Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = genome wide association mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10948 KB  
Article
Genome-Wide Characterization of the wnt Gene Family Reveals a wnt5b-Mediated Regulatory Mechanism of Testicular Development in Cynoglossus semilaevis
by Zhengjie Li, Junhao Wang, Chao Li and Ying Zhu
Animals 2026, 16(3), 387; https://doi.org/10.3390/ani16030387 - 26 Jan 2026
Abstract
The wnt gene family encodes a group of highly conserved secreted glycoproteins that play essential roles in vertebrate development, including tissue patterning, cell differentiation, and gonadal regulation. However, the genomic organization, evolutionary dynamics, and functional roles of Wnt signaling components in flatfish remain [...] Read more.
The wnt gene family encodes a group of highly conserved secreted glycoproteins that play essential roles in vertebrate development, including tissue patterning, cell differentiation, and gonadal regulation. However, the genomic organization, evolutionary dynamics, and functional roles of Wnt signaling components in flatfish remain poorly understood. In this study, we performed a comprehensive genome-wide identification, evolutionary characterization, expression profiling, and functional analysis of wnt genes in Cynoglossus semilaevis, a flatfish species exhibiting ZW/ZZ sex determination and temperature-induced sex reversal. A total of 20 wnt genes were identified and classified into 13 subfamilies, displaying conserved structural organization and phylogenetic relationships consistent with other teleosts. Chromosomal mapping revealed lineage-specific WNT clusters, including a unique wnt3–wnt7b–wnt5b–wnt16 block, as well as syntenic associations with reproduction-related genes (e.g., adipor2, sema3a, nape-pld, erc2, lamb2), suggesting coordinated genomic regulation. Tissue transcriptome analysis demonstrated strong sex- and tissue-biased expression patterns, with wnt5a predominantly expressed in ovaries and wnt5b specifically upregulated in pseudo-male testes. Functional assays revealed that knockdown of wnt5a or wnt5b induced testis-specific genes (sox9b, tesk1) and suppressed ovarian markers (foxl2, cyp19a1a), indicating antagonistic regulatory roles in gonadal fate determination. Promoter analysis identified yy1a as a selective repressor of wnt5b, but not wnt5a, providing a mechanistic basis for paralog divergence. Furthermore, pull-down combined with LC–MS/MS analysis showed that WNT5b interacts with proteins enriched in ribosome biogenesis and ubiquitin-mediated proteolysis, suggesting a role in translational regulation and protein turnover during spermatogenesis. Together, these findings establish WNT5 signaling—particularly wnt5b—as a key driver of testicular development in C. semilaevis and provide new insights into the molecular mechanisms underlying sex differentiation and sex reversal in flatfish. Full article
(This article belongs to the Special Issue Sustainable Aquaculture: A Functional Genomic Perspective)
Show Figures

Figure 1

29 pages, 3485 KB  
Systematic Review
Integrating Genomics, Radiomics, and Pathomics in Oncology: A Scoping Review and a Framework for AI-Enabled Surgomics
by Selma Mtoor, Niki Rashidian, Nouredin Messaoudi, Vincent Grasso, Floriane Noel, Michele Steindler, Derar Jaradat, Isabella Frigerio, Giovanni Butturini, Roland Croner, Karol Rawicz-Pruszynski, Giulia Capelli, Gaya Spolverato, Marc G. Besselink, Takeaki Ishizawa, Elie Chouillard, Mohammad Abu-Hilal, Ulf Kahlert, Ibrahim Dagher and Andrew A. Gumbs
Bioengineering 2026, 13(1), 117; https://doi.org/10.3390/bioengineering13010117 - 20 Jan 2026
Viewed by 155
Abstract
Background: Multimodal AI integration across genomics, radiomics, and pathomics is rapidly evolving in oncology, but evidence remains heterogeneous and unevenly distributed across modalities. Objective: To map empirical studies integrating two or more -omic modalities, summarize integration and validation approaches, and identify gaps informing [...] Read more.
Background: Multimodal AI integration across genomics, radiomics, and pathomics is rapidly evolving in oncology, but evidence remains heterogeneous and unevenly distributed across modalities. Objective: To map empirical studies integrating two or more -omic modalities, summarize integration and validation approaches, and identify gaps informing future directions toward surgomics. Methods: We conducted a scoping review in accordance with PRISMA-ScR, searching PubMed, Ovid, Wiley Online Library, and Google Scholar for English-language studies published from January 2020 to 5 March 2025. We charted study characteristics, modalities combined, fusion strategies, AI model categories, validation approaches, and reported performance metrics as presented by the original studies. Results: From 184 records, 11 studies met inclusion criteria (n = 1078 total participants across reported studies), most focusing on radiomics–pathomics integration; fewer incorporated genomics, and tri-modal fusion was uncommon. Studies varied widely in clinical tasks, endpoints, preprocessing, and validation, limiting direct comparability. Conclusions: The mapped evidence indicates growing methodological activity in radiopathomics and cross-scale association modeling, while tri-modal pipelines and clinically deployable multimodal workflows remain underdeveloped. Surgomics is presented as a conceptual, staged roadmap informed by these gaps rather than a current clinical capability. Full article
(This article belongs to the Special Issue AI and Data Science in Bioengineering: Innovations and Applications)
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Optical Genome Mapping Enhances Structural Variant Detection and Refines Risk Stratification in Chronic Lymphocytic Leukemia
by Soma Roy Chakraborty, Michelle A. Bickford, Narcisa A. Smuliac, Kyle A. Tonseth, Jing Bao, Farzana Murad, Irma G. Domínguez Vigil, Heather B. Steinmetz, Lauren M. Wainman, Parth Shah, Elizabeth M. Bengtson, Swaroopa PonnamReddy, Gabriella A. Harmon, Liam L. Donnelly, Laura J. Tafe, Jeremiah X. Karrs, Prabhjot Kaur and Wahab A. Khan
Genes 2026, 17(1), 106; https://doi.org/10.3390/genes17010106 - 19 Jan 2026
Viewed by 253
Abstract
Background: Optical genome mapping (OGM) detects genome-wide structural variants (SVs), including balanced rearrangements and complex copy-number alterations beyond standard-of-care cytogenomic assays. In chronic lymphocytic leukemia (CLL), cytogenetic and genomic risk stratification is traditionally based on fluorescence in situ hybridization (FISH), karyotyping, targeted next-generation [...] Read more.
Background: Optical genome mapping (OGM) detects genome-wide structural variants (SVs), including balanced rearrangements and complex copy-number alterations beyond standard-of-care cytogenomic assays. In chronic lymphocytic leukemia (CLL), cytogenetic and genomic risk stratification is traditionally based on fluorescence in situ hybridization (FISH), karyotyping, targeted next-generation sequencing (NGS), and immunogenetic assessment of immunoglobulin heavy chain variable region (IGHV) somatic hypermutation status, each of which interrogates only a limited aspect of disease biology. Methods: We retrospectively evaluated fifty patients with CLL using OGM and integrated these findings with cytogenomics, targeted NGS, IGHV mutational status, and clinical time-to-first-treatment (TTFT) data. Structural variants were detected using OGM and pathogenic NGS variants were derived from a clinical heme malignancy panel. Clinical outcomes were extