Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = geomechanical response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4994 KiB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 486
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

31 pages, 10887 KiB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 292
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5770 KiB  
Article
Numerical Simulation-Based Study on the Arching Effect in Subsequent Backfill
by Xuebin Xie and Wei Wang
Appl. Sci. 2025, 15(10), 5649; https://doi.org/10.3390/app15105649 - 19 May 2025
Viewed by 349
Abstract
To explore the influence of the arching effect on stress distribution in jointed backfill structures, this study employs three-dimensional numerical modeling to systematically analyze the mechanical behavior of backfill materials. A finite-difference approach was adopted to establish a representative stope model incorporating interface [...] Read more.
To explore the influence of the arching effect on stress distribution in jointed backfill structures, this study employs three-dimensional numerical modeling to systematically analyze the mechanical behavior of backfill materials. A finite-difference approach was adopted to establish a representative stope model incorporating interface elements to simulate rock–backfill interactions. The methodology involved parametric studies examining key material properties (internal friction angle, cohesion, elastic modulus, Poisson’s ratio) and geometric configurations, with boundary conditions derived from typical mining scenarios. The results demonstrate that stress distribution follows nonlinear relationships with all investigated parameters. Increasing the internal friction angle and the cohesion reduce internal stresses, though the arch effect exhibits a distinct upper limit. Mechanical properties significantly influence stress transfer characteristics, with the elastic modulus governing stiffness response and the Poisson’s ratio affecting lateral stress development. Geometric parameters control the spatial extent of arching, with larger dimensions modifying the stress redistribution pattern. This research quantitatively establishes the operational limits of arching in backfill structures, providing crucial thresholds to prevent stability risks from overestimating its benefits. The findings offer practical guidelines for optimizing backfill design in deep mining and paste filling applications, contributing both technical solutions for mine safety and fundamental insights for geomechanical theory. The developed methodology serves as a robust framework for future studies on complex backfill behavior under various loading conditions. Full article
Show Figures

Figure 1

20 pages, 3398 KiB  
Article
Research on the Strength Prediction Method of Coal and Rock Mass Based on the Signal While Drilling in a Coal Mine
by Zheng Yang, Hongtao Liu and Ziwei Ding
Appl. Sci. 2025, 15(8), 4427; https://doi.org/10.3390/app15084427 - 17 Apr 2025
Viewed by 381
Abstract
To study the response relationship between drilling signal and rock mass geomechanical parameters, accurately and quickly perceive and predict the strength of coal and rock mass, guide the optimization of drilling control parameters and the design of the support scheme, and improve the [...] Read more.
To study the response relationship between drilling signal and rock mass geomechanical parameters, accurately and quickly perceive and predict the strength of coal and rock mass, guide the optimization of drilling control parameters and the design of the support scheme, and improve the efficiency of roadway excavation, the prediction of rock uniaxial compressive strength based on drilling signal was carried out. Based on the 112,206 return air chute in the Xiaobaodang No.1 Coal Mine as the engineering background, through the drilling data obtained from the roof anchor cable support, data processing, and feature selection, this paper establishes a coal and rock mass strength prediction model based on the AdaBoost integrated algorithm, optimizes the hyperparameter of the model, and analyzes and evaluates the prediction results. The results show that in the AdaBoost integration model, the R2 of SVM is the highest, 0.972, and the values of RMSE, MAE, MAPE, and other error indicators are the lowest. The prediction accuracies of the SVM model, tree model, and linear model are 98.8%, 85.4%, and 75.6%, respectively. The experimental results show that the AdaBoost integrated algorithm using a based learning machine has higher prediction accuracy. At the same time, compared with the current advanced model, it further verifies the effectiveness of the model in the coal mine. Full article
Show Figures

Figure 1

19 pages, 3879 KiB  
Article
Conceptual Analog for Evaluating Empirically and Explicitly the Evolving Shear Stress Along Active Rockslide Planes Using the Complete Stress–Displacement Surface Model
by Akram Deiminiat and Jonathan. D. Aubertin
Geosciences 2025, 15(4), 139; https://doi.org/10.3390/geosciences15040139 - 7 Apr 2025
Viewed by 441
Abstract
The stability analysis of rock slopes traditionally involves the evaluation of limit state conditions to determine the potential for rockslides and rockfalls. However, empirical evidence supported by experimental studies has highlighted the complex response of rock interfaces under differential loading. It is characterized [...] Read more.
The stability analysis of rock slopes traditionally involves the evaluation of limit state conditions to determine the potential for rockslides and rockfalls. However, empirical evidence supported by experimental studies has highlighted the complex response of rock interfaces under differential loading. It is characterized by distinct pre-peak and post-peak stress–deformation relationships, which represent the deformation profile of loaded rock interfaces and, thus, capture dynamic and evolving events. The present research introduces an interpretation framework to reconcile these contradicting paradigms by interpreting empirically and explicitly the full stress–displacement relationship along active shear surfaces of rockslide events. The Complete Stress–Displacement Surface (CSDS) model was incorporated into conventional analytical solutions for a rock slope planar failure to describe the evolving stress conditions during an active rockslide event. The Ruinon rockslides (Italy), monitored and studied extensively at the turn of the century, are revisited using the adapted CSDS model to describe the evolving stress–deformation conditions. Empirical and experimental calibrations of the model are implemented and compared using the CSDS model for the description of evolving shear stresses in large rockslide events based on topographical monitoring. This paper contributes a detailed framework for correlating in situ topographical monitoring with relevant geomechanical information to develop a representative model for the evolving stress conditions during a rockslide event. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

30 pages, 17752 KiB  
Article
From Alpine Catchment Classification to Debris Flow Monitoring
by Francesca Cantonati, Giulio Lissari, Federico Vagnon, Luca Paro, Andrea Magnani, Ivano Rossato, Giulio Donati Sarti, Christian Barresi and Davide Tiranti
GeoHazards 2025, 6(1), 15; https://doi.org/10.3390/geohazards6010015 - 15 Mar 2025
Viewed by 1128
Abstract
Debris flows are one of the most common and frequent natural hazards in mountainous environments. For this reason, there is a need to develop monitoring systems aimed at better understanding the initiation and propagation mechanisms of these phenomena to subsequently adopt the most [...] Read more.
Debris flows are one of the most common and frequent natural hazards in mountainous environments. For this reason, there is a need to develop monitoring systems aimed at better understanding the initiation and propagation mechanisms of these phenomena to subsequently adopt the most reliable mitigation measures to safeguard anthropic assets and human lives exposed to the impact of debris flows in alluvial fan areas. However, the design of a responsive monitoring system cannot overlook the need for a thorough understanding of the catchment in which debris flows occur. This knowledge is essential for making optimized decisions regarding the type and number of sensors to include in the monitoring system and ensuring their accurate and efficient placement. In this paper, it is described how the preliminary characterization of an Alpine catchment and the geo-hydrological processes that have historically affected it—such as the lithological and geomechanical classification of the catchment’s bedrock, the identification and description of sediment source areas, the characterization of debris flow occurrence and quantification of the triggering causes—contribute to the optimal design of a monitoring system. Additionally, the data recorded from the sensors during a debris flow event in summer 2024 validate and confirm the results obtained from previous research. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

18 pages, 6428 KiB  
Article
Mohr–Coulomb-Model-Based Study on Gas Hydrate-Bearing Sediments and Associated Variance-Based Global Sensitivity Analysis
by Chenglang Li, Jie Yuan, Jie Cui, Yi Shan and Shuman Yu
J. Mar. Sci. Eng. 2025, 13(3), 440; https://doi.org/10.3390/jmse13030440 - 26 Feb 2025
Viewed by 542
Abstract
Different gas hydrate types, such as methane hydrate and carbon dioxide hydrate, exhibit distinct geomechanical responses and hydrate morphologies in gas-hydrate-bearing sediments (GHBSs). However, most constitutive models for GHBSs focus on methane-hydrate-bearing sediments (MHBSs), while largely overlooking carbon-dioxide-hydrate-bearing sediments (CHBSs). This paper proposes [...] Read more.
Different gas hydrate types, such as methane hydrate and carbon dioxide hydrate, exhibit distinct geomechanical responses and hydrate morphologies in gas-hydrate-bearing sediments (GHBSs). However, most constitutive models for GHBSs focus on methane-hydrate-bearing sediments (MHBSs), while largely overlooking carbon-dioxide-hydrate-bearing sediments (CHBSs). This paper proposes a modified Mohr–Coulomb (M-C) model for GHBSs that incorporates the geomechanical effects of both MHBSs and CHBSs. The model integrates diverse hydrate morphologies—cementing, load-bearing, and pore-filling—into hydrate saturation and incorporates an effective confining pressure. Its validity was demonstrated through simulations of reported triaxial compression tests for both MHBSs and CHBSs. Moreover, a variance-based sensitivity analysis using Sobol’s method evaluated the effects of hydrate-related soil properties on the geomechanical behavior of GHBSs. The results indicate that the shear modulus influences the yield axial strain of the CHBSs and could be up to 1.15 times more than that of the MHBSs. Similarly, the bulk modulus showed an approximate 5% increase in its impact on the yield volumetric strain of the CHBSs compared with the MHBSs. These findings provide a unified framework for modeling GHBSs and have implications for CO2-injection-induced methane production from deep sediments, advancing the understanding and simulation of GHBS geomechanical behavior. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

24 pages, 21321 KiB  
Article
Uncovering the Fracturing Mechanism of Granite Under Compressive–Shear Loads for Sustainable Hot Dry Rock Geothermal Exploitation
by Xiaoran Wang, Tiancheng Shan, Dongjie Wang, Xiaofei Liu and Wendong Zhou
Sustainability 2024, 16(20), 9113; https://doi.org/10.3390/su16209113 - 21 Oct 2024
Viewed by 1244
Abstract
Shear-dominated hazards, such as induced earthquakes, pose an escalating threat to the sustainability and safety of the geothermal exploitation. Variations in fault orientations and compression–shear stress ratios exert a profound influence on the failure processes underlying these disasters. To better understand these effects [...] Read more.
Shear-dominated hazards, such as induced earthquakes, pose an escalating threat to the sustainability and safety of the geothermal exploitation. Variations in fault orientations and compression–shear stress ratios exert a profound influence on the failure processes underlying these disasters. To better understand these effects on the shear failure mechanisms of hot dry rocks, mode-II fracturing tests on granites were conducted at varying loading angles (specifically, 55°, 60°, 65°, and 70°). These tests were accompanied by a comprehensive analysis of the mechanical properties, energy dissipation behavior, acoustic emission (AE) responses, and digital image correlation (DIC)-extracted displacement fields. The tensile–shear properties of stress-induced microcracks were discerned via AE characteristic parameter analysis and DIC displacement decomposition, and the mode-II fracture energy release rate was quantitatively characterized. The results reveal that with increasing compression–shear loading angles, the mechanical properties of granites are weakened, and the elastic strain energy at peak stress gradually decreases, while the slip-related dissipated energy increases. Throughout the fracturing process, the AE count progressively climbs and reaches a peak near catastrophic failure, with an upsurge in low-frequency and high-amplitude AE events. Microcrack distribution concentrates aggregation along the shear plane, reflecting the emergent displacement discontinuities evident in DIC contours. Both the AE characteristic parameter analysis and DIC displacement decomposition demonstrate that shear-sliding constitutes the paramount mechanism, and the fraction of shear-oriented microcracks and the ratio of tangential versus normal displacement escalate with increases in shear stress. This analysis is supported by the heightened propensity for transgranular microcracking events observed through scanning electron microscopy. As the shear-to-compression stress increases, the energy concentration along the shear band intensifies, with the gradient of the fitting line between cumulative AE energy and slip displacement steepening, indicative of a heightened mode-II energy release rate. These results contribute to a deeper understanding of the mode-II fracture mechanism of rocks, thereby providing a foundational basis for early warnings of shear-dominant geomechanical disasters, and improving the safety and sustainability of subsurface rock engineering. Full article
(This article belongs to the Collection Mine Hazards Identification, Prevention and Control)
Show Figures

Figure 1

20 pages, 3056 KiB  
Article
Adam Bayesian Gaussian Process Regression with Combined Kernel-Function-Based Monte Carlo Reliability Analysis of Non-Circular Deep Soft Rock Tunnel
by Jiancong Xu, Ziteng Yan and Yongshuai Wang
Appl. Sci. 2024, 14(17), 7886; https://doi.org/10.3390/app14177886 - 5 Sep 2024
Viewed by 1430
Abstract
Evaluating the reliability of deep soft rock tunnels is a very important issue to be solved. In this study, we propose a Monte Carlo simulation reliability analysis method (MCS–RAM) integrating the adaptive momentum stochastic optimization algorithm (Adam), Bayesian inference theory and Gaussian process [...] Read more.
Evaluating the reliability of deep soft rock tunnels is a very important issue to be solved. In this study, we propose a Monte Carlo simulation reliability analysis method (MCS–RAM) integrating the adaptive momentum stochastic optimization algorithm (Adam), Bayesian inference theory and Gaussian process regression (GPR) with combined kernel function, and we developed it in Python. The proposed method used the Latin hypercube sampling method to generate a dataset sample of geo-mechanical parameters, constructed combined kernel functions of GPR and used GPR to establish a surrogate model of the nonlinear mapping relationship between displacements and mechanical parameters of the surrounding rock. Adam was used to optimize the hyperparameters of the surrogate model. The Bayesian inference algorithm was used to obtain the probability distribution of geotechnical parameters and the optimal surrounding rock mechanical parameters. Finally, the failure probability was computed using MCS–RAM based on the optimized surrogate model. Through the application of an engineering case, the results indicate that the proposed method has fewer prediction errors and stronger prediction ability than Kriging or XGBoost, and it can significantly save computational time compared with the traditional polynomial response surface method. The proposed method can be used in the reliability analysis of all shapes of tunnels. Full article
Show Figures

Figure 1

12 pages, 7134 KiB  
Article
Methodology for the Identification of Moisture Content in Tailings Dam Walls Based on Electrical Resistivity Tomography Technique
by Leopoldo Córdova, Aaron Moya, Diana Comte and Igor Bravo
Minerals 2024, 14(8), 760; https://doi.org/10.3390/min14080760 - 27 Jul 2024
Viewed by 1402
Abstract
The design of tailings dams has improved significantly in recent decades due to experience and advances in applied research. However, there are still several environmental and geomechanical uncertainties associated with the response of these structures. Failures on the wall of tailings dams are [...] Read more.
The design of tailings dams has improved significantly in recent decades due to experience and advances in applied research. However, there are still several environmental and geomechanical uncertainties associated with the response of these structures. Failures on the wall of tailings dams are well documented, where the most common causes are related to the action of water overtopping, slope instability, seepage, and foundation failure. Measuring the humidity or the saturation level at tailings dam walls has become a must do in the recent years. Resistivity monitoring using electrical resistivity tomography (ERT) techniques has proven to be one of the tools that provide good subsurface characterization for internal erosion detection and seepage assessment to evaluate potential environmental risks and the physical stability of tailings dams. Also, the integrated techniques of geotechnical, geophysical, and geochemical data have been used to correlate, coordinate, and improve the characterization. In this research, a procedure to guide us to a new methodology of acquiring and monitoring humidity content is presented, in which 2D electrical resistivity tomography (ERT) profiles are linked to the degree of soil saturation, using moisture sensors installed in a nearby well. The ERT profiles provide a 2D resistivity profile, and the moisture sensors can measure resistivity and volumetric water content (VWC) at a given installation depth. This second measure (VWC), with a defined total porosity, can be combined with Archie’s empirical law to obtain the degree of saturation, allowing the possibility to create remote monitoring suitable for mining operations without excessive laboratory testing. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 7363 KiB  
Article
A Study on Three-Dimensional Multi-Cluster Fracturing Simulation under the Influence of Natural Fractures
by Yuegang Li, Mingyang Wu, Haoyong Huang, Yintong Guo, Yujie Wang, Junchuan Gui and Jun Lu
Appl. Sci. 2024, 14(14), 6342; https://doi.org/10.3390/app14146342 - 20 Jul 2024
Cited by 1 | Viewed by 1313
Abstract
Multi-cluster fracturing has emerged as an effective technique for enhancing the productivity of deep shale reservoirs. The presence of natural bedding planes in these reservoirs plays a significant role in shaping the evolution and development of multi-cluster hydraulic fractures. Therefore, conducting detailed research [...] Read more.
Multi-cluster fracturing has emerged as an effective technique for enhancing the productivity of deep shale reservoirs. The presence of natural bedding planes in these reservoirs plays a significant role in shaping the evolution and development of multi-cluster hydraulic fractures. Therefore, conducting detailed research on the propagation mechanisms of multi-cluster hydraulic fractures in deep shale formations is crucial for optimizing reservoir transformation efficiency and achieving effective development outcomes. This study employs the finite discrete element method (FDEM) to construct a comprehensive three-dimensional simulation model of multi-cluster fracturing, considering the number of natural fractures present and the geo-mechanical characteristics of a target block. The propagation of hydraulic fractures is investigated in response to the number of natural fractures and the design of the multi-cluster fracturing operations. The simulation results show that, consistent with previous research on fracturing in shale oil and gas reservoirs, an increase in the number of fracturing clusters and natural fractures leads to a larger total area covered by artificial fractures and the development of more intricate fracture patterns. Furthermore, the present study highlights that an escalation in the number of fracturing clusters results in a notable reduction in the balanced expansion of the double wings of the main fracture within the reservoir. Instead, the effects of natural fractures, geo-stress, and other factors contribute to enhanced phenomena such as single-wing expansion, bifurcation, and the bending of different main fractures, facilitating the creation of complex artificial fracture networks. It is important to note that the presence of natural fractures can also significantly alter the failure mode of artificial fractures, potentially resulting in the formation of small opening shear fractures that necessitate careful evaluation of the overall renovation impact. Moreover, this study demonstrates that even in comparison to single-cluster fracturing, the presence of 40 natural main fractures in the region can lead to the development of multiple branching main fractures. This finding underscores the importance of considering natural fractures in deep reservoir fracturing operations. In conclusion, the findings of this study offer valuable insights for optimizing deep reservoir fracturing processes in scenarios where natural fractures play a vital role in shaping fracture development. Full article
(This article belongs to the Special Issue Effects of Temperature on Geotechnical Engineering)
Show Figures

Figure 1

26 pages, 22846 KiB  
Article
Geomechanical Response Characteristics of Different Sedimentary Hydrodynamic Cycles—Exampled by Xujiahe Formation of Upper Triassic, Western Sichuan Basin
by Qiqiang Ren, Lifei Li, Laixing Cai, Jianwei Feng, Mengping Li and Xingjian Wang
Sustainability 2024, 16(10), 4304; https://doi.org/10.3390/su16104304 - 20 May 2024
Cited by 1 | Viewed by 1592
Abstract
This study delves into the geomechanical responses of different sedimentary hydrodynamic cycles in deep tight sandstone formations. Employing core observation and thin section analysis, we quantitatively identified and characterized bedding planes, sedimentary microfacies, and tectonic fractures. Then, the intricate relationships between various architectural [...] Read more.
This study delves into the geomechanical responses of different sedimentary hydrodynamic cycles in deep tight sandstone formations. Employing core observation and thin section analysis, we quantitatively identified and characterized bedding planes, sedimentary microfacies, and tectonic fractures. Then, the intricate relationships between various architectural interfaces and geomechanical parameters were elucidated. Subsequently, utilizing finite element numerical simulation software, in situ stress and fracture parameters were derived. By identifying a fracture facies zone correlated with the sedimentary hydrodynamic cycle and production data, our findings unveil several key insights: (1) Geomechanical parameters (Young’s modulus, Poisson’s ratio, brittleness index) exhibited noteworthy variations within the T3x2−5 sand group, indicative of weak elasticity and robust plasticity. (2) The effective distance, influenced by diverse reservoir architecture interfaces, displayed variability, with each transition between peak-valley-peak or valley-peak-valley pinpointed as a distinct sedimentary hydrodynamic cycle. (3) In environments characterized by strong sedimentary hydrodynamics (between two level 3 architecture interfaces), fractures with larger strike angles and lower dip angles were observed to be more prevalent. (4) Three significant fracture faces—level I, level II, and level III—were discerned within the study area. Notably, reservoirs associated with level III exhibited characteristics suggestive of medium porosity and permeability, indicative of a gas layer. By thoroughly understanding the geomechanical response characteristics of formations such as the Xujiahe Formation, it is possible to guide the exploration and development of energy resources such as oil and natural gas. This helps to improve the efficiency and safety of resource extraction, promoting the sustainable utilization of energy. Full article
(This article belongs to the Special Issue Basin Tectonic Analysis and Geoenergy Exploration)
Show Figures

Figure 1

30 pages, 12068 KiB  
Article
Unveiling Valuable Geomechanical Monitoring Insights: Exploring Ground Deformation in Geological Carbon Storage
by Gabriel Serrão Seabra, Marcos Vitor Barbosa Machado, Mojdeh Delshad, Kamy Sepehrnoori, Denis Voskov and Femke C. Vossepoel
Appl. Sci. 2024, 14(10), 4069; https://doi.org/10.3390/app14104069 - 10 May 2024
Cited by 2 | Viewed by 1680
Abstract
Geological Carbon Storage (GCS) involves storing CO2 emissions in geological formations, where safe containment is challenged by structural and stratigraphic trapping and caprock integrity. This study investigates flow and geomechanical responses to CO2 injection based on a Brazilian offshore reservoir model, [...] Read more.
Geological Carbon Storage (GCS) involves storing CO2 emissions in geological formations, where safe containment is challenged by structural and stratigraphic trapping and caprock integrity. This study investigates flow and geomechanical responses to CO2 injection based on a Brazilian offshore reservoir model, highlighting the critical interplay between rock properties, injection rates, pressure changes, and ground displacements. The findings indicate centimeter-scale ground uplift and question the conventional selection of the wellhead as a monitoring site, as it might not be optimal due to the reservoir’s complexity and the nature of the injection process. This study addresses the importance of comprehensive sensitivity analyses on geomechanical properties and injection rates for advancing GCS by improving monitoring strategies and risk management. Furthermore, this study explores the geomechanical effects of modeling flow in the caprock, highlighting the role of pressure dissipation within the caprock. These insights are vital for advancing the design of monitoring strategies, enhancing the predictive accuracy of models, and effectively managing geomechanical risks, thus ensuring the success of GCS initiatives. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 7550 KiB  
Article
Principles of Sustainable Development of Georesources as a Way to Reduce Urban Vulnerability
by Cheynesh Kongar-Syuryun, Roman Klyuev, Vladimir Golik, Armine Oganesyan, Danila Solovykh, Marat Khayrutdinov and Danila Adigamov
Urban Sci. 2024, 8(2), 44; https://doi.org/10.3390/urbansci8020044 - 6 May 2024
Cited by 30 | Viewed by 2557
Abstract
Humanity development is associated with higher spiritual and social behaviour and financial shape, which is an undeniable factor of urbanisation. Previously, in areas of georesource concentration, cities and settlements were formed with people exploiting these georesources. However, imperfect technologies lead to rapid depletion [...] Read more.
Humanity development is associated with higher spiritual and social behaviour and financial shape, which is an undeniable factor of urbanisation. Previously, in areas of georesource concentration, cities and settlements were formed with people exploiting these georesources. However, imperfect technologies lead to rapid depletion of reserves and industrial and environmental disasters, which affect the vulnerability of cities and the people living in them. The analysis of applied technologies has demonstrated that potash extraction is accompanied by a low recovery ratio, high mine accidents, and environmental problems. The principles of sustainable development of geo-resources for the creation of mining technologies that ensure industrial safety, environmental sustainability, and extending the life of the mining enterprise to save working places will reduce the vulnerability of cities. This article proposes the use of the room-and-pillar mining method with the replacement of natural supports with artificial ones. Three-stage stoping with backfill is considered. Numerical modelling has shown stabilisation of mining and geomechanical processes, which confirms the prospectivity of the method with backfill. For these purposes, this research presents a new backfill composition based on local industrial waste. Schemes of backfill preparation and feeding into the mined-out space are proposed. The proposed technology, based on the principles of sustainable development of georesources, is the foundation for an economically profitable, environmentally friendly, and socially responsible mining enterprise. The implementation of the principles of sustainable development of georesources will allow for the preservation of cities and reduce their vulnerability. Full article
Show Figures

Figure 1

23 pages, 7389 KiB  
Article
Analysis of Factors Influencing the Stability of Submarine Hydrate-Bearing Slopes during Depressurization Production
by Ting Sun, Zhiliang Wen, Jin Yang, Kaidie Yang, Zengcheng Han and Jiayuan He
Processes 2024, 12(4), 679; https://doi.org/10.3390/pr12040679 - 28 Mar 2024
Cited by 3 | Viewed by 1585
Abstract
Natural gas hydrate reservoirs, with shallow burial, poor cementation, and low strength, are prone to submarine landslides triggered by hydrate decomposition during extraction. Prior studies have inadequately considered factors such as the dynamic decomposition of hydrates during depressurization, and its impacts on the [...] Read more.
Natural gas hydrate reservoirs, with shallow burial, poor cementation, and low strength, are prone to submarine landslides triggered by hydrate decomposition during extraction. Prior studies have inadequately considered factors such as the dynamic decomposition of hydrates during depressurization, and its impacts on the reservoir’s geomechanical properties. In this paper, a coupled thermal–hydraulic–mechanical–chemical mathematical model of hydrate decomposition is proposed, and the dynamic geomechanical response and the effect of hydrate decomposition on seafloor settlement and slope destabilization during the process of depressurization mining are analyzed by combining the strength discount method with the example of a hydrate-bearing seafloor slope in the Shenhu area. Furthermore, the study employs an orthogonal experimental design along with range and variance analysis to gauge the impact of critical factors (degree of hydrate decomposition, seawater depth, hydrate reservoir burial depth, hydrate reservoir thickness, and slope angle) on slope stability. The findings suggest that hydrate decomposition is non-uniform and is influenced by stratigraphic temperature gradients and gravity. In the region where hydrate decomposition occurs, the decrease of pore pressure leads to the increase of effective stress. Additionally, the decomposition of hydrates decreases the shear modulus of sediments, leading to deformation and reduced permeability in the affected area. Over a three-year period of depressurization mining, the significantly reduced safety factor increases the risk of landslides. Various factors play a role in the control of submarine slope stability, with slope inclination being the primary factor, followed by the degree of hydrate decomposition, reservoir thickness, burial depth, and seawater depth. Among these factors, hydrate burial depth and seawater depth have a positive correlation with submarine slope stability, while increases in other factors generally decrease stability. These research findings have important implications for the safe exploitation of slopes that contain hydrates. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop