Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,412)

Search Parameters:
Keywords = geographical and climatic factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 (registering DOI) - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

21 pages, 3086 KiB  
Article
Integrative Population Genomics Reveals Niche Differentiation and Gene Flow in Chinese Sclerophyllous Oaks (Quercus Sect. Ilex)
by Miao-Miao Ju, Ming Yue and Gui-Fang Zhao
Plants 2025, 14(15), 2403; https://doi.org/10.3390/plants14152403 - 3 Aug 2025
Viewed by 139
Abstract
Elucidating the coexistence mechanisms of rapidly diverging species has long been a challenge in evolutionary biology. Genome-wide polymorphic loci are expected to provide insights into the speciation processes of these closely related species. This study focused on seven Chinese sclerophyllous oaks, represented by [...] Read more.
Elucidating the coexistence mechanisms of rapidly diverging species has long been a challenge in evolutionary biology. Genome-wide polymorphic loci are expected to provide insights into the speciation processes of these closely related species. This study focused on seven Chinese sclerophyllous oaks, represented by Quercus spinosa, Quercus aquifolioides, Quercus rehderiana, Quercus guyavifolia, Quercus monimotricha, Quercus semecarpifolia, and Quercus senescens, employing 27,592 single-nucleotide polymorphisms to examine their phylogenetic relationships at the genomic level. Combined with genetic structure analysis, phylogenetic trees revealed that the genetic clustering of individuals was influenced by both geographic distance and ancestral genetic components. Furthermore, this study confirmed the existence of reticulate evolutionary relationships among the species. Frequent gene flow and introgression within the seven species were primarily responsible for the ambiguous interspecies boundaries, with hybridization serving as a major driver of reticulate evolution. Additionally, the seven species exhibited distinct differences in niche occupancy. By reconstructing the climatic adaptability of ancestral taxonomic units, we found that the climatic tolerance of each species displayed differential responses to 19 climatic factors. Consequently, ecological niche differentiation and variations in habitat adaptation contributed to the preservation of species boundaries. This study provides a comprehensive understanding of the speciation processes in rapidly diverging genera and underscores the significance of both genetic and ecological factors in the formation and maintenance of species boundaries. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 3060 KiB  
Article
Unveiling the Impact of Climatic Factors on the Distribution Patterns of Caragana spp. in China’s Three Northern Regions
by Weiwei Zhao, Yujia Liu, Yanxia Li, Chunjing Zou and Hideyuki Shimizu
Plants 2025, 14(15), 2368; https://doi.org/10.3390/plants14152368 - 1 Aug 2025
Viewed by 143
Abstract
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, [...] Read more.
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, and Northwest China), Caragana spp. exhibit distribution patterns whose regulatory mechanisms by environmental factors remain unclear, with a long-term lack of climatic explanations influencing their spatial distribution. This study integrated 2373 occurrence records of 44 Caragana species in China’s Three Northern Regions with four major environmental variable categories. Using the Biomod2 ensemble model, current and future climate scenario-based suitable habitats for Caragana spp. were predicted. This study innovatively combined quantitative analyses with Kira’s thermal indexes (warmth index, coldness index) and Wenduo Xu’s humidity index (HI) to elucidate species-specific relationships between distribution patterns and hydrothermal climatic constraints. The main results showed that (1) compared to other environmental factors, climate is the key factor affecting the distribution of Caragana spp. (2) The current distribution centroid of Caragana spp. is located in Alxa Left Banner, Inner Mongolia. In future scenarios, the majority of centroids will shift toward lower latitudes. (3) The suitable habitats for Caragana spp. will expand overall under future climate scenarios. High-stress scenarios exhibit greater spatial changes than low-stress scenarios. (4) Hydrothermal requirements varied significantly among species in China’s Three Northern Regions, and 44 Caragana species can be classified into five distinct types based on warmth index (WI) and humidity index (HI). The research findings will provide critical practical guidance for ecological initiatives such as the Three-North Shelterbelt Program and the restoration and management of degraded ecosystems in arid and semi-arid regions under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 147
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Viewed by 310
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

