Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (871)

Search Parameters:
Keywords = geometric height

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7351 KiB  
Article
Constructal Design and Numerical Simulation Applied to Geometric Evaluation of Stiffened Steel Plates Subjected to Elasto-Plastic Buckling Under Biaxial Compressive Loading
by Andrei Ferreira Lançanova, Raí Lima Vieira, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Thiago da Silveira, João Paulo Silva Lima, Emanuel da Silva Diaz Estrada and Liércio André Isoldi
Metals 2025, 15(8), 879; https://doi.org/10.3390/met15080879 (registering DOI) - 6 Aug 2025
Abstract
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. [...] Read more.
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. To increase the ultimate buckling stress of plates, the implementation of longitudinal and transverse stiffeners is effective; however, this complexity makes analytical stress calculations challenging. As a result, numerical methods like the Finite Element Method (FEM) are attractive alternatives. In this study, the Constructal Design method and the Exhaustive Search technique were employed and associated with the FEM to optimize the geometric configuration of stiffened plates. A steel plate without stiffeners was considered, and 30% of its volume was redistributed into stiffeners, creating multiple configuration scenarios. The objective was to investigate how different arrangements and geometries of stiffeners affect the ultimate buckling stress under biaxial compressive loading. Among the configurations evaluated, the optimal design featured four longitudinal and two transverse stiffeners, with a height-to-thickness ratio of 4.80. This configuration significantly improved the performance, achieving an ultimate buckling stress 472% higher than the unstiffened reference plate. In contrast, the worst stiffened configuration led to a 57% reduction in performance, showing that not all stiffening strategies are beneficial. These results demonstrate that geometric optimization of stiffeners can significantly enhance the structural performance of steel plates under biaxial compression, even without increasing material usage. The approach also revealed that intermediate slenderness values lead to better stress distribution and delayed local buckling. Therefore, the methodology adopted in this work provides a practical and effective tool for the design of more efficient stiffened plates. Full article
Show Figures

Figure 1

25 pages, 8312 KiB  
Article
Quantitative Assessment of Woven Fabric Surface Changes During Martindale Abrasion Using Contactless Optical Profilometry
by Małgorzata Matusiak and Gabriela Kosiuk
Materials 2025, 18(15), 3636; https://doi.org/10.3390/ma18153636 - 1 Aug 2025
Viewed by 184
Abstract
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of [...] Read more.
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of the three methods. The method is based on organoleptic assessment of fabric breakage. The method is time-consuming, and results may be subject to error resulting from the subjective nature of the assessment. The aim of the presented work was to check the possibility of the application of contactless 3D surface geometry measurement using an optical profilometer in an assessment of changes in fabrics’ surface due to the abrasion process. The obtained results confirmed that some parameters of the geometric structure of fabric surfaces, such as the highest height of the roughness profile Rz, the height of the highest pick of the roughness profile Rp, the depth of the lowest valley of the roughness profile Rv, the depth of the total height of the roughness profile Rt, and the kurtosis Rku, can be used to assess the abrasion resistance of fabrics. It is also stated that using the non-contact optical measurement of fabric surface geometry allows for an assessment of the directionality of surface texture. For this purpose, the autocorrelation function and angle distribution function can be applied. Full article
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
Design of a Bidirectional Veneer Defect Repair Method Based on Parametric Modeling and Multi-Objective Optimization
by Xingchen Ding, Jiuqing Liu, Xin Sun, Hao Chang, Jie Yan, Chengwen Sun and Chunmei Yang
Technologies 2025, 13(8), 324; https://doi.org/10.3390/technologies13080324 - 31 Jul 2025
Viewed by 216
Abstract
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. [...] Read more.
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. Based on the working principle, a geometric relationship model was established, which combines the structural parameters of the mold, punch, and gear system. Simultaneously, it solves the problem of motion attitude analysis of conjugate tooth profiles under non-standard meshing conditions, aiming to establish a constraint relationship between stamping motion and structural design parameters. On this basis, a constrained optimization model was developed by integrating multi-objective optimization theory to maximize maintenance efficiency. The NSGA-III algorithm is used to solve the model and obtain the Pareto front solution set. Subsequently, three optimal parameter configurations were selected for simulation analysis and experimental platform construction. The simulation and experimental results indicate that the veneer repair time ranges from 0.6 to 1.8 seconds, depending on the stamping speed. A reduction of 28 mm in die height decreases the repair time by approximately 0.1 seconds, resulting in an efficiency improvement of about 14%. The experimental results confirm the effectiveness of the proposed method in repairing veneer defects. Vibration measurements further verify the system’s stable operation under parametric modeling and optimization design. The main vibration response occurs during the meshing and disengagement phases between the gear and rack. Full article
Show Figures

Figure 1

17 pages, 1742 KiB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 318
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 5118 KiB  
Article
Effective Comparison of Thermo-Mechanical Characteristics of Self-Compacting Concretes Through Machine Learning-Based Predictions
by Armando La Scala and Leonarda Carnimeo
Fire 2025, 8(8), 289; https://doi.org/10.3390/fire8080289 - 23 Jul 2025
Viewed by 363
Abstract
This present study proposes different machine learning-based predictors for the assessment of the residual compressive strength of Self-Compacting Concrete (SCC) subjected to high temperatures. The investigation is based on several literature algorithmic approaches based on Artificial Neural Networks with distinct training algorithms (Bayesian [...] Read more.
This present study proposes different machine learning-based predictors for the assessment of the residual compressive strength of Self-Compacting Concrete (SCC) subjected to high temperatures. The investigation is based on several literature algorithmic approaches based on Artificial Neural Networks with distinct training algorithms (Bayesian Regularization, Levenberg–Marquardt, Scaled Conjugate Gradient, and Resilient Backpropagation), Support Vector Regression, and Random Forest methods. A training database of 150 experimental data points is derived from a careful literature review, incorporating temperature (20–800 °C), geometric ratio (height/diameter), and corresponding compressive strength values. A statistical analysis revealed complex non-linear relationships between variables, with strong negative correlation between temperature and strength and heteroscedastic data distribution, justifying the selection of advanced machine learning techniques. Feature engineering improved model performance through the incorporation of quadratic terms, interaction variables, and cyclic transformations. The Resilient Backpropagation algorithm demonstrated superior performance with the lowest prediction errors, followed by Bayesian Regularization. Support Vector Regression achieved competitive accuracy despite its simpler architecture. Experimental validation using specimens tested up to 800 °C showed a good reliability of the developed systems, with prediction errors ranging from 0.33% to 23.35% across different temperature ranges. Full article
Show Figures

Figure 1

24 pages, 5578 KiB  
Article
Simplified Frequency Estimation of Prefabricated Electric Poles Through Regression-Based Modal Analysis
by Hakan Erkek, Ibrahim Karataş, Doğucan Resuloğulları, Emriye Çınar Resuloğullari and Şahin Tolga Güvel
Appl. Sci. 2025, 15(15), 8179; https://doi.org/10.3390/app15158179 - 23 Jul 2025
Viewed by 253
Abstract
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural [...] Read more.
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural and modal behavior of reinforced concrete power poles. This study presents a comprehensive modal analysis of such poles, focusing on how factors like modulus of elasticity, height, and lower/upper inner and outer diameters influence dynamic performance. A total of 3240 finite element models were created, with reinforced concrete poles partially embedded in the ground. Modal analyses were performed to evaluate natural frequencies, mode shapes, and modal mass participation ratios. Results showed that increasing the modulus of elasticity raised frequency values, while greater pole height decreased them. Enlarging the lower inner and upper outer radii also led to higher frequencies. Regression analysis yielded high accuracy, with R2 values exceeding 90% and an average error rate of about 6%. The study provides empirical formulas that allow for quick frequency estimations without the need for detailed finite element modeling, as long as the material and geometric properties remain consistent. The approach can be extended to other prefabricated structural elements. Full article
Show Figures

Figure 1

31 pages, 4937 KiB  
Article
Proximal LiDAR Sensing for Monitoring of Vegetative Growth in Rice at Different Growing Stages
by Md Rejaul Karim, Md Nasim Reza, Shahriar Ahmed, Kyu-Ho Lee, Joonjea Sung and Sun-Ok Chung
Agriculture 2025, 15(15), 1579; https://doi.org/10.3390/agriculture15151579 - 23 Jul 2025
Viewed by 275
Abstract
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, [...] Read more.
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, non-destructive 3D canopy characterization, yet applications in rice cultivation across different growth stages remain underexplored, while LiDAR has shown success in other crops such as vineyards. This study addresses that gap by using LiDAR for geometric characterization of rice plants at early, middle, and late growth stages. The objective of this study was to characterize rice plant geometry such as plant height, canopy volume, row distance, and plant spacing using the proximal LiDAR sensing technique at three different growth stages. A commercial LiDAR sensor (model: VPL−16, Velodyne Lidar, San Jose, CA, USA) mounted on a wheeled aluminum frame for data collection, preprocessing, visualization, and geometric feature characterization using a commercial software solution, Python (version 3.11.5), and a custom algorithm. Manual measurements compared with the LiDAR 3D point cloud data measurements, demonstrating high precision in estimating plant geometric characteristics. LiDAR-estimated plant height, canopy volume, row distance, and spacing were 0.5 ± 0.1 m, 0.7 ± 0.05 m3, 0.3 ± 0.00 m, and 0.2 ± 0.001 m at the early stage; 0.93 ± 0.13 m, 1.30 ± 0.12 m3, 0.32 ± 0.01 m, and 0.19 ± 0.01 m at the middle stage; and 0.99 ± 0.06 m, 1.25 ± 0.13 m3, 0.38 ± 0.03 m, and 0.10 ± 0.01 m at the late growth stage. These measurements closely matched manual observations across three stages. RMSE values ranged from 0.01 to 0.06 m and r2 values ranged from 0.86 to 0.98 across parameters, confirming the high accuracy and reliability of proximal LiDAR sensing under field conditions. Although precision was achieved across growth stages, complex canopy structures under field conditions posed segmentation challenges. Further advances in point cloud filtering and classification are required to reliably capture such variability. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

16 pages, 2088 KiB  
Article
Research on the Composite Scattering Characteristics of a Rough-Surfaced Vehicle over Stratified Media
by Chenzhao Yan, Xincheng Ren, Jianyu Huang, Yuqing Wang and Xiaomin Zhu
Appl. Sci. 2025, 15(15), 8140; https://doi.org/10.3390/app15158140 - 22 Jul 2025
Viewed by 160
Abstract
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle [...] Read more.
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle surface. Soil complex permittivity was characterized with a four-component mixture model, while snow permittivity was described using a mixed-media dielectric model. The composite electromagnetic scattering from a rough-surfaced vehicle on snow-covered soil was then analyzed with the finite-difference time-domain (FDTD) method. Parametric studies examined how incident angle and frequency, vehicle orientation, vehicle surface root mean square (RMS) height, snow liquid water content and depth, and soil moisture influence the composite scattering coefficient. Results indicate that the coefficient oscillates with scattering angle, producing specular reflection lobes; it increases monotonically with larger incident angles, higher frequencies, greater vehicle RMS roughness, and higher snow liquid water content. By contrast, its dependence on snow thickness, vehicle orientation, and soil moisture is complex and shows no clear trend. Full article
Show Figures

Figure 1

22 pages, 703 KiB  
Article
An Impact Assessment of Speed Humps’ Geometric Characteristics and Spacing on Vehicle Speed: An Overview
by Nawaf M. Alshabibi
Infrastructures 2025, 10(7), 190; https://doi.org/10.3390/infrastructures10070190 - 21 Jul 2025
Viewed by 383
Abstract
This review examines the effect of geometric properties and the spacing of road humps on vehicle speed and noise, with a particular emphasis on South Asian contexts, especially Malaysia. Road humps are widely used traffic-calming devices designed to reduce vehicle speed and enhance [...] Read more.
This review examines the effect of geometric properties and the spacing of road humps on vehicle speed and noise, with a particular emphasis on South Asian contexts, especially Malaysia. Road humps are widely used traffic-calming devices designed to reduce vehicle speed and enhance road safety. The effectiveness of these measures is strongly influenced by parameters such as height, width, profile, and placement intervals. While the geometric optimization of humps generally improves speed-reduction outcomes, several studies indicate that braking and acceleration at humps can lead to increased traffic noise, particularly in residential and high-density areas. This review also explores design strategies and material choices (e.g., asphalt use, sinusoidal profiles) that may help mitigate noise impacts. Overall, a balance between speed control and noise management is necessary to ensure both safety and community acceptance. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

14 pages, 7570 KiB  
Article
Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix
by Xin Xu, Yanyan Ma, Guoqing Zhu, Zhen Hu and Yumeng Wang
Fire 2025, 8(7), 284; https://doi.org/10.3390/fire8070284 - 20 Jul 2025
Viewed by 432
Abstract
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a [...] Read more.
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a systematic investigation into the influence of lateral spacing on vertical flame propagation behavior. Laboratory-scale experiments were conducted using vertically oriented polymethyl methacrylate (PMMA) fuel arrays under nine different spacing configurations. Results reveal that lateral spacing plays a critical role in determining flame spread paths and intensities. Specifically, with a vertical spacing fixed at 8 cm, a lateral spacing of 10 mm resulted in rapid flame growth, reaching a peak flame height of approximately 96.5 cm within 450 s after ignition. In contrast, increasing the lateral spacing to 15 mm significantly slowed flame development, achieving a peak flame height of just under 90 cm at approximately 600 s. This notable transition in flame dynamics is closely associated with the critical thermal boundary layer thickness (~11.5 mm). Additionally, at 10 mm spacing, a chimney-like effect was observed, enhancing upward air entrainment and resulting in intensified combustion. These findings reveal the coupled influence of geometric configuration and heat transfer mechanisms on façade flame propagation. The insights gained provide guidance for cladding system design, suggesting that increasing lateral separation between combustible elements may be an effective strategy to limit flame spread and enhance fire safety performance in buildings. Full article
Show Figures

Figure 1

18 pages, 2807 KiB  
Article
The Nonlinear Vibration Response of Umbrella-Shaped Membrane Structure Under Heavy Rainfall Loads
by Zhongwei Luo, Zhoulian Zheng, Rui Yang and Peng Zhang
Buildings 2025, 15(14), 2529; https://doi.org/10.3390/buildings15142529 - 18 Jul 2025
Viewed by 166
Abstract
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it [...] Read more.
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it into multi-segment conical membranes. The generatrix becomes a polyline with a constant surface curvature in each segment, simplifying calculations. The equivalent uniform load of different rainfall intensity is determined by the theory of the stochastic process. The governing equations of the isotropic damped nonlinear forced vibration of membranes are established by using the theory of large deflection by von Karman and the principle of d’Alembert. The equations of the forced vibration of the membrane are solved by using Galerkin’s method and the small-parameter perturbation method, and the displacement function, vibration frequency, and acceleration of the membrane are obtained. At last, the influence of the height–span ratio, number of segments, pretension and load on membrane displacement, vibration frequency, and acceleration of the membrane surface are analyzed. Based on the above data, the general law of deformation of the umbrella-shaped membrane under heavy rainfall is obtained. Data and methods are provided for the design and construction of the membrane structure as a reference. Moreover, we propose methods to enhance calculation accuracy and streamline the computational process. Full article
Show Figures

Figure 1

18 pages, 7358 KiB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 236
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

30 pages, 22235 KiB  
Article
Structural Design and Mechanical Characteristics of a New Prefabricated Combined-Accident Oil Tank
by Xuan Lu, Cheng Zhao, Hui Xu, Jie Zhu, Yan Feng, Xinyang Shi and Pengyan Wang
Buildings 2025, 15(14), 2477; https://doi.org/10.3390/buildings15142477 - 15 Jul 2025
Viewed by 287
Abstract
To address the persistent challenges of substantial land occupation, intricate construction sequencing, and extended project timelines inherent to conventional substation accident oil sumps, this research introduces a novel integrally prefabricated circular cross-section oil containment structure. The study establishes a finite element representation of [...] Read more.
To address the persistent challenges of substantial land occupation, intricate construction sequencing, and extended project timelines inherent to conventional substation accident oil sumps, this research introduces a novel integrally prefabricated circular cross-section oil containment structure. The study establishes a finite element representation of this prefabricated system to systematically examine structural deformation mechanisms and failure patterns under combined hydrostatic and geostatic loading scenarios. Through parametric analysis of the oil tank structure, the influences of longitudinal reinforcement diameter, thickness–diameter ratio, height–diameter ratio, and concrete-strength grade on the mechanical characteristics of the structure are explored. Utilizing the response surface methodology for the parametric optimization in finite element analysis, a comprehensive optimization of critical geometric design variables is conducted. These results indicate that longitudinal reinforcement diameter and concrete-strength grade exert negligible influence on concrete stress except for stress increase under internal pressure, with higher concrete grades. The thickness-to-diameter ratio dominantly regulates structural responses: response surface optimization achieved 12% stress reduction and 14% displacement mitigation at 220 mm wall thickness under internal pressure, despite a 4% stress increase under external loading. Height-dependent effects require specific optimization, with 18% stress reduction beyond 3000 mm under external pressure but 20% stress increase at 3400 mm under top loads. Geometric refinements enable 34–50% displacement reduction in critical zones, providing validated references for prefabricated oil tanks. Full article
Show Figures

Figure 1

21 pages, 12122 KiB  
Article
RA3T: An Innovative Region-Aligned 3D Transformer for Self-Supervised Sim-to-Real Adaptation in Low-Altitude UAV Vision
by Xingrao Ma, Jie Xie, Di Shao, Aiting Yao and Chengzu Dong
Electronics 2025, 14(14), 2797; https://doi.org/10.3390/electronics14142797 - 11 Jul 2025
Viewed by 294
Abstract
Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-Real Gap, where models trained exclusively on simulation data degrade under real-world variations in lighting, texture, and weather. To address this problem, we propose RA3T (Region-Aligned 3D Transformer), a novel self-supervised framework [...] Read more.
Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-Real Gap, where models trained exclusively on simulation data degrade under real-world variations in lighting, texture, and weather. To address this problem, we propose RA3T (Region-Aligned 3D Transformer), a novel self-supervised framework that enables robust Sim-to-Real adaptation. Specifically, we first develop a dual-branch strategy for self-supervised feature learning, integrating Masked Autoencoders and contrastive learning. This approach extracts domain-invariant representations from unlabeled simulated imagery to enhance robustness against occlusion while reducing annotation dependency. Leveraging these learned features, we then introduce a 3D Transformer fusion module that unifies multi-view RGB and LiDAR point clouds through cross-modal attention. By explicitly modeling spatial layouts and height differentials, this component significantly improves recognition of small and occluded targets in complex low-altitude environments. To address persistent fine-grained domain shifts, we finally design region-level adversarial calibration that deploys local discriminators on partitioned feature maps. This mechanism directly aligns texture, shadow, and illumination discrepancies which challenge conventional global alignment methods. Extensive experiments on UAV benchmarks VisDrone and DOTA demonstrate the effectiveness of RA3T. The framework achieves +5.1% mAP on VisDrone and +7.4% mAP on DOTA over the 2D adversarial baseline, particularly on small objects and sparse occlusions, while maintaining real-time performance of 17 FPS at 1024 × 1024 resolution on an RTX 4080 GPU. Visual analysis confirms that the synergistic integration of 3D geometric encoding and local adversarial alignment effectively mitigates domain gaps caused by uneven illumination and perspective variations, establishing an efficient pathway for simulation-to-reality UAV perception. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

23 pages, 14352 KiB  
Article
Design Consideration of Waste Dumping on Inclined Surface with Limited Area Based on Probabilistic Stability Analysis of Numerical Simulations: A Case Study
by Bugunei Bat-Erdene, Koki Kawano, Takashi Sasaoka, Akihiro Hamanaka and Hideki Shimada
Mining 2025, 5(3), 44; https://doi.org/10.3390/mining5030044 - 10 Jul 2025
Viewed by 296
Abstract
A case study of designing a waste dump was conducted for the iron mine located in the Bulacan area, Philippines. Iron ore mines generate a relatively high amount of waste, and at the study mine, the constrained waste dumping area of 3 hectares [...] Read more.
A case study of designing a waste dump was conducted for the iron mine located in the Bulacan area, Philippines. Iron ore mines generate a relatively high amount of waste, and at the study mine, the constrained waste dumping area of 3 hectares necessitated a higher dump design, leading to potential stability issues. Additionally, the waste dump is projected to be situated on an inclined surface; subsequently, there is a concern about dump stability. Therefore, this study aims to find the optimum waste dump design by assessing its stability, and a geometrical configuration was conducted to optimize the bench parameters. Numerical modeling of the finite difference method (FDM) was used to estimate the distribution of the Factor of Safety by simulating several models. Models with steeper base inclinations (>12°) demonstrate progressive instability, as demonstrated by pre-assessment. The statistical analysis results show that the total model simulations with a 45-degree slope angle have a significantly high probability of failure of 38.2%. Whereas models with 35-degree and 40-degree slope angles have probabilities of failure calculated as 0.3% and 6.5%, respectively. Therefore, results suggest that the general slope angle should be kept at 40 degrees or less. Moreover, the results show that an average of 0.02 points drops in FoS for each 2.5 m of increment in dump height. Regarding geometrical setup, four benches with 7.5 m of berm would be preferable for the waste dump design of the case study. Overall, the effect of an inclined surface as a base was discussed, the effect of a gradual increase in dump height was outlined, and the significance of the dump slope angle on dump design was highlighted. Full article
Show Figures

Figure 1

Back to TopTop