Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers
Abstract
1. Introduction
2. Results
2.1. Phenotypic and Correlation Analysis
2.2. Phenotypic Core Collection Construction
2.3. Genetic Diversity and Population Structure Analysis of Maize Germplasm
2.4. Core Collection Construction and Evaluation Based on SNP Markers
2.5. Final Integration of Phenotypic and Genotypic Core Collections
2.6. Identification of Salt–Alkali Tolerant Germplasm in the Core Collection
3. Discussion
3.1. Genetic Diversity Analysis of Maize Germplasm Resources
3.2. Population Structure and Genetic Relationships
3.3. Linking Genotype and Phenotype in a Newly Constructed Maize Core Collection
4. Materials and Methods
4.1. Plant Materials
4.2. Phenotypic and Physiological Trait Assessment
4.3. Construction of Core Collection Based on Phenotypic Data
4.4. DNA Extraction and SNP Genotyping
4.5. Genetic Diversity Analysis
4.6. Population Structure and PCA
4.7. Core Collection Construction
4.8. Evaluation of Salinity Tolerance in the Core Collection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rouf Shah, T.; Prasad, K.; Kumar, P.; Yildiz, F. Maize-A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Mao, G.; Zhang, D.; Mao, D.; Wang, F.; Dai, Q.; Wang, Z.; Feng, N.; Wang, C. Research Progress and Prospect of Saline-alkali Tolerant Rice. Hybrid Rice 2024, 39, 1–10. [Google Scholar]
- Yuan, L. The Strategy for Hybrid Rice Developmen. Hybrid Rice 2018, 33, 1–2. [Google Scholar]
- Li, C.L.; Li, J.L.; Lin, H.; Zhang, X.M.; Wang, Y.; Liu, S.T. Analysis on genetic diversity of maize germplasm. Norhteast Agric. Univ. 2010, 41, 6–14. [Google Scholar]
- Duan, C.-X.; Dong, H.-Y.; Li, X.; Li, H.; Li, C.-H.; Sun, S.-L.; Zhu, Z.-D.; Wang, X.-M. A large-scale screening of maize germplasm for resistance to multiple diseases in multiplot demonstration for several years under natural condition. Crops J. 2020, 46, 1135–1145. [Google Scholar]
- Li, S.; Li, H.; Li, X.; Zhang, C.; Li, X.; Jiang, L.; Li, X. Genetic Diversity Analysis of Phenotypic Traits and Selection of Superior Germplasm in 205 Maize Germplasm Resources. J. Maize Sci. 2023, 31, 1–10. [Google Scholar]
- Campbell, D.R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Ann. Bot. 2009, 103, 1557–1566. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Cao, Y.; Wang, T. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet. Resour. Crop Evol. 2005, 51, 845–852. [Google Scholar] [CrossRef]
- Frascaroli, E.; Schrag, T.A.; Melchinger, A.E. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor. Appl. Genet. 2013, 126, 133–141. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.; Zheng, S.; Yue, Y.; Liu, H.; Wang, M.; Liu, W. Genetic Analysis on Jidan 50 Based on SNP Marker in Maize. J. Maize Sci. 2016, 24, 1–7. [Google Scholar]
- Frankel, O. Genetic perspectives of germplasm conservation. Genet. Manip. Impact Man Soc. 1984, 161, 161–170. [Google Scholar]
- Dong, X.; Li, S.; Yang, H.; Zhang, P.; Li, S.; Qi, Z.; Yu, X.; Yi, H.; Fu, Z. Phenotypic diversity analysis of local varieties of maize in Chongqing. J. Plant Genet. Resour. 2019, 20, 861–870. [Google Scholar]
- Malik, H.N.; Malik, S.I.; Hussain, M.; Chughtai, S.R.; Javed, H.I. Genetic correlation among various quantitative characters in maize (Zea mays L.) hybrids. J. Agric. Soc. Sci. 2005, 3, 262–265. [Google Scholar]
- Li, Y.; Shi, Y.; Cao, Y.; Wang, T. A phenotypic diversity analysis of maize germplasm preserved in China [Zea mays L.]. Maydica 2002, 47, 107–114. [Google Scholar]
- Cai, Y.; Liu, Z.; Wang, T.; Li, Y.; Tan, H.; Wang, G.; Sun, H.; Wang, J. Phenotypic diversity analysis of quality and agronomic traits in some local varieties of maize in China. J. Plant Genet. Resour. 2011, 12, 31–36. [Google Scholar]
- Balfourier, F.; Bouchet, S.; Robert, S.; De Oliveira, R.; Rimbert, H.; Kitt, J.; Choulet, F.; Consortium, I.W.G.S.; Consortium, B.; Paux, E. Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 2019, 5, eaav0536. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Singh, K.B.; Prasad, M.; Thakur, J.K. Designing a mini-core collection effectively representing 3004 diverse rice accessions. Plant Commun. 2020, 1, 100049. [Google Scholar] [CrossRef]
- Su, W.; Wang, L.; Lei, J.; Chai, S.; Liu, Y.; Yang, Y.; Yang, X.; Jiao, C. Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLoS ONE 2017, 12, e0172066. [Google Scholar] [CrossRef]
- Bai, Q.; Cai, Y.; He, B.; Liu, W.; Pan, Q.; Zhang, Q. Core set construction and association analysis of Pinus massoniana from Guangdong province in southern China using SLAF-seq. Sci. Rep. 2019, 9, 13157. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Li, J.; Cao, S.; Zhang, Z.; Zhang, J.; Zhang, Y.; Deng, Y.; Niu, D.; Su, L. Genetic diversity and core collection extraction of Robinia pseudoacacia L. germplasm resources based on phenotype, physiology, and genotyping markers. Ind. Crops Prod. 2022, 178, 114627. [Google Scholar] [CrossRef]
- Li, X.; Cui, L.; Zhang, L.; Huang, Y.; Zhang, S.; Chen, W.; Deng, X.; Jiao, Z.; Yang, W.; Qiu, Z. Genetic diversity analysis and core germplasm collection construction of radish cultivars based on structure variation markers. Int. J. Mol. Sci. 2023, 24, 2554. [Google Scholar] [CrossRef] [PubMed]
- Magorokosho, C. Genetic Diversity and Performance of Maize Varieties from Zimbabwe. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2006. [Google Scholar]
- Wang, C.; Chen, J.; Pang, Z.; Li, N.; Dong, H.; Li, D. The Response and Screening of Germplasm Tolerant to Mixed Saline-Alkali Stress in Sweet Sorghum. Crops 2016, 1, 56–61. [Google Scholar]
- Xu, X.; Sun, F.; Xiao, M.; Zhang, R.; Zhou, Y.; Huang, R. Screening and identification of salt tolerance during the germination period of sorghum varieties. Seed 2020, 39, 6–11. [Google Scholar]
- Ren, H.; Zhang, F.; Han, X.; Hong, H.; Zhu, X.; Wang, G.; Qiu, L. Drought Tolerance Evaluation of Soybean Mini Core Collection. Crop 2023, 6, 94–100. [Google Scholar] [CrossRef]
- Gao, S.; Yan, X.; Wang, N.; Zhang, M.; Li, Y.; Diao, W.; Duan, H. Genetic Diversity Analysis of 255 MaizeGermplasm ResourcesBased on 10K SNP Chip. J. Agric. Sci. Technol. 2024, 26, 20–33. [Google Scholar]
- Chen, J.; Zhang, H.; Wang, T.; Li, X.; Wu, Z.; Lv, G. Genetic Diversity and Population Genetic Structure Analysis of Sweet CornInbred Lines. Mol. Plant Breed. 2022, 20, 1547–1549. [Google Scholar]
- Hu, J.; Zhou, D.; Guan, S.; Zhang, D. The Improvement and Utilization of Bare Saline-alkali Soil in the Songnen Plain by Sand-coverin. Chin. Agric. Sci. Bull. 2021, 37, 85–94. [Google Scholar]
- Boczkowska, M.Ł.B.; Kordulasińska, I.; Dostatny, D.F.; Czembor, J.H. Promoting the use of common oat genetic resources through diversity analysis and core collection construction. PLoS ONE 2016, 11, e0167855. [Google Scholar] [CrossRef]
- Basey, A.C.; Fant, J.B.; Kramer, A.T. Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativ. Plants J. 2015, 16, 37–53. [Google Scholar] [CrossRef]
- Turchetto, C.; Segatto, A.L.A.; Mäder, G.; Rodrigues, D.M.; Bonatto, S.L.; Freitas, L.B. High levels of genetic diversity and population structure in an endemic and rare species: Implications for conservation. AoB Plants 2016, 8, plw002. [Google Scholar] [CrossRef]
- Jiang, R.; Liu, J.; Jiang, J.; Kong, C.; Li, Y. Geographical variation in main phenotypic traits and seedling traits of Machilus thunbergii. J. Northeast For. Univ. 2011, 39, 9–11. [Google Scholar]
- Wingen, L.U.; West, C.; Leverington-Waite, M.; Collier, S.; Orford, S.; Goram, R.; Yang, C.-Y.; King, J.; Allen, A.M.; Burridge, A. Wheat landrace genome diversity. Genetics 2017, 205, 1657–1676. [Google Scholar] [CrossRef] [PubMed]
- Moore, G. Strategic pre-breeding for wheat improvement. Nat. Plants 2015, 1, 15018. [Google Scholar] [CrossRef]
- Li, M.; Xie, C.; Zhang, S. Technical approaches and strategies to improve the efficiency of maize breeding. Crops 2007, 1, 4–7. [Google Scholar]
- Carolina, S.; Jorge, F.; Bruno, S.; Lawrence, P.; Sukhwinder, S.; Cesar, P.; Jaime, C.; Kate, D.; Thomas, P.; David, M.; et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 2020, 11, 4572. [Google Scholar]
- Wingen, L.U.; Orford, S.; Goram, R.; Leverington-Waite, M.; Bilham, L.; Patsiou, T.S.; Ambrose, M.; Dicks, J.; Griffiths, S. Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. TAG. Theoretical and applied genetics. Theor. Und Angew. Genet. 2014, 127, 1831–1842. [Google Scholar] [CrossRef]
- Li, T.; Qu, J.; Wang, Y.; Chang, L.; He, K.; Guo, D.; Zhang, X.; Xu, S.; Xue, J. Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genet. 2018, 19, 63. [Google Scholar] [CrossRef]
- Boakyewaa Adu, G.; Badu-Apraku, B.; Akromah, R.; Garcia-Oliveira, A.L.; Awuku, F.J.; Gedil, M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE 2019, 14, e0214810. [Google Scholar] [CrossRef]
- Luqman, T.; Qamar, Z.-u.; Tabasum, A.; El-Kallawy, W.H.; Nazir, T.; Attacha, S.; Fiaz, S.; Nadeem, M.A.; Hameed, A.; Maryum, Z. Genetic characterization of coarse and basmati rice (Oryza sativa L.) through microsatellite markers and morpho-agronomic traits. Genet. Resour. Crop Evol. 2023, 70, 2307–2320. [Google Scholar] [CrossRef]
- Fan, J.; Xu, H.; Xu, X.; Zhang, H.; Chen, W.; Qi, L.; Jiang, Y. Exploring the Genetic Diversity and Population Structure of Guangxi Waxy Maize Landraces Based on SNP Markers. J. Plant Genet. Resour. 2023, 24, 661–670. [Google Scholar]
- Wang, J.; Song, W.; Wang, R.; Tang, H.; Li, X.; Wang, F.; Zhao, J.; Wang, R. Heterotic Grouping of 51 Maize Inbred Lines by SNP Markers. J. Maize Sci. 2014, 22, 29–34. [Google Scholar]
- Tehseen, M.M.; Istipliler, D.; Kehel, Z.; Sansaloni, C.P.; da Silva Lopes, M.; Kurtulus, E.; Muazzam, S.; Nazari, K. Genetic diversity and population structure analysis of Triticum aestivum L. landrace panel from Afghanistan. Genes 2021, 12, 340. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Brock, J.; Dyer, J.M.; Kutchan, T.; Schachtman, D.; Augustin, M.; Ge, Y.; Fahlgren, N.; Abdel-Haleem, H. Genetic diversity and population structure of a Camelina sativa spring panel. Front. Plant Sci. 2019, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, G.; Li, J.; Yan, J.; Li, H.; Yang, X. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor. Appl. Genet. 2018, 131, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Dube, S.P.; Sibiya, J.; Kutu, F. Genetic diversity and population structure of maize inbred lines using phenotypic traits and single nucleotide polymorphism (SNP) markers. Sci. Rep. 2023, 13, 17851. [Google Scholar] [CrossRef]
- Chen, L.; Luo, J.; Jin, M.; Yang, N.; Liu, X.; Peng, Y.; Li, W.; Phillips, A.; Cameron, B.; Bernal, J.S. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat. Genet. 2022, 54, 1736–1745. [Google Scholar] [CrossRef]
- Brown, A. Core collections: A practical approach to genetic resources management. Genome 1989, 31, 818–824. [Google Scholar] [CrossRef]
- Charmet, G.; Balfourier, F.; Ravel, C.; Denis, J.-B. Genotype x environment interactions in a core collection of French perennial ryegrass populations. Theor. Appl. Genet. 1993, 86, 731–736. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Wang, H.; Mao, C.; Kong, D.; Chen, S.; Zhang, H.; Shen, Y. Development of a core collection of six-rowed hulless barley from the Qinghai-Tibetan plateau. Plant Mol. Biol. Rep. 2020, 38, 305–313. [Google Scholar] [CrossRef]
- Liu, J.; Gao, S.; Xu, Y.; Wang, M.; Ngiam, J.J.; Rui Wen, N.C.; Yi, J.J.J.; Weng, X.; Jia, L.; Salojärvi, J. Genetic diversity analysis of Sapindus in China and extraction of a core germplasm collection using EST-SSR markers. Front. Plant Sci. 2022, 13, 857993. [Google Scholar] [CrossRef]
- Sun, Q.; Bai, L.; Ke, L.; Xiang, X.; Zhao, J.; Ou, L. Developing a core collection of litchi (Litchi chinensis Sonn.) based on EST-SSR genotype data and agronomic traits. Sci. Hortic. 2012, 146, 29–38. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Lin, Y.-P.; Schafleitner, R.; Shirasawa, K.; Isobe, S.; Nguyen, D.C.; Ohsawa, R.; Yoshioka, Y. Genetic diversity analysis and core collection construction for Amaranthus tricolor germplasm based on genome-wide single-nucleotide polymorphisms. Sci. Hortic. 2023, 307, 111428. [Google Scholar] [CrossRef]
- Zhu, S.; Niu, E.; Wang, W.; Shi, A. Identification and evaluation of SNP core loci for olive germplasm (Olea europaea L.). Mol. Plant Breed. 2020, 18, 1548–1557. [Google Scholar]
- Chen, X.; Liu, Y.-Y.; Zheng, F.-S.; Cheng, G.-X.; Guo, M.; Li, J.-S.; Wang, X.-M. Construction of a core collection of tomato (Solanum lycopersicum) germplasm based on phenotypic traits and SNP markers. Sci. Hortic. 2025, 339, 113855. [Google Scholar] [CrossRef]
- Xue, H.; Yu, X.; Fu, P.; Liu, B.; Zhang, S.; Li, J.; Zhai, W.; Lu, N.; Zhao, X.; Wang, J. Construction of the Core Collection of Catalpa fargesii f. duclouxii (Huangxinzimu) based on molecular markers and phenotypic traits. Forests 2021, 12, 1518. [Google Scholar] [CrossRef]
- Le, L.; Yang, X.; Xie, X.; Zhang, W.; Wang, G.; Cao, F. Construction of the core germplasm of yellowhorn (Xanthoceras sorbifolium Bunge) using physiological traits and SSR markers. Sci. Hortic. 2024, 323, 112556. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Ro, N.-Y.; Jeong, H.-J.; Kwon, J.-K.; Jo, J.; Ha, Y.; Jung, A.; Han, J.-W.; Venkatesh, J.; Kang, B.-C. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 2016, 17, 142. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Li, X.; Li, C.; Shi, Y.; Song, Y.; Zheng, Z.; Li, Y.; Wang, T. Analysis of genetic differentiation and genomic variation to reveal potential regions of importance during maize improvement. BMC Plant Biol. 2015, 15, 256. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.; Yang, J.; Luo, P.; Zhang, M.; Zhang, R.; Yang, J.; Luo, P. Identification of a new QTL for Fusarium head blight resistance in the wheat genotype “Wang shui-bai”. Mol. Biol. Rep. 2010, 37, 1031–1035. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Zeng, Y.; Yang, Z.; Shen, S.; Sun, C.; Wang, X. Studies on sampling schemes for the establishment of corecollection of rice landraces in Yunnan, China. Genet. Resour. Crop Evol. 2002, 49, 67–74. [Google Scholar] [CrossRef]
- Van Treuren, R.; Tchoudinova, I.; Van Soest, L.; van Hintum, T.J. Marker-assisted acquisition and core collection formation: A case study in barley using AFLPs and pedigree data. Genet. Resour. Crop Evol. 2006, 53, 43–52. [Google Scholar] [CrossRef]
- Zeuli, P.S.; Qualset, C. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theor. Appl. Genet. 1993, 87, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Diwan, N.; McIntosh, M.; Bauchan, G. Methods of developing a core collection of annual Medicago species. Theor. Appl. Genet. 1995, 90, 755–761. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, C.; Xiang, W.; Yi, Z.; Xiao, L. A sampling strategy to develop a primary core collection of Miscanthus spp. in China based on phenotypic traits. Agronomy 2022, 12, 678. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Huang, T.; Liao, W.; Xu, Y.; Li, Z.; Gu, J. Gencore: An efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data. BMC Bioinform. 2019, 20, 606. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, R.; Wang, B.; Xu, Z.; Zhou, Z. Construction of core collection of Schima superba based on SSR molecular markers. Sci. Silvae Sin. 2017, 53, 37–46. [Google Scholar]
- Beukelaer, H.D.; Smýkal, P.; Davenport, G.F.; Fack, V. Core Hunter II: Fast core subset selection based on multiple genetic diversity measures using Mixed Replica search. BMC Bioinform. 2012, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, C.; Zhou, R.; Song, Y.; Lv, Z.; Wang, Q.; Dong, X.; Liu, S.; Feng, C.; Zhou, Y. The transcription factor ZmNAC89 gene is involved in salt tolerance in maize (Zea mays L.). Int. J. Mol. Sci. 2023, 24, 15099. [Google Scholar] [CrossRef] [PubMed]
Trait | Average Value | Median | Variance | Skewness | Kurtosis | Minimum | Maximum | Average Value | Standard Deviation | Coefficient | Genetic Diversity Index |
---|---|---|---|---|---|---|---|---|---|---|---|
growth period | 148 | 153 | 43.183 | −1.59 | 2.032 | 34 | 123 | 148.47 | 6.571 | 4.43% | 0.728 |
tassel branch number | 7 | 6 | 18.61 | 0.993 | 1.424 | 27 | 0 | 7.78 | 4.314 | 55.45% | 1.204 |
plant height | 203.3572 | 212.33 | 821.345 | −0.083 | −0.094 | 166.66 | 110.67 | 203.36 | 28.659 | 14.09% | 1.556 |
ear position height | 76.2162 | 75 | 390.371 | 0.084 | −0.38 | 106.67 | 25.33 | 76.22 | 19.758 | 25.92% | 1.673 |
ear stem length | 8.946 | 8 | 14.68 | 0.565 | 0.852 | 23 | 0 | 8.95 | 3.832 | 42.82% | 0.812 |
ear length | 16.5663 | 17.6 | 8.616 | 0.101 | 0.563 | 23.2 | 5.43 | 16.57 | 2.935 | 17.71% | 1.005 |
ear thickness | 4.5824 | 4.6 | 0.265 | −0.051 | 1.287 | 3.98 | 2.42 | 4.58 | 0.515 | 11.24% | 1.566 |
ear row number | 14 | 14 | 6.417 | 0.546 | 0.795 | 16 | 10 | 14.8 | 2.533 | 17.11% | 1.41 |
row grain number | 27 | 27 | 35.864 | 0.236 | 0.237 | 37 | 9 | 27.05 | 5.989 | 22.14% | 0.881 |
ear type | 2 | 2 | 0.692 | 0.281 | −0.574 | 3 | 1 | 2.12 | 0.832 | 39.25% | 1.205 |
grain length | 10.243 | 10.48 | 1.664 | −0.146 | 0.524 | 8.83 | 6.27 | 10.24 | 1.29 | 12.60% | 1.519 |
grain width | 8.6308 | 8.7 | 0.88 | 0.104 | 0.389 | 5.94 | 5.49 | 8.63 | 0.938 | 10.87% | 1.283 |
grain thickness | 4.9404 | 5 | 0.399 | 0.487 | 1.196 | 5.5 | 2.5 | 4.94 | 0.632 | 12.79% | 0.827 |
grain type | 2 | 2 | 0.538 | 0.262 | −1.109 | 2 | 1 | 1.84 | 0.733 | 39.84% | 1.052 |
hundred grain weight | 28.5971 | 32.73 | 33.585 | 0.047 | 0.323 | 37.87 | 12.1 | 28.6 | 5.795 | 20.26% | 1.597 |
total grain per ear | 99.1884 | 117.33 | 1620.006 | 0.813 | 1.88 | 275.5 | 12 | 99.19 | 40.249 | 40.58% | 1.441 |
dry weight per ear | 125.4884 | 140.33 | 2542.562 | 0.886 | 2.683 | 397.67 | 19 | 125.49 | 50.424 | 40.18% | 1.4 |
seed emergence rate | 0.7922 | 0.84 | 0.006 | −1.597 | 4.559 | 0.53 | 0.4 | 0.79 | 0.074 | 9.37% | 1.059 |
plot yield | 1546.9988 | 1056 | 766819.916 | 1.136 | 1.632 | 5310.99 | 148 | 1547 | 875.683 | 56.61% | 1.178 |
Indices | Component 1 | Component 2 | Component 3 | Component 4 | Component 5 |
---|---|---|---|---|---|
growth period | 0.166 | 0.285 | 0.241 | −0.033 | −0.682 |
tassel branch number | 0.069 | 0.191 | 0.492 | −0.267 | 0.283 |
plant height | 0.703 | 0.034 | 0.169 | −0.328 | 0.155 |
ear position height | 0.513 | 0.075 | 0.35 | −0.4 | 0.51 |
ear stem length | 0.292 | 0.048 | −0.252 | −0.197 | −0.052 |
ear length | 0.689 | 0.185 | −0.189 | −0.422 | −0.074 |
ear thickness | 0.674 | 0.254 | 0.416 | 0.22 | −0.074 |
ear row number | 0.44 | −0.291 | 0.596 | 0.225 | −0.152 |
row grain number | 0.678 | −0.252 | −0.218 | −0.367 | −0.087 |
ear type | −0.249 | −0.219 | 0.355 | 0.458 | 0.185 |
grain length | 0.639 | −0.12 | −0.003 | 0.4 | 0.223 |
grain width | 0.013 | 0.702 | −0.233 | 0.168 | 0.193 |
grain thickness | −0.107 | 0.614 | −0.03 | 0.184 | −0.058 |
grain type | 0.406 | −0.414 | 0.095 | 0.25 | −0.019 |
hundred grain weight | 0.441 | 0.461 | −0.287 | 0.427 | 0.272 |
total grain per ear | 0.871 | −0.071 | −0.18 | 0.177 | 0.029 |
dry weight per ear | 0.873 | 0.059 | −0.074 | 0.163 | −0.03 |
seed emergence rate | 0.024 | −0.554 | −0.486 | 0.099 | 0.233 |
plot yield | 0.747 | −0.094 | −0.204 | 0.13 | −0.345 |
Eigenvalue | 5.377 | 2.015 | 1.715 | 1.552 | 1.248 |
Contribution (%) | 28.302 | 10.604 | 9.029 | 8.167 | 6.566 |
Cumulative contribution | 28.302 | 38.906 | 47.935 | 56.101 | 62.667 |
Construction Proportion | Mean Difference Percentage | Percentage of Variance Difference | Coincidence Rate of Range | Variable Rate of Coefficient of Variation |
---|---|---|---|---|
10% | 5.26 | 78.95 | 91.92 | 127.74 |
15% | 5.26 | 78.95 | 93.71 | 121.3 |
20% | 5.26 | 78.95 | 96.49 | 118.28 |
25% | 5.26 | 73.68 | 96.92 | 116.34 |
30% | 10.53 | 73.68 | 96.92 | 114.93 |
Germplasm 1 | Germplasm 2 | GSC | Germplasm 1 | Germplasm 2 | GSC |
---|---|---|---|---|---|
T106 | 196 | 0.3366 | Dan6263 | C260 | 1.0000 |
D5801 | Jiuyi115 | 0.3368 | M60 | P2237 | 1.0000 |
zheng58 | Jiuyi115 | 0.337 | A22 | Jiang134 | 1.0000 |
5311 | Jiuyi115 | 0.3372 | 4112 | 5022 (B) | 1.0000 |
Qing795 | Jiuyi115 | 0.3374 | 4112 | Ji4112 | 1.0000 |
Jing388 | Jiuyi115 | 0.34 | 5022 (B) | Ji4112 | 1.0000 |
Ming84 | Jiuyi115 | 0.3408 | 4112 | N528-1 (1284) | 1.0000 |
T106 | KWCB1 | 0.342 | 5022 (B) | N528-1 (1284) | 1.0000 |
T106 | Yuanfuhuang | 0.3424 | Ji4112 | N528-1 (1284) | 1.0000 |
P138 | Jiuyi115 | 0.3425 | Mo113 | M0113 | 1 |
Subset (%) | Number of Cultivars | Shannon’s Information Index | Correct_Shannon’s Information Index | Ho | He |
---|---|---|---|---|---|
Core_5 | 48 | 0.6009 | 0.1552 | 0.0153 | 0.4142 |
Core_10 | 96 | 0.5788 | 0.1268 | 0.0332 | 0.3953 |
Core_15 | 145 | 0.5887 | 0.1183 | 0.028 | 0.4036 |
Core_20 | 193 | 0.5844 | 0.1111 | 0.038 | 0.4001 |
Core_25 | 242 | 0.5867 | 0.1069 | 0.0362 | 0.4019 |
Core_30 | 290 | 0.5875 | 0.1036 | 0.0351 | 0.4025 |
Core_35 | 338 | 0.5872 | 0.1008 | 0.0291 | 0.4024 |
Core_40 | 387 | 0.5848 | 0.0981 | 0.0314 | 0.4004 |
Core_45 | 434 | 0.5934 | 0.0977 | 0.0325 | 0.4075 |
Core_50 | 483 | 0.5862 | 0.0948 | 0.0287 | 0.4015 |
Core_55 | 532 | 0.5857 | 0.0933 | 0.0361 | 0.401 |
Core_60 | 580 | 0.585 | 0.0919 | 0.0324 | 0.4005 |
Core_65 | 628 | 0.5892 | 0.0914 | 0.0312 | 0.404 |
Core_70 | 677 | 0.5856 | 0.0899 | 0.0318 | 0.401 |
Core_75 | 724 | 0.5871 | 0.0891 | 0.0342 | 0.4022 |
Core_80 | 773 | 0.5862 | 0.0881 | 0.032 | 0.4015 |
Core_100 | 588 | 0.5868 | 0.0853 | 0.0321 | 0.402 |
Final Core Collection | Phenotypic Traits | SNP Marker | |||
---|---|---|---|---|---|
Reserved Number | Percentage (%) | Reserved Number | Percentage (%) | Reserved Number | Percentage (%) |
172 | 29.25 | 117 | 19.90 | 88 | 14.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, J.; Ma, Y.; Wang, J.; Bao, L.; Sun, D.; Lin, H.; Fan, J.; Zhou, Y.; Zeng, X.; et al. Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers. Plants 2025, 14, 2182. https://doi.org/10.3390/plants14142182
Song Y, Wang J, Ma Y, Wang J, Bao L, Sun D, Lin H, Fan J, Zhou Y, Zeng X, et al. Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers. Plants. 2025; 14(14):2182. https://doi.org/10.3390/plants14142182
Chicago/Turabian StyleSong, Yongfeng, Jiahao Wang, Yingwen Ma, Jiaxin Wang, Liangliang Bao, Dequan Sun, Hong Lin, Jinsheng Fan, Yu Zhou, Xing Zeng, and et al. 2025. "Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers" Plants 14, no. 14: 2182. https://doi.org/10.3390/plants14142182
APA StyleSong, Y., Wang, J., Ma, Y., Wang, J., Bao, L., Sun, D., Lin, H., Fan, J., Zhou, Y., Zeng, X., Wang, Z., Zhang, L., Li, C., & Di, H. (2025). Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers. Plants, 14(14), 2182. https://doi.org/10.3390/plants14142182