25 pages, 1668 KiB  
Article
The Impact of Climate Change on the Sustainability of PGI Legume Cultivation: A Case Study from Spain
by Betty Carlini, Javier Velázquez, Derya Gülçin, Víctor Rincón, Cristina Lucini and Kerim Çiçek
Agriculture 2025, 15(15), 1628; https://doi.org/10.3390/agriculture15151628 - 27 Jul 2025
Viewed by 200
Abstract
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing [...] Read more.
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing generalized linear mixed models (GLMMs). Specifically, it aimed to (1) investigate the effects of significant climatic stressors, including higher nighttime temperatures and extended drought periods, on crop viability, (2) analyze future scenarios based on Representative Concentration Pathways (RCP 4.5 and RCP 8.5), and (3) recommend adaptive measures to mitigate threats. Six spatial GLMMs were developed, incorporating variables such as extreme temperatures, precipitation, and the drought duration. Under present-day conditions (1971–2000), all the models exhibited strong predictive performances (AUC: 0.840–0.887), with warm nights (tasminNa20) consistently showing a negative effect on suitability (coefficients: −0.58 to −1.16). Suitability projections under future climate scenarios revealed considerable variation among the developed models. Under RCP 4.5, Far Future, Model 1 projected a 7.9% increase in the mean suitability, while under RCP 8.5, Far Future, the same model showed a 78% decline. Models using extreme cold, drought, or precipitation as climatic stressors (e.g., Models 2–4) revealed the most significant suitability losses under RCP 8.5, with the reductions exceeding 90%. In contrast, comprising variables less affected by severe fluctuations, Model 6 showed relative stability in most of the developed scenarios. The model also produced the highest mean suitability (0.130 ± 0.207) in an extreme projective scenario. The results highlight that high night temperatures and prolonged drought periods are the most limiting factors for FA cultivation. ecological niche models (ENMs) performed well, with a mean AUC value of 0.991 (SD = 0.006) and a mean TSS of 0.963 (SD = 0.024). According to the modeling results, among the variables affecting the current distribution of Protected Geographical Indication-registered AF, prspellb1 (max consecutive dry days) had the highest effect of 28.3%. Applying advanced statistical analyses, this study provides important insights for policymakers and farmers, contributing to the long-term sustainability of PGI agroecosystems in a warming world. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

19 pages, 3444 KiB  
Article
Snow Depth Retrieval Using Sentinel-1 Radar Data: A Comparative Analysis of Random Forest and Support Vector Machine Models with Simulated Annealing Optimization
by Yurong Cui, Sixuan Chen, Guiquan Mo, Dabin Ji, Lansong Lv and Juan Fu
Remote Sens. 2025, 17(15), 2584; https://doi.org/10.3390/rs17152584 - 24 Jul 2025
Viewed by 313
Abstract
Snow plays a crucial role in global climate regulation, hydrological processes, and environmental change, making the accurate acquisition of snow depth data highly significant. In this study, we used Sentinel-1 radar data and employed a simulated annealing algorithm to select the optimal influencing [...] Read more.
Snow plays a crucial role in global climate regulation, hydrological processes, and environmental change, making the accurate acquisition of snow depth data highly significant. In this study, we used Sentinel-1 radar data and employed a simulated annealing algorithm to select the optimal influencing factors from radar backscatter characteristics and spatiotemporal geographical parameters within the study area. Snow depth retrieval was subsequently performed using both random forest (RF) and Support Vector Machine (SVM) models. The retrieval results were validated against in situ measurements and compared with the long-term daily snow depth dataset of China for the period 2017–2019. The results indicate that the RF model achieves better agreement with the measured data than existing snow depth products. Specifically, in the Xinjiang region, the RF model demonstrates superior performance, with an R2 of 0.92, a root mean square error (RMSE) of 2.61 cm, and a mean absolute error (MAE) of 1.42 cm. In contrast, the SVM regression model shows weaker agreement with the observations, with an R2 lower than that of the existing snow depth product (0.51) in Xinjiang, and it performs poorly in other regions as well. Overall, the SVM model exhibits deficiencies in both predictive accuracy and spatial stability. This study provides a valuable reference for snow depth retrieval research based on active microwave remote sensing techniques. Full article
(This article belongs to the Special Issue Snow Water Equivalent Retrieval Using Remote Sensing)
Show Figures

Graphical abstract

20 pages, 7143 KiB  
Article
Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
by Lang Huang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang and Zhi Li
Plants 2025, 14(15), 2268; https://doi.org/10.3390/plants14152268 - 23 Jul 2025
Viewed by 273
Abstract
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current [...] Read more.
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current distribution and the key environmental factors influencing its habitat suitability remains limited. In this study, we employed the MaxEnt model, integrated with geographic information systems (ArcGIS), to predict the potential distribution of Syndiclis under current and future climate scenarios, identify dominant bioclimatic drivers, and assess temporal and spatial shifts in habitat patterns. We also analyzed spatial displacement of habitat centroids to explore potential migration pathways. The model demonstrated excellent performance (AUC = 0.988), with current suitable habitats primarily located in Hainan, Taiwan, Southeastern Yunnan, and along the Yunnan–Guangxi border. Temperature seasonality (bio7) emerged as the most important predictor (67.00%), followed by precipitation of the driest quarter (bio17, 14.90%), while soil factors played a relatively minor role. Under future climate projections, Hainan and Taiwan are expected to serve as stable climatic refugia, whereas the overall suitable habitat area is projected to decline significantly. Combined with topographic constraints, population decline, and limited dispersal ability, these changes elevate the risk of extinction for Syndiclis in the wild. Landscape pattern analysis revealed increased habitat fragmentation under warming conditions, with only 4.08% of suitable areas currently under effective protection. We recommend prioritizing conservation efforts in regions with habitat contraction (e.g., Guangxi and Yunnan) and stable refugia (e.g., Hainan and Taiwan). Conservation strategies should integrate targeted in situ and ex situ actions, guided by dominant environmental variables and projected migration routes, to ensure the long-term persistence of Syndiclis populations and support evidence-based conservation planning. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 464
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 246
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 368
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

16 pages, 3297 KiB  
Article
Predicting the Potential Geographical Distribution of Scolytus scolytus in China Using a Biomod2-Based Ensemble Model
by Wei Yu, Dongrui Sun, Jiayi Ma, Xinyuan Gao, Yu Fang, Huidong Pan, Huiru Wang and Juan Shi
Insects 2025, 16(7), 742; https://doi.org/10.3390/insects16070742 - 21 Jul 2025
Viewed by 411
Abstract
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, [...] Read more.
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, an ensemble model was developed using the Biomod2 platform to predict its potential geographical distribution in China. The selection of climate variables was critical for accurate prediction. Eight bioclimatic factors with high importance were selected from 19 candidate variables. Among these, the three most important factors are the minimum temperature of the coldest month (bio6), precipitation seasonality (bio15), and precipitation in the driest quarter (bio17). Under current climate conditions, suitable habitats for S. scolytus are mainly located in the temperate regions between 30° and 60° N latitude. These include parts of Europe, East Asia, eastern and northwestern North America, and southern and northeastern South America. In China, the low-suitability area was estimated at 37,883.39 km2, and the medium-suitability area at 251.14 km2. No high-suitability regions were identified. However, low-suitability zones were widespread across multiple provinces. Under future climate scenarios, low-suitability areas are still projected across China. Medium-suitability areas are expected to increase under SSP370 and SSP585, particularly along the eastern coastal regions, peaking between 2041 and 2060. High-suitability zones may also emerge under these two scenarios, again concentrated in coastal areas. These findings provide a theoretical basis for entry quarantine measures and early warning systems aimed at controlling the spread of S. scolytus in China. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 1593 KiB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 408
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

22 pages, 24747 KiB  
Article
A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China
by Luming Shen, Yangfan Xie, Yangjun Deng, Yujie Feng, Qing Zhou and Hongxia Xie
Appl. Sci. 2025, 15(14), 8060; https://doi.org/10.3390/app15148060 - 20 Jul 2025
Viewed by 344
Abstract
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty [...] Read more.
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty of this study lies in proposing a geographic positional encoding mechanism that embeds geographic location information into the feature representation of a Transformer model. The encoder structure is further modified to enhance spatial awareness, resulting in the development of the Geo-Positional Transformer (GPTransformer). Furthermore, this model is integrated with a 1D-CNN to form a dual-branch neural network called the Geo-Positional Transformer-CNN (GPTransCNN). This study collected 1490 topsoil samples (0–20 cm) from cultivated land in Longshan County to develop a predictive model for mapping the spatial distribution of SOM across the entire cultivated area. Different models were comprehensively evaluated through ten-fold cross-validation, ablation experiments, and uncertainty analysis. The results show that GPTransCNN has the best performance, with an R2 improvement of approximately 43% over the Transformer, 19% over the GPTransformer, and 15% over the 1D-CNN. This study demonstrates that by incorporating geographic positional information, GPTransCNN effectively combines the global modeling capabilities of the GPTransformer with the local feature extraction strengths of the 1D-CNN, which can improve the accuracy of SOM mapping in mountainous areas. This approach provides data support for sustainable soil management and decision-making in response to global climate change. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

Back to TopTop