Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (294)

Search Parameters:
Keywords = geometric interference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4388 KiB  
Article
IRSD-Net: An Adaptive Infrared Ship Detection Network for Small Targets in Complex Maritime Environments
by Yitong Sun and Jie Lian
Remote Sens. 2025, 17(15), 2643; https://doi.org/10.3390/rs17152643 - 30 Jul 2025
Abstract
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex [...] Read more.
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex maritime environments presents significant challenges, including low contrast, background clutter, and difficulties in detecting small-scale or distant targets. To address these issues, we propose an Infrared Ship Detection Network (IRSD-Net), a lightweight and efficient detection network built upon the YOLOv11n framework and specially designed for infrared maritime imagery. IRSD-Net incorporates a Hierarchical Multi-Kernel Convolution Network (HMKCNet), which employs parallel multi-kernel convolutions and channel division to enhance multi-scale feature extraction while reducing redundancy and memory usage. To further improve cross-scale fusion, we design the Dynamic Cross-Scale Feature Pyramid Network (DCSFPN), a bidirectional architecture that combines up- and downsampling to integrate low-level detail with high-level semantics. Additionally, we introduce Wise-PIoU, a novel loss function that improves bounding box regression by enforcing geometric alignment and adaptively weighting gradients based on alignment quality. Experimental results demonstrate that IRSD-Net achieves 92.5% mAP50 on the ISDD dataset, outperforming YOLOv6n and YOLOv11n by 3.2% and 1.7%, respectively. With a throughput of 714.3 FPS, IRSD-Net delivers high-accuracy, real-time performance suitable for practical maritime monitoring systems. Full article
Show Figures

Figure 1

26 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 77
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3278 KiB  
Article
A Hybrid 3D Localization Algorithm Based on Meta-Heuristic Weighted Fusion
by Dongfang Mao, Guoping Jiang and Yun Zhao
Mathematics 2025, 13(15), 2423; https://doi.org/10.3390/math13152423 - 28 Jul 2025
Viewed by 197
Abstract
This paper presents a hybrid indoor localization framework combining time difference of arrival (TDoA) measurements with a swarm intelligence optimization technique. To address the nonlinear optimization challenges in three-dimensional (3D) indoor localization via TDoA measurements, we systematically evaluate the artificial bee colony (ABC) [...] Read more.
This paper presents a hybrid indoor localization framework combining time difference of arrival (TDoA) measurements with a swarm intelligence optimization technique. To address the nonlinear optimization challenges in three-dimensional (3D) indoor localization via TDoA measurements, we systematically evaluate the artificial bee colony (ABC) algorithm and chimpanzee optimization algorithm (ChOA). Through comprehensive Monte Carlo simulations in a cubic 3D environment with eight beacons, our comparative analysis reveals that the ChOA achieves superior localization accuracy while maintaining computational efficiency. Building upon the ChOA framework, we introduce a multi-beacon fusion strategy incorporating a local outlier factor-based linear weighting mechanism to enhance robustness against measurement noise and improve localization accuracy. This approach integrates spatial density estimation with geometrically consistent weighting of distributed beacons, effectively filtering measurement outliers through adaptive sensor fusion. The experimental results show that the proposed algorithm exhibits excellent convergence performance under the condition of a low population size. Its anti-interference capability against Gaussian white noise is significantly improved compared with the baseline algorithms, and its anti-interference performance against multipath noise is consistent with that of the baseline algorithms. However, in terms of dealing with UWB device failures, the performance of the algorithm is slightly inferior. Meanwhile, the algorithm has relatively good time-lag performance and target-tracking performance. The study provides theoretical insights and practical guidelines for deploying reliable localization systems in complex indoor environments. Full article
Show Figures

Figure 1

22 pages, 4611 KiB  
Article
MMC-YOLO: A Lightweight Model for Real-Time Detection of Geometric Symmetry-Breaking Defects in Wind Turbine Blades
by Caiye Liu, Chao Zhang, Xinyu Ge, Xunmeng An and Nan Xue
Symmetry 2025, 17(8), 1183; https://doi.org/10.3390/sym17081183 - 24 Jul 2025
Viewed by 280
Abstract
Performance degradation of wind turbine blades often stems from geometric asymmetry induced by damage. Existing methods for assessing damage face challenges in balancing accuracy and efficiency due to their limited ability to capture fine-grained geometric asymmetries associated with multi-scale damage under complex background [...] Read more.
Performance degradation of wind turbine blades often stems from geometric asymmetry induced by damage. Existing methods for assessing damage face challenges in balancing accuracy and efficiency due to their limited ability to capture fine-grained geometric asymmetries associated with multi-scale damage under complex background interference. To address this, based on the high-speed detection model YOLOv10-N, this paper proposes a novel detection model named MMC-YOLO. First, the Multi-Scale Perception Gated Convolution (MSGConv) Module was designed, which constructs a full-scale receptive field through multi-branch fusion and channel rearrangement to enhance the extraction of geometric asymmetry features. Second, the Multi-Scale Enhanced Feature Pyramid Network (MSEFPN) was developed, integrating dynamic path aggregation and an SENetv2 attention mechanism to suppress background interference and amplify damage response. Finally, the Channel-Compensated Filtering (CCF) module was constructed to preserve critical channel information using a dynamic buffering mechanism. Evaluated on a dataset of 4818 wind turbine blade damage images, MMC-YOLO achieves an 82.4% mAP [0.5:0.95], representing a 4.4% improvement over the baseline YOLOv10-N model, and a 91.1% recall rate, an 8.7% increase, while maintaining a lightweight parameter count of 4.2 million. This framework significantly enhances geometric asymmetry defect detection accuracy while ensuring real-time performance, meeting engineering requirements for high efficiency and precision. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

18 pages, 960 KiB  
Article
Hybrid Algorithm via Reciprocal-Argument Transformation for Efficient Gauss Hypergeometric Evaluation in Wireless Networks
by Jianping Cai and Zuobin Ying
Mathematics 2025, 13(15), 2354; https://doi.org/10.3390/math13152354 - 23 Jul 2025
Viewed by 114
Abstract
The rapid densification of wireless networks demands efficient evaluation of special functions underpinning system-level performance metrics. To facilitate research, we introduce a computational framework tailored for the zero-balanced Gauss hypergeometric function [...] Read more.
The rapid densification of wireless networks demands efficient evaluation of special functions underpinning system-level performance metrics. To facilitate research, we introduce a computational framework tailored for the zero-balanced Gauss hypergeometric function Ψ(x,y)F12(1,x;1+x;y), a fundamental mathematical kernel emerging in Signal-to-Interference-plus-Noise Ratio (SINR) coverage analysis of non-uniform cellular deployments. Specifically, we propose a novel Reciprocal-Argument Transformation Algorithm (RTA), derived rigorously from a Mellin–Barnes reciprocal-argument identity, achieving geometric convergence with O1/y. By integrating RTA with a Pfaff-series solver into a hybrid algorithm guided by a golden-ratio switching criterion, our approach ensures optimal efficiency and numerical stability. Comprehensive validation demonstrates that the hybrid algorithm reliably attains machine-precision accuracy (1016) within 1 μs per evaluation, dramatically accelerating calculations in realistic scenarios from hours to fractions of a second. Consequently, our method significantly enhances the feasibility of tractable optimization in ultra-dense non-uniform cellular networks, bridging the computational gap in large-scale wireless performance modeling. Full article
(This article belongs to the Special Issue Advances in High-Performance Computing, Optimization and Simulation)
Show Figures

Figure 1

11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Viewed by 213
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

20 pages, 3710 KiB  
Article
An Accurate LiDAR-Inertial SLAM Based on Multi-Category Feature Extraction and Matching
by Nuo Li, Yiqing Yao, Xiaosu Xu, Shuai Zhou and Taihong Yang
Remote Sens. 2025, 17(14), 2425; https://doi.org/10.3390/rs17142425 - 12 Jul 2025
Viewed by 404
Abstract
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity [...] Read more.
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity to noise and sparsity, and the inclusion of redundant or low-quality feature correspondences. These weaknesses hinder their performance in complex or dynamic environments and fail to meet the reliability requirements of autonomous systems. To overcome these challenges, we propose a novel and accurate LiDAR-inertial SLAM framework with three major contributions. First, we employ a robust multi-category feature extraction method based on principal component analysis (PCA), which effectively filters out noisy and weakly structured points, ensuring stable feature representation. Second, to suppress outlier correspondences and enhance pose estimation reliability, we introduce a coarse-to-fine two-stage feature correspondence selection strategy that evaluates geometric consistency and structural contribution. Third, we develop an adaptive weighted pose estimation scheme that considers both distance and directional consistency, improving the robustness of feature matching under varying scene conditions. These components are jointly optimized within a sliding-window-based factor graph, integrating LiDAR feature factors, IMU pre-integration, and loop closure constraints. Extensive experiments on public datasets (KITTI, M2DGR) and a custom-collected dataset validate the proposed method’s effectiveness. Results show that our system consistently outperforms state-of-the-art approaches in accuracy and robustness, particularly in scenes with sparse structure, motion distortion, and dynamic interference, demonstrating its suitability for reliable real-world deployment. Full article
(This article belongs to the Special Issue LiDAR Technology for Autonomous Navigation and Mapping)
Show Figures

Figure 1

21 pages, 21215 KiB  
Article
ES-Net Empowers Forest Disturbance Monitoring: Edge–Semantic Collaborative Network for Canopy Gap Mapping
by Yutong Wang, Zhang Zhang, Jisheng Xia, Fei Zhao and Pinliang Dong
Remote Sens. 2025, 17(14), 2427; https://doi.org/10.3390/rs17142427 - 12 Jul 2025
Viewed by 386
Abstract
Canopy gaps are vital microhabitats for forest carbon cycling and species regeneration, whose accurate extraction is crucial for ecological modeling and smart forestry. However, traditional monitoring methods have notable limitations: ground-based measurements are inefficient; remote-sensing interpretation is susceptible to terrain and spectral interference; [...] Read more.
Canopy gaps are vital microhabitats for forest carbon cycling and species regeneration, whose accurate extraction is crucial for ecological modeling and smart forestry. However, traditional monitoring methods have notable limitations: ground-based measurements are inefficient; remote-sensing interpretation is susceptible to terrain and spectral interference; and traditional algorithms exhibit an insufficient feature representation capability. Aiming at overcoming the bottleneck issues of canopy gap identification in mountainous forest regions, we constructed a multi-task deep learning model (ES-Net) integrating an edge–semantic collaborative perception mechanism. First, a refined sample library containing multi-scale interference features was constructed, which included 2808 annotated UAV images. Based on this, a dual-branch feature interaction architecture was designed. A cross-layer attention mechanism was embedded in the semantic segmentation module (SSM) to enhance the discriminative ability for heterogeneous features. Meanwhile, an edge detection module (EDM) was built to strengthen geometric constraints. Results from selected areas in Yunnan Province (China) demonstrate that ES-Net outperforms U-Net, boosting the Intersection over Union (IoU) by 0.86% (95.41% vs. 94.55%), improving the edge coverage rate by 3.14% (85.32% vs. 82.18%), and reducing the Hausdorff Distance by 38.6% (28.26 pixels vs. 46.02 pixels). Ablation studies further verify that the synergy between SSM and EDM yields a 13.0% IoU gain over the baseline, highlighting the effectiveness of joint semantic–edge optimization. This study provides a terrain-adaptive intelligent interpretation method for forest disturbance monitoring and holds significant practical value for advancing smart forestry construction and ecosystem sustainable management. Full article
Show Figures

Graphical abstract

24 pages, 10779 KiB  
Article
Digital Measurement Method for Main Arch Rib of Concrete-Filled Steel Tube Arch Bridge Based on Laser Point Cloud
by Zhiguan Huang, Chuanli Kang, Junli Liu and Hongjian Zhou
Infrastructures 2025, 10(7), 185; https://doi.org/10.3390/infrastructures10070185 - 12 Jul 2025
Viewed by 237
Abstract
Aiming to address the problem of low efficiency in the traditional manual measurement of the main arch rib components of concrete-filled steel tube (CFST) arch bridges, this study proposes a digital measurement technology based on the integration of geometric parameters and computer-aided design [...] Read more.
Aiming to address the problem of low efficiency in the traditional manual measurement of the main arch rib components of concrete-filled steel tube (CFST) arch bridges, this study proposes a digital measurement technology based on the integration of geometric parameters and computer-aided design (CAD) models. In this method, first, we perform the high-precision registration of the preprocessed scanned point cloud of the CFST arch rib components with the discretized design point cloud of the standardized CAD model. Then, in view of the fact that the fitting of point cloud geometric parameters is susceptible to the influence of sparse or uneven massive point clouds, these points are treated as outliers for elimination. We propose a method incorporating slicing to solve the interference of outliers and improve the fitting accuracy. Finally, the evaluation of quality, accuracy, and efficiency is carried out based on distance deviation analysis and geometric parameter comparison. The experimental results show that, for the experimental data, the fitting error of this method is reduced by 76.32% compared with the traditional method, which can improve the problems with measurement and fitting seen with the traditional method. At the same time, the measurement efficiency is increased by 5% compared with the traditional manual method. Full article
Show Figures

Figure 1

21 pages, 1682 KiB  
Article
Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
by Yadong Wang, Shuliang Jia, Mingze Guo, Yan Zhang and Yongjun Wang
Processes 2025, 13(7), 2214; https://doi.org/10.3390/pr13072214 - 10 Jul 2025
Viewed by 365
Abstract
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static [...] Read more.
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static empirical parameters and environmental interference. This study proposes an integrated methodology that combines multi-path airflow analysis with dynamic longitudinal dispersion coefficient correction to enhance the accuracy of air leakage detection. Utilizing sulfur hexafluoride (SF6) as the tracer gas, a phased release protocol with temporal isolation was implemented across five strategic points in a coal mine ventilation network. High-precision detectors (Bruel & Kiaer 1302) and the MIVENA system enabled synchronized data acquisition and 3D network modeling. Theoretical models were dynamically calibrated using field-measured airflow velocities and dispersion coefficients. The results revealed three deviation patterns between simulated and measured tracer peaks: Class A deviation showed 98.5% alignment in single-path scenarios, Class B deviation highlighted localized velocity anomalies from Venturi effects, and Class C deviation identified recirculation vortices due to abrupt cross-sectional changes. Simulation accuracy improved from 70% to over 95% after introducing wind speed and dispersion adjustment coefficients, resolving concealed leakage pathways between critical nodes and key nodes. The study demonstrates that the dynamic correction of dispersion coefficients and multi-path decomposition effectively mitigates errors caused by turbulence and geometric irregularities. This approach provides a robust framework for optimizing ventilation systems, reducing invalid airflow losses, and advancing intelligent ventilation management through real-time monitoring integration. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

23 pages, 16714 KiB  
Article
A Dual-Stream Dental Panoramic X-Ray Image Segmentation Method Based on Transformer Heterogeneous Feature Complementation
by Tian Ma, Jiahui Li, Zhenrui Dang, Yawen Li and Yuancheng Li
Technologies 2025, 13(7), 293; https://doi.org/10.3390/technologies13070293 - 8 Jul 2025
Viewed by 356
Abstract
To address the widespread challenges of significant multi-category dental morphological variations and interference from overlapping anatomical structures in panoramic dental X-ray images, this paper proposes a dual-stream dental segmentation model based on Transformer heterogeneous feature complementarity. Firstly, we construct a parallel architecture comprising [...] Read more.
To address the widespread challenges of significant multi-category dental morphological variations and interference from overlapping anatomical structures in panoramic dental X-ray images, this paper proposes a dual-stream dental segmentation model based on Transformer heterogeneous feature complementarity. Firstly, we construct a parallel architecture comprising a Transformer semantic parsing branch and a Convolutional Neural Network (CNN) detail capturing pathway, achieving collaborative optimization of global context modeling and local feature extraction. Furthermore, a Pooling-Cooperative Convolutional Module was designed, which enhances the model’s capability in detail extraction and boundary localization through weighted centroid features of dental structures and a latent edge extraction module. Finally, a Semantic Transformation Module and Interactive Fusion Module are constructed. The Semantic Transformation Module converts geometric detail features extracted from the CNN branch into high-order semantic representations compatible with Transformer sequential processing paradigms, while the Interactive Fusion Module applies attention mechanisms to progressively fuse dual-stream features, thereby enhancing the model’s capability in holistic dental feature extraction. Experimental results demonstrate that the proposed method achieves an IoU of 91.49% and a Dice coefficient of 94.54%, outperforming current segmentation methods across multiple evaluation metrics. Full article
Show Figures

Figure 1

27 pages, 5055 KiB  
Article
Physical–Mathematical Modeling and Simulations for a Feasible Oscillating Water Column Plant
by Fabio Caldarola, Manuela Carini, Alessandro Costarella, Gioia De Raffele and Mario Maiolo
Mathematics 2025, 13(14), 2219; https://doi.org/10.3390/math13142219 - 8 Jul 2025
Viewed by 275
Abstract
The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual [...] Read more.
The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual advantage of large-scale integration into port infrastructures or coastal defense structures such as breakwaters, etc. The core challenge lies in optimizing the geometry of the OWC chamber and its associated ducts. A trapezoidal cross-section is adopted, with various front wall inclinations ranging from 90° to 45°. This geometric parameter significantly affects both the internal compression ratio and the hydrodynamic behavior of incoming and outgoing waves. Certain inclinations revealed increased turbulence and notable interference with waves reflected from the chamber bottom which determined an unexpected drop in efficiency. The optimal performance occurred at an inclination of approximately 55°, yielding an efficiency of around 12.8%, because it represents the most advantageous and balanced compromise between counter-trend phenomena. A detailed analysis is carried out on several key parameters for the different configurations (e.g., internal and external wave elevations, crest phase shifts, pressures, hydraulic loads, efficiency, etc.) to reach the most in-depth analysis possible of the complex phenomena that come into play. Lastly, the study also discusses the additional structural and functional benefits of inclined walls over traditional parallelepiped-shaped chambers, both from a structural and construction point of view, and for the possible use for coastal defense. Full article
Show Figures

Figure 1

19 pages, 8986 KiB  
Article
Precise Feature Removal Method Based on Semantic and Geometric Dual Masks in Dynamic SLAM
by Zhanrong Li, Chao Jiang, Yu Sun, Haosheng Su and Longning He
Appl. Sci. 2025, 15(13), 7095; https://doi.org/10.3390/app15137095 - 24 Jun 2025
Viewed by 309
Abstract
In visual Simultaneous Localization and Mapping (SLAM) systems, dynamic elements in the environment pose significant challenges that complicate reliable feature matching and accurate pose estimation. To address the issue of unstable feature points within dynamic regions, this study proposes a robust dual-mask filtering [...] Read more.
In visual Simultaneous Localization and Mapping (SLAM) systems, dynamic elements in the environment pose significant challenges that complicate reliable feature matching and accurate pose estimation. To address the issue of unstable feature points within dynamic regions, this study proposes a robust dual-mask filtering strategy that synergistically integrates semantic segmentation information with geometric outlier detection techniques. The proposed method first identifies outlier feature points through rigorous geometric consistency checks, then employs morphological dilation to expand the initially detected dynamic regions. Subsequently, the expanded mask is intersected with instance-level semantic segmentation results to precisely delineate dynamic areas, effectively constraining the search space for feature matching and reducing interference caused by dynamic objects. A key innovation of this approach is the incorporation of a Perspective-n-Point (PnP)-based optimization module. This module dynamically updates the outlier set on a per-frame basis, enabling continuous monitoring and selective removal of dynamic features. Extensive experiments conducted on benchmark datasets demonstrate that the proposed method achieves average accuracy improvements of 3.43% and 11.42% on the KITTI dataset and 24% and 8.27% on the TUM dataset. Compared to traditional methods, this dual-mask collaborative filtering strategy improves the accuracy of dynamic feature removal and enhances the reliability of dynamic object detection, validating its robustness and applicability in complex dynamic environments. Full article
Show Figures

Figure 1

25 pages, 9860 KiB  
Article
Indoor Dynamic Environment Mapping Based on Semantic Fusion and Hierarchical Filtering
by Yiming Li, Luying Na, Xianpu Liang and Qi An
ISPRS Int. J. Geo-Inf. 2025, 14(7), 236; https://doi.org/10.3390/ijgi14070236 - 21 Jun 2025
Viewed by 672
Abstract
To address the challenges of dynamic object interference and redundant information representation in map construction for indoor dynamic environments, this paper proposes an indoor dynamic environment mapping method based on semantic fusion and hierarchical filtering. First, prior dynamic object masks are obtained using [...] Read more.
To address the challenges of dynamic object interference and redundant information representation in map construction for indoor dynamic environments, this paper proposes an indoor dynamic environment mapping method based on semantic fusion and hierarchical filtering. First, prior dynamic object masks are obtained using the YOLOv8 model, and geometric constraints between prior static objects and dynamic regions are introduced to identify non-prior dynamic objects, thereby eliminating all dynamic features (both prior and non-prior). Second, an initial semantic point cloud map is constructed by integrating prior static features from a semantic segmentation network with pose estimates from an RGB-D camera. Dynamic noise is then removed using statistical outlier removal (SOR) filtering, while voxel filtering optimizes point cloud density, generating a compact yet texture-rich semantic dense point cloud map with minimal dynamic artifacts. Subsequently, a multi-resolution semantic octree map is built using a recursive spatial partitioning algorithm. Finally, point cloud poses are corrected via Transform Frame (TF) transformation, and a 2D traversability grid map is generated using passthrough filtering and grid projection. Experimental results demonstrate that the proposed method constructs multi-level semantic maps with rich information, clear structure, and high reliability in indoor dynamic scenarios. Additionally, the map file size is compressed by 50–80%, significantly enhancing the reliability of mobile robot navigation and the efficiency of path planning. Full article
(This article belongs to the Special Issue Indoor Mobile Mapping and Location-Based Knowledge Services)
Show Figures

Figure 1

31 pages, 1336 KiB  
Article
Breaking the Cyclic Prefix Barrier: Zero-Padding Correlation Enables Centimeter-Accurate LEO Navigation via 5G NR Signals
by Lingyu Deng, Yikang Yang, Jiangang Ma, Tao Wu, Xingyou Qian and Hengnian Li
Remote Sens. 2025, 17(13), 2116; https://doi.org/10.3390/rs17132116 - 20 Jun 2025
Viewed by 381
Abstract
Low Earth orbit (LEO) satellites offer a revolutionary potential for positioning, navigation, and timing (PNT) services due to their stronger signal power and rapid geometric changes compared to traditional global navigation satellite systems (GNSS). However, dedicated LEO navigation systems face high costs, so [...] Read more.
Low Earth orbit (LEO) satellites offer a revolutionary potential for positioning, navigation, and timing (PNT) services due to their stronger signal power and rapid geometric changes compared to traditional global navigation satellite systems (GNSS). However, dedicated LEO navigation systems face high costs, so opportunity navigation based on LEO satellites is a potential solution. This paper presents an orthogonal frequency division multiplexing (OFDM)-based LEO navigation system and analyzes its navigation performance. We use 5G new radio (NR) as the satellite transmitting signal and introduce the NR signal components that can be used for navigation services. The LEO NR system and a novel zero-padding correlation (ZPC) are introduced. This ZPC receiver can eliminate cyclic prefix (CP) and inter-carrier interference, thereby improving tracking accuracy. The power spectral density (PSD) for the NR navigation signal is derived, followed by a comprehensive analysis of tracking accuracy under different NR configurations (bandwidth, spectral allocation, and signal components). An extended Kalman filter (EKF) is proposed to fuse pseudorange and pseudorange rate measurements for real-time positioning. The simulations demonstrate an 80% improvement in ranging precision (3.0–4.5 cm) and 88.3% enhancement in positioning accuracy (5.61 cm) compared to conventional receivers. The proposed ZPC receiver can achieve centimeter-level navigation accuracy. This work comprehensively analyzes the navigation performance of the LEO NR system and provides a reference for LEO PNT design. Full article
Show Figures

Figure 1

Back to TopTop