. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Liu, D.; Wu, L.; Bao, L.; Zhang, P. Performance Evaluation and Requirement Analysis for Chronometric Leveling with High-Accuracy Optical Clocks. Remote Sens. 2022, 14, 4141. [Google Scholar] [CrossRef]
- Grotti, J.; Koller, S.; Vogt, S.; Häfner, S.; Sterr, U.; Lisdat, C.; Denker, H.; Voigt, C.; Timmen, L.; Rolland, A.; et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 2018, 14, 437–441. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, P.; Shang, J.; Cui, K.; Yuan, J.; Chao, S.; Wang, S.; Shu, H.; Huang, X. A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty. Appl. Phys. B 2017, 123, 1–9. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.; Zhang, B.; Hao, Y.; Guan, H.; Zeng, M.; Chen, Q.; Lin, Y.; Wang, Y.; Cao, S.; et al. Geopotential measurement with a robust, transportable Ca+ optical clock. Phys. Rev. A 2020, 102, 050802. [Google Scholar] [CrossRef]
- Stuhler, J.; Hafiz, M.A.; Arar, B.; Bawamia, A.; Bergner, K.; Biethahn, M.; Brakhane, S.; Didier, A.; Fortágh, J.; Halder, M.; et al. Opticlock: Transportable and easy-to-operate optical single-ion clock. Meas. Sens. 2021, 18, 100264. [Google Scholar] [CrossRef]
- Abbasov, T.; Makarenko, K.; Sherstov, I.; Axenov, M.; Zalivako, I.; Semerikov, I.; Borisenko, A.; Khabarova, K.; Kolachevsky, N.; Chepurov, S.; et al. Compact transportable 171Yb+ single-ion optical fully automated clock with 4.9 E-16 relative instability. arXiv 2020, arXiv:2010.15244. [Google Scholar]
- Yuan, Y.; Cui, K.; Liu, D.; Yuan, J.; Cao, J.; Wang, D.; Chao, S.; Shu, H.; Huang, X. Demonstration of chronometric leveling using transportable optical clocks beyond laser coherence limit. Phys. Rev. Appl. 2024, 21, 044052. [Google Scholar] [CrossRef]
- Grotti, J.; Nosske, I.; Koller, S.; Herbers, S.; Denker, H.; Timmen, L.; Vishnyakova, G.; Grosche, G.; Waterholter, T.; Kuhl, A.; et al. Long-distance chronometric leveling with a portable optical clock. Phys. Rev. Appl. 2024, 21, L061001. [Google Scholar] [CrossRef]
- Wu, K.; Shen, Z.; Shen, W.; Sun, X.; Cai, C.; Wu, Y. A preliminary experiment of determining the geopotential difference using two hydrogen atomic clocks and TWSTFT technique. Geod. Geodyn. 2020, 11, 229–241. [Google Scholar] [CrossRef]
- Bothwell, T.; Kennedy, C.J.; Aeppli, A.; Kedar, D.; Robinson, J.M.; Oelker, E.; Staron, A.; Ye, J. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 2022, 602, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Cao, J.; Yuan, J.B.; Cui, K.F.; Yuan, Y.; Zhang, P.; Chao, S.J.; Shu, H.L.; Huang, X.R. Laboratory demonstration of geopotential measurement using transportable optical clocks. Chin. Phys. B 2023, 32, 010601. [Google Scholar] [CrossRef]
- Pound, R.V.; Rebka, G.A., Jr. Apparent weight of photons. Phys. Rev. Lett. 1960, 4, 337. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wu, K.; Shen, W.B.; Sun, X.; Cai, C.; Shen, Z. Measuring the gravity potential between two remote sites with CVSTT technique using two hydrogen clocks. Geo-Spat. Inf. Sci. 2023, 1–20. [Google Scholar]
- Hoang, A.T.; Shen, Z.; Wu, K.; Ning, A.; Shen, W. Test of determining geopotential difference between two sites at wuhan based on optical clocks’ frequency comparisons. Remote Sens. 2022, 14, 4850. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, J.; Wang, S.; Zhang, P.; Yuan, Y.; Liu, D.; Cui, K.; Chao, S.; Shu, H.; Lin, Y.; et al. A compact, transportable optical clock with 1 × 10−17 uncertainty and its absolute frequency measurement. Appl. Phys. Lett. 2022, 120, 054003. [Google Scholar] [CrossRef]
- Huang, P.W.; Tang, B.; Chen, X.; Zhong, J.Q.; Xiong, Z.Y.; Zhou, L.; Wang, J.; Zhan, M.S. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters. Metrologia 2019, 56, 045012. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, J.; Yuan, J.B.; Liu, D.X.; Yuan, Y.; Wei, Y.F.; Shu, H.L.; Huang, X.R. Evaluation of blackbody radiation shift with 2 × 10−18 uncertainty at room temperature for a transportable 40Ca+ optical clock. Metrologia 2021, 58, 035001. [Google Scholar] [CrossRef]
- Wolf, P. Next generation clock networks. Physics 2016, 9, 51. [Google Scholar] [CrossRef]
- Godun, R.; Nisbet-Jones, P.; Jones, J.; King, S.; Johnson, L.; Margolis, H.; Szymaniec, K.; Lea, S.; Bongs, K.; Gill, P. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 2014, 113, 210801. [Google Scholar] [CrossRef] [PubMed]
- Huntemann, N.; Lipphardt, B.; Tamm, C.; Gerginov, V.; Weyers, S.; Peik, E. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett. 2014, 113, 210802. [Google Scholar] [CrossRef] [PubMed]
- Rosenband, T.; Hume, D.; Schmidt, P.; Chou, C.W.; Brusch, A.; Lorini, L.; Oskay, W.; Drullinger, R.E.; Fortier, T.M.; Stalnaker, J.E.; et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 2008, 319, 1808–1812. [Google Scholar] [CrossRef] [PubMed]
- Derevianko, A.; Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 2014, 10, 933–936. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Huang, J.; Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 2015, 91, 015015. [Google Scholar] [CrossRef]
Clock 2 − Clock 1 | ||
---|---|---|
Systematic Shift (mHz) | Uncertainty (mHz) | |
−79.2 cm (low position) | −9.4 | 7.3 |
107.2 cm (high position) | −7.4 | 8.7 |
(Hz) | () | Low Position | High Position | ||
---|---|---|---|---|---|
Systematic Shift (mHz) | Height Difference (cm) | Systematic Shift (mHz) | Height Difference (cm) | ||
411,042,129,776,400.15 ±0.22 | 9.793461 ± 0.000002 | −39.6 ± 7.5 | −88.4 ± 16.7 | 46.8 ± 9.0 | 104.5 ± 20.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Wu, L.; Xiong, C.; Bao, L. Geopotential Difference Measurement Using Two Transportable Optical Clocks’ Frequency Comparisons. Remote Sens. 2024, 16, 2462. https://doi.org/10.3390/rs16132462
Liu D, Wu L, Xiong C, Bao L. Geopotential Difference Measurement Using Two Transportable Optical Clocks’ Frequency Comparisons. Remote Sensing. 2024; 16(13):2462. https://doi.org/10.3390/rs16132462
Chicago/Turabian StyleLiu, Daoxin, Lin Wu, Changliang Xiong, and Lifeng Bao. 2024. "Geopotential Difference Measurement Using Two Transportable Optical Clocks’ Frequency Comparisons" Remote Sensing 16, no. 13: 2462. https://doi.org/10.3390/rs16132462
APA StyleLiu, D., Wu, L., Xiong, C., & Bao, L. (2024). Geopotential Difference Measurement Using Two Transportable Optical Clocks’ Frequency Comparisons. Remote Sensing, 16(13), 2462. https://doi.org/10.3390/rs16132462