Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (613)

Search Parameters:
Keywords = genomic distance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1990 KiB  
Article
Fecal and Environmental Shedding of Influenza A Virus in Brazilian Swine: Genomic Evidence of Recent Human-to-Swine Transmission
by Nágila Rocha Aguilar, Beatriz Senra Alvares da Silva Santos, Bruno Zinato Carraro, Brenda Monique Magalhães Rocha, Jardelina de Souza Todao Bernardino, Ana Luiza Soares Fraiha, Alex Ranieri Jeronimo Lima, Gabriela Ribeiro, Alessandra Silva Dias, Renata Rezende Carvalho, Bruna Ferreira Sampaio Ribeiro, Marta Giovanetti, Luiz Carlos Júnior Alcântara, Sandra Coccuzzo Sampaio, Maria Carolina Quartim Barbosa Elias Sabbaga, Rafael Romero Nicolino, Zélia Inês Portela Lobato, Maria Isabel Maldonado Coelho Guedes, Cesar Rossas Mota Filho, Vincent Louis Viala, Bruna Coelho Lopes and Erica Azevedo Costaadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 753; https://doi.org/10.3390/pathogens14080753 (registering DOI) - 31 Jul 2025
Abstract
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples [...] Read more.
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples from naturally infected pigs in a commercial farm in Minas Gerais, Brazil. IAV RNA was detected in 25% of samples, including 42% from asymptomatic animals, with nasal swabs showing higher detection rates (30%) than rectal swabs (20%), though rectal Ct values were consistently higher, indicative of lower viral loads. We successfully isolated viable viruses from feces and effluent samples. Whole-genome sequencing revealed co-circulation of enzootic pH1N1 clade #2 (HA) and pN1 clade #4 (NA), alongside human-origin H3N2 sequences clustering within clade 3C.2a1b.2a.2a.1, and N2 segments related to pre-3C human lineages from 2001 to 2002. Phylogenetic and p-distance analyses support both recent reverse zoonosis and historical transmission events. Detection of complete HA/NA sequences from rectal swabs and treated effluent further emphasizes the surveillance value of non-respiratory matrices. The integration of respiratory and fecal/environmental sampling appears important to achieve more comprehensive IAV monitoring in swine herds and may have significant implications for One Health strategies in Brazil and beyond. Full article
Show Figures

Graphical abstract

16 pages, 2138 KiB  
Article
Precise Identification of Higher-Order Repeats (HORs) in T2T-CHM13 Assembly of Human Chromosome 21—Novel 52mer HOR and Failures of Hg38 Assembly
by Matko Glunčić, Ines Vlahović, Marija Rosandić and Vladimir Paar
Genes 2025, 16(8), 885; https://doi.org/10.3390/genes16080885 - 27 Jul 2025
Viewed by 227
Abstract
Background: Centromeric alpha satellite DNA is organized into higher-order repeats (HORs), whose precise structure is often difficult to resolve in standard genome assemblies. The recent telomere-to-telomere (T2T) assembly of the human genome enables complete analysis of centromeric regions, including the full structure of [...] Read more.
Background: Centromeric alpha satellite DNA is organized into higher-order repeats (HORs), whose precise structure is often difficult to resolve in standard genome assemblies. The recent telomere-to-telomere (T2T) assembly of the human genome enables complete analysis of centromeric regions, including the full structure of HOR arrays. Methods: We applied the novel high-precision GRMhor algorithm to the complete T2T-CHM13 assembly of human chromosome 21. GRMhor integrates global repeat map (GRM) and monomer distance (MD) diagrams to accurately identify, classify, and visualize HORs and their subfragments. Results: The analysis revealed a novel Cascading 11mer HOR array, in which each canonical HOR copy comprises 11 monomers belonging to 10 different monomer types. Subfragments with periodicities of 4, 7, 9, and 20 were identified within the array. A second, complex 23/25mer HOR array of mixed Willard’s/Cascading type was also detected. In contrast to the hg38 assembly, where a dominant 8mer and 33mer HOR were previously annotated, these structures were absent in the T2T-CHM13 assembly, highlighting the limitations of hg38. Notably, we discovered a novel 52mer HOR—the longest alpha satellite HOR unit reported in the human genome to date. Several subfragment repeats correspond to alphoid subfamilies previously identified using restriction enzyme digestion, but are here resolved with higher structural precision. Conclusions: Our findings demonstrate the power of GRMhor in resolving complex and previously undetected alpha satellite architectures, including the longest canonical HOR unit identified in the human genome. The precise delineation of superHORs, Cascading structures, and HOR subfragments provides unprecedented insight into the fine-scale organization of the centromeric region of chromosome 21. These results highlight both the inadequacy of earlier assemblies, such as hg38, and the critical importance of complete telomere-to-telomere assemblies for accurately characterizing centromeric DNA. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

26 pages, 3811 KiB  
Article
Development and Validation of Multi-Locus GWAS-Based KASP Markers for Maize Ustilago maydis Resistance
by Tao Shen, Huawei Gao, Chao Wang, Yunxiao Zheng, Weibin Song, Peng Hou, Liying Zhu, Yongfeng Zhao, Wei Song and Jinjie Guo
Plants 2025, 14(15), 2315; https://doi.org/10.3390/plants14152315 - 26 Jul 2025
Viewed by 298
Abstract
Corn smut, caused by Ustilago maydis, significantly threatens maize production. This study evaluated 199 maize inbred lines at the seedling stage under greenhouse conditions for resistance to U. maydis, identifying 39 highly resistant lines. A genome-wide association study (GWAS) using the [...] Read more.
Corn smut, caused by Ustilago maydis, significantly threatens maize production. This study evaluated 199 maize inbred lines at the seedling stage under greenhouse conditions for resistance to U. maydis, identifying 39 highly resistant lines. A genome-wide association study (GWAS) using the mrMLM model detected 19 significant single-nucleotide polymorphism (SNP) loci. Based on a linkage disequilibrium (LD) decay distance of 260 kb, 226 candidate genes were identified. Utilizing the significant loci chr1_244281660 and chr5_220156746, two kompetitive allele-specific PCR (KASP) markers were successfully developed. A PCR-based sequence-specific oligonucleotide probe hybridization technique applied to the 199 experimental lines and 60 validation lines confirmed polymorphism for both markers, with selection efficiencies of 48.12% and 43.33%, respectively. The tested materials were derived from foundational inbred lines of domestic and foreign origin. Analysis of 39 highly resistant lines showed that the advantageous alleles carrying thymine/cytosine (T/C) predominated at frequencies of 94.87% and 53.84%, respectively. The genotype TTCC conferred high resistance, while CCTT was highly susceptible. The resistance exhibited high heritability and significant gene-by-environment interaction. This work systematically dissects the genetic basis of common smut resistance in maize, identifies favorable alleles, and provides a novel KASP marker-based strategy for developing disease-resistant germplasm. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 2141 KiB  
Article
Mitochondrial Genomes of Distant Fish Hybrids Reveal Maternal Inheritance Patterns and Phylogenetic Relationships
by Shixi Chen, Fardous Mohammad Safiul Azam, Li Ao, Chanchun Lin, Jiahao Wang, Rui Li and Yuanchao Zou
Diversity 2025, 17(8), 510; https://doi.org/10.3390/d17080510 - 24 Jul 2025
Viewed by 252
Abstract
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse [...] Read more.
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse taxa, including 48 freshwater and 26 marine species, with a focus on Cyprinidae (n = 35) and Epinephelus (n = 14), representing the most frequently hybridized groups in freshwater and marine systems, respectively. Mitogenome lengths were highly conserved (15,973 to 17,114 bp); however, the genetic distances between hybrids and maternal species varied from 0.001 to 0.17, with 19 hybrids (25.7%) showing distances >0.02. Variable sites in these hybrids were randomly distributed but enriched in hypervariable regions, such as the D-loop and NADH dehydrogenase subunits 1, 3 and 6 (ND2, ND3, and ND6) genes, likely reflecting maternal inheritance (reported in Cyprinus carpio × Carassius auratus). Moreover, these genes were under purifying selection pressure, revealing their conserved nature. Phylogenetic reconstruction using complete mitogenomes revealed three distinct clades in hybrids: (1) Acipenseriformes, (2) a freshwater cluster dominated by Cypriniformes and Siluriformes, and (3) a marine cluster comprising Centrarchiformes, Pleuronectiformes, Scombriformes, Cichliformes, Anabantiformes, Tetraodontiformes, Perciformes, and Salmoniformes. The prevalence of Cyprinidae hybrids underscores their importance in aquaculture for hybridization, where traits such as rapid growth and disease resistance are enhanced. In contrast, marine hybrids are valued for their market value and adaptability. While mitogenome data robustly support maternal inheritance in most cases, exceptions suggest complex mechanisms, such as doubly uniparental inheritance (DUI), in distantly related crosses. Moreover, AT-skew of genes in hybrids revealed a paternal leakage of traits in mitogenomes. This study also highlights ecological risks, such as genetic swamping in native populations, emphasizing the need for responsible hybridization practices. These findings advance our understanding of the role of hybridization in fish evolution and aquaculture, providing a genomic framework and policy recommendations for optimizing breeding programs, hybrid introduction, and mitigating conservation challenges. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

24 pages, 1572 KiB  
Article
Optimizing DNA Sequence Classification via a Deep Learning Hybrid of LSTM and CNN Architecture
by Elias Tabane, Ernest Mnkandla and Zenghui Wang
Appl. Sci. 2025, 15(15), 8225; https://doi.org/10.3390/app15158225 - 24 Jul 2025
Viewed by 213
Abstract
This study addresses the performance of deep learning models for predicting human DNA sequence classification through an exploration of ideal feature representation, model architecture, and hyperparameter tuning. It contrasts traditional machine learning with advanced deep learning approaches to ascertain performance with respect to [...] Read more.
This study addresses the performance of deep learning models for predicting human DNA sequence classification through an exploration of ideal feature representation, model architecture, and hyperparameter tuning. It contrasts traditional machine learning with advanced deep learning approaches to ascertain performance with respect to genomic data complexity. A hybrid network combining long short-term memory (LSTM) and convolutional neural networks (CNN) was developed to extract long-distance dependencies as well as local patterns from DNA sequences. The hybrid LSTM + CNN model achieved a classification accuracy of 100%, which is significantly higher than traditional approaches such as logistic regression (45.31%), naïve Bayes (17.80%), and random forest (69.89%), as well as other machine learning models such as XGBoost (81.50%) and k-nearest neighbor (70.77%). Among deep learning techniques, the DeepSea model also accounted for good performance (76.59%), while others like DeepVariant (67.00%) and graph neural networks (30.71%) were relatively lower. Preprocessing techniques, one-hot encoding, and DNA embeddings were mainly at the forefront of transforming sequence data to a compatible form for deep learning. The findings underscore the robustness of hybrid structures in genomic classification tasks and warrant future research on encoding strategy, model and parameter tuning, and hyperparameter tuning to further improve accuracy and generalization in DNA sequence analysis. Full article
Show Figures

Figure 1

24 pages, 13745 KiB  
Article
Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize
by Mo Zhu, Ziyu Wang, Shijie Li and Siping Han
Plants 2025, 14(14), 2242; https://doi.org/10.3390/plants14142242 - 21 Jul 2025
Viewed by 313
Abstract
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 [...] Read more.
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 gene family exhibits distinct chromosomal localization (Chr7 and Chr9) and functional domain diversification (e.g., group 10-specific motifs 11/12), indicating species-specific adaptive evolution. Integrative analysis of promoter cis-elements and multi-omics data confirmed the root-preferential expression of ZmAAP1 under drought stress, mediated via the ABA-DRE signaling pathway. To validate its biological role, we generated transgenic maize lines expressing Arabidopsis thaliana AtAAP1 via Agrobacterium-mediated transformation. Three generations of genetic stability screening confirmed the stable genomic integration and root-specific accumulation of the AtAAP1 protein (Southern blot/Western blot). Field trials demonstrated that low-N conditions enhanced the following transgenic traits: the chlorophyll content increased by 13.5%, and the aboveground biomass improved by 7.2%. Under high-N regimes, the gene-pyramided hybrid ZD958 (AAP1 + AAP1) achieved a 12.3% yield advantage over conventional varieties. Our findings reveal ZmAAP1’s dual role in root development and long-distance nitrogen transport, establishing it as a pivotal target for molecular breeding. This study provides actionable genetic resources for enhancing NUE in maize production systems. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

20 pages, 3467 KiB  
Article
Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers
by Yongfeng Song, Jiahao Wang, Yingwen Ma, Jiaxin Wang, Liangliang Bao, Dequan Sun, Hong Lin, Jinsheng Fan, Yu Zhou, Xing Zeng, Zhenhua Wang, Lin Zhang, Chunxiang Li and Hong Di
Plants 2025, 14(14), 2182; https://doi.org/10.3390/plants14142182 - 14 Jul 2025
Viewed by 248
Abstract
Maize is an essential staple food, and its genetic diversity plays a central role in breeding programs aimed at developing climate-adapted cultivars. Constructing a representative core germplasm set is necessary for the efficient conservation and utilization of maize genetic resources. In this study, [...] Read more.
Maize is an essential staple food, and its genetic diversity plays a central role in breeding programs aimed at developing climate-adapted cultivars. Constructing a representative core germplasm set is necessary for the efficient conservation and utilization of maize genetic resources. In this study, we analyzed 588 cultivated maize accessions using agronomic traits such as plant morphology and yield traits such as ear characteristics and single-nucleotide polymorphisms (SNPs) to assess molecular diversity and population structure and to construct a core collection. Nineteen phenotypic traits were evaluated, revealing high genetic diversity and significant correlations among most quantitative traits. The optimal sampling strategy was identified as “Mahalanobis distance + 20% + deviation sampling + flexible method.” Whole-genome genotyping was conducted using the Maize6H-60K liquid phase chip. Population structure analysis, principal component analysis, and cluster analysis divided the 588 accessions into six subgroups. A core collection of 172 accessions was selected based on both phenotypic and genotypic data. These were further evaluated for salt–alkali tolerance during germination, and cluster analysis classified them into five groups. Sixty-five accessions demonstrated salt–alkali tolerance, including 18 with high resistance. This core collection serves as a valuable foundation for germplasm conservation and utilization strategies. Full article
(This article belongs to the Special Issue Maize Landraces: Conservation, Characterization and Exploitation)
Show Figures

Figure 1

12 pages, 2564 KiB  
Article
Genetic Diversity and Population Structure Analysis of Luhua chickens Based on Genome-Wide Markers
by Qianwen Yang, Wei Han, Jun Yan, Chenghao Zhou, Guohui Li, Huiyong Zhang, Jianmei Yin and Xubin Lu
Animals 2025, 15(14), 2071; https://doi.org/10.3390/ani15142071 - 14 Jul 2025
Viewed by 248
Abstract
The Luhua chicken is an outstanding local breed in China that has been placed under conservation due to the impact of specialized breeding and the widespread adoption of commercial varieties. As such, this study analyzed reproductive traits across three consecutive generations and utilized [...] Read more.
The Luhua chicken is an outstanding local breed in China that has been placed under conservation due to the impact of specialized breeding and the widespread adoption of commercial varieties. As such, this study analyzed reproductive traits across three consecutive generations and utilized whole-genome resequencing data from 60 Luhua chickens to assess conservation efficacy through genetic diversity, run of homozygosity (ROH) distribution, kinship, and population structure so as to better conserve the breed. The results show that, across generations, the body weight at first egg increased, the age at first egg was delayed, and the egg weight at first laying increased. No significant variations were found in the body weight at 300 d or the total egg number. The key genetic parameters of the polymorphism information content (PIC), expected heterozygosity (HE), observed heterozygosity (HO), and mean identical-by-state (IBS) distance were 0.234, 0.351, 0.277, and 0.782, respectively. The majority of ROHs ranged from 0.5 to 1 Mb, and the inbreeding coefficient based on ROHs was calculated at 0.021. The findings reveal that these traits remained unchanged across the three generations. Our research suggests that optimizing the mating plan of Luhua chickens is essential to minimize inbreeding risk. Furthermore, the methodology applied in this study provides a valuable reference for the conservation monitoring of other indigenous chicken breeds. Full article
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Detection of LUAD-Associated Genes Using Wasserstein Distance in Multiomics Feature Selection
by Shaofei Zhao, Siming Huang, Lingli Yang, Weiyu Zhou, Kexuan Li and Shige Wang
Bioengineering 2025, 12(7), 694; https://doi.org/10.3390/bioengineering12070694 - 25 Jun 2025
Viewed by 463
Abstract
Lung adenocarcinoma (LUAD) is characterized by substantial genetic heterogeneity, making it challenging to identify reliable biomarkers for diagnosis and treatment. Tumor mutational burden (TMB) is widely recognized as a predictive biomarker due to its association with immune response and treatment efficacy. In this [...] Read more.
Lung adenocarcinoma (LUAD) is characterized by substantial genetic heterogeneity, making it challenging to identify reliable biomarkers for diagnosis and treatment. Tumor mutational burden (TMB) is widely recognized as a predictive biomarker due to its association with immune response and treatment efficacy. In this study, we take a different approach by treating TMB as a response variable to uncover its genetic drivers using multiomics data. We conducted a thorough evaluation of recent feature selection methods through extensive simulations and identified three top-performing approaches: projection correlation screening (PC-Screen), distance correlation sure independence screening (DC-SIS), and Wasserstein distance-based screening (WD-Screen). Unlike traditional approaches that rely on simple statistical tests or dataset splitting for validation, we adopt a method-based validation strategy, selecting top-ranked features from each method and identifying consistently selected genes across all three. Using The Cancer Genome Atlas (TCGA) dataset, we integrated copy number alteration (CNA), mRNA expression, and DNA methylation data as predictors and applied our selected methods. In the two-platform analysis (mRNA + CNA), we identified 13 key genes, including both previously reported LUAD-associated genes (CCNG1, CKAP2L, HSD17B4, SHROOM1, TIGD6, and TMEM173) and novel candidates (DTWD2, FLJ33630, NME5, NUDT12, PCBD2, REEP5, and SLC22A5). Expanding to a three-platform analysis (mRNA + CNA + methylation) further refined our findings, with PCBD2 and TMEM173 emerging as the robust candidates. These results highlight the complexity of multiomics integration and the need for advanced feature selection techniques to uncover biologically meaningful patterns. Our multiomics strategy and robust selection approach provide insights into the genetic determinants of TMB, offering potential biomarkers for targeted LUAD therapies and demonstrating the power of Wasserstein distance-based feature selection in complex genomic analysis. Full article
(This article belongs to the Special Issue Recent Advances in Genomics Research)
Show Figures

Figure 1

27 pages, 5775 KiB  
Article
Genome-Wide Analysis of the FNSII Gene Family and the Role of CitFNSII-1 in Flavonoid Synthesis in Citrus
by Xinya Liu, Beibei Chen, Ling Luo, Qi Zhong, Chee How Teo and Shengjia Huang
Plants 2025, 14(13), 1936; https://doi.org/10.3390/plants14131936 - 24 Jun 2025
Viewed by 1203
Abstract
Flavonoid synthases (FNSs) are key enzymes catalyzing the conversion of flavanones to flavonoids, yet their functions in citrus remain functionally uncharacterized. In this study, we identified three FNSII genes in the citrus genome. Phylogenetic analysis revealed that citrus FNSII genes share the closest [...] Read more.
Flavonoid synthases (FNSs) are key enzymes catalyzing the conversion of flavanones to flavonoids, yet their functions in citrus remain functionally uncharacterized. In this study, we identified three FNSII genes in the citrus genome. Phylogenetic analysis revealed that citrus FNSII genes share the closest evolutionary distance with apple FNSII genes. Chromosomal localization demonstrated that the three FNSII genes are distributed across two out of nine chromosomes. Gene structure analysis indicated that the majority of motifs within these three FNSII genes are highly conserved. We cloned a gene called CitFNSII-1 from citrus. Transient overexpression of CitFNSII-1 in citrus leaves significantly increased flavonoid content, while simultaneous virus-induced silencing of CitFNSII-1 led to synchronously and significantly reduced gene expression levels and flavonoid content in citrus seedlings. Through the Agrobacterium rhizogenes-mediated genetic transformation system, overexpression of CitFNSII-1 was found to markedly enhance flavonoid accumulation in hairy roots, whereas knockout of CitFNSII-1 resulted in a significant decrease in flavonoid content in hairy roots. Further experiments verified an interaction between CitFNSII-1 and the Chalcone isomerase-1 (CHI-1) protein. The results demonstrated that the flavonoid accumulation patterns of CHI-1 and CitFNSII-1 are highly similar. In conclusion, this study advances the understanding of the flavonoid biosynthesis pathway in citrus and provides a theoretical foundation for molecular breeding strategies in citrus. Full article
(This article belongs to the Special Issue Innovative Techniques for Citrus Cultivation)
Show Figures

Figure 1

11 pages, 2387 KiB  
Article
A Convenient Fluorogenic Detection Strategy for Phosphorothioate Modification of DNA Through Photocatalytic Oligonucleotide-Templated Reaction
by Nannan Jing, Yantian Qin, Xinli Fan, Qian Wang, Jing Wang, Fuping You and Xinjing Tang
Biomolecules 2025, 15(6), 752; https://doi.org/10.3390/biom15060752 - 23 May 2025
Viewed by 419
Abstract
DNA phosphorothioate (PT) modifications, characterized by the replacement of a non-bridging phosphate oxygen atom with a sulfur atom, are widely observed in bacterial genomes. Sensitive detection of phosphorothioate is crucial for elucidating their biological roles and functions. Herein, we developed an innovative method [...] Read more.
DNA phosphorothioate (PT) modifications, characterized by the replacement of a non-bridging phosphate oxygen atom with a sulfur atom, are widely observed in bacterial genomes. Sensitive detection of phosphorothioate is crucial for elucidating their biological roles and functions. Herein, we developed an innovative method that leverages oligonucleotide-templated reactions (OTRs) and fluorogenic oligonucleotide probes. By optimizing temperature, probe sequence length, and the relative distance between PT position and the fluorophore probe, we achieved sensitive detection for DNA PT modifications through fluorogenic signal amplification, which provides an efficient and cost-effective approach for sensitive detection of phosphorothioate-modified DNA. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

28 pages, 5492 KiB  
Article
In Vitro Propagation of Endangered Vanda coerulea Griff. ex Lindl.: Asymbiotic Seed Germination, Genetic Homogeneity Assessment, and Micro-Morpho-Anatomical Analysis for Effective Conservation
by Leimapokpam Tikendra, Asem Robinson Singh, Wagner Aparecido Vendrame and Potshangbam Nongdam
Agronomy 2025, 15(5), 1195; https://doi.org/10.3390/agronomy15051195 - 15 May 2025
Viewed by 1364
Abstract
In nature, orchid seed germination is extremely low, making in vitro asymbiotic seed germination essential for the propagation and conservation of endangered Vanda coerulea. This study optimized a micropropagation protocol and evaluated the genetic homogeneity of regenerated orchids. The synergistic effect of [...] Read more.
In nature, orchid seed germination is extremely low, making in vitro asymbiotic seed germination essential for the propagation and conservation of endangered Vanda coerulea. This study optimized a micropropagation protocol and evaluated the genetic homogeneity of regenerated orchids. The synergistic effect of kinetin (KN) with auxins in the Mitra (M) medium best supported protocorm formation and seedling development. The highest shoot multiplication (5.62 ± 0.09) was achieved with 1.2 mg L−1 KN and 0.6 mg L−1 IBA (indole-3-butyric acid) in the medium. Enhanced leaf production (4.81 ± 0.37) was observed when 3.2 mg L−1 KN was combined with 1.8 mg L−1 IAA (indole-3-acetic acid), while root development was superior when 3.2 mg L−1 KN together with 2.4 mg L−1 IAA was incorporated in the medium. Anatomical sections confirmed well-developed leaf and root structures. Genetic fidelity assessment using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), inter-primer binding site (iPBS), and start codon targeted (SCoT) markers revealed 97.17% monomorphism (240/247 bands) and low Nei’s genetic distances (0.000–0.039), indicating high similarity among the regenerants. Dendrogram clustering was supported by a high cophenetic correlation coefficient (CCC = 0.806) and strong resolution in Principal Coordinate Analysis (PCoA) (44.03% and 67.36% variation on the first two axes). The Mantel test revealed a significant correlation between both ISSR and SCoT markers with the pooled marker data. Flow cytometry confirmed the genome stability among the in vitro-propagated orchids, with consistently low CV (FL2-A) values (4.37–4.94%). This study demonstrated the establishment of a reliable in vitro protocol for rapidly propagating genetically identical V. coerulea via asymbiotic seed germination. Full article
(This article belongs to the Special Issue Seeds for Future: Conservation and Utilization of Germplasm Resources)
Show Figures

Figure 1

16 pages, 4178 KiB  
Article
Genomic Diversity and Species Boundaries of the Chilean Silversides Fishes (Atheriniformes, Atherinopsidae)
by Yanina F. Briñoccoli, Yamila P. Cardoso, Roberto Cifuentes, Evelyn M. Habit and Guillermo Ortí
Diversity 2025, 17(5), 347; https://doi.org/10.3390/d17050347 - 14 May 2025
Viewed by 438
Abstract
Silverside fishes in Chile, abundant in marine and freshwater habitats, are classified in two genera: Odontesthes and Basilichthys. Both genera have widespread distributions across southern South America, with marine origins. Despite extensive information on Chilean freshwater silversides and their overlapping distributions along [...] Read more.
Silverside fishes in Chile, abundant in marine and freshwater habitats, are classified in two genera: Odontesthes and Basilichthys. Both genera have widespread distributions across southern South America, with marine origins. Despite extensive information on Chilean freshwater silversides and their overlapping distributions along a latitudinal gradient, their taxonomy and diversification remain contentious. This study examines the diversity of Chilean silversides using RADseq genomic data from 78 Odontesthes and 60 Basilichthys individuals, covering most of their range. The phylogenetic and structural analyses of approximately 20,000 SNPs reveal some geographic variation but indicate no differentiation between Odontesthes mauleanum and O. brevianalis. The genus Basilichthys, in contrast, presents a disjunct distribution, with populations in coastal rivers of Peru (B. semotilus) that are separated from Chilean populations by the Atacama Desert. Chilean Basilichthys, traditionally classified as B. microlepidotus and B. australis until 2012, also show no genetic differentiation consistent with species boundaries but exhibit latitudinal differences consistent with isolation by distance. The contrasting patterns of genetic differentiation exhibited by species of these genera may be explained by the more frequent exchange with marine species for Odontesthes that do not occur in Basilichthys, in addition to the recent geological history of glaciations affecting the southern range of their distribution. Full article
Show Figures

Figure 1

16 pages, 10955 KiB  
Article
Characterizations of Newly Isolated Erwinia amylovora Loessnervirus-like Bacteriophages from Hungary
by Elene Lomadze, György Schneider, Szilvia Papp, Dominika Bali, Roberta Princz-Tóth and Tamás Kovács
Viruses 2025, 17(5), 677; https://doi.org/10.3390/v17050677 - 6 May 2025
Viewed by 749
Abstract
This study explores alternative methods to combat bacterial infections like fire blight caused by Erwinia amylovora (Ea) using bacteriophages as potential antimicrobial agents. Two lytic phages, Ea PF 7 and Ea PF 9, were isolated from apple samples and classified as Loessnervirus-like based [...] Read more.
This study explores alternative methods to combat bacterial infections like fire blight caused by Erwinia amylovora (Ea) using bacteriophages as potential antimicrobial agents. Two lytic phages, Ea PF 7 and Ea PF 9, were isolated from apple samples and classified as Loessnervirus-like based on their genomes. Both phages showed strong efficacy, lysing 95% of the tested 37 Ea strains. They inhibited bacterial growth for up to 10 h, even at low infection rates. The phages had a short latent period of 10 min and produced high burst sizes of 108 and 125 phage particles per infected cell. Stability tests revealed that both phages were stable at moderate temperatures (37–45 °C) and within a pH range of 4–10. However, their viability decreased at higher temperatures and extreme pH levels. Both phages exhibited notable desiccation tolerance and moderate resistance to UV-B radiation during UV testing. The phages were exposed to carefully controlled irradiation, considering factors like lamp type, radiation intensity, exposure time, and object distance. This method introduces a complex approach to research, ensuring repeatable and comparable results. These findings suggest that Ea PF 7 and Ea PF 9 hold promise as antimicrobial agents for therapeutic and biotechnological applications, potentially helping to combat antibiotic resistance in the future. Full article
(This article belongs to the Special Issue Recent Advances in Phage-Plant Interactions)
Show Figures

Figure 1

19 pages, 1067 KiB  
Article
Morpho-Molecular Discordance and Cryptic Diversity in Jumping Bristletails: A Mitogenomic Analysis of Pedetontus silvestrii (Insecta: Archaeognatha: Machilidae)
by Wei Cen, Jia-Wen Li, Jia-Tao He, Xin-Yu Chen, Luo-Ying Li, Kenneth B. Storey, Dan-Na Yu and Jia-Yong Zhang
Insects 2025, 16(5), 452; https://doi.org/10.3390/insects16050452 - 25 Apr 2025
Viewed by 646
Abstract
Archaeognatha (bristletails) represent an evolutionarily significant but understudied insect group. Notably, the morphological identification method proposed by Mendes for Archaeognatha has certain limitations, which may lead to the underestimation or misidentification of some cryptic species. To address this issue, we employed an integrated [...] Read more.
Archaeognatha (bristletails) represent an evolutionarily significant but understudied insect group. Notably, the morphological identification method proposed by Mendes for Archaeognatha has certain limitations, which may lead to the underestimation or misidentification of some cryptic species. To address this issue, we employed an integrated strategy that combines morphological and molecular identification methods. Therefore, this study aimed to (1) identify cryptic diversity within Pedetontus silvestrii using mitogenomic data; (2) clarify phylogenetic relationships among Archaeognatha lineages; and (3) estimate divergence times for key taxonomic splits. We analyzed mitochondrial genomes from six P. silvestrii populations (Liaoning, Jilin, and Hebei Provinces) alongside 14 published Archaeognatha genomes. Key findings include the following: (1) Integrative analyses of genetic distances, phylogenetic reconstruction, bPTP-based molecular species delimitation, and divergence time estimation collectively revealed four evolutionarily distinct lineages within P. silvestrii. (2) Machilidae and Machilinae were non-monophyletic, whereas Petrobiellinae showed close affinity to Meinertellidae. (3) Archaeognatha originated ~301.19 Mya (Late Carboniferous); the Machilinae–Petrobiinae split occurred approximately 153.99 Mya (Jurassic). This study underscores the critical importance of mitogenomic analysis in elucidating cryptic biodiversity, while emphasizing the necessity of integrating morphological identification with molecular characterization for comprehensive species delineation in future taxonomic investigations. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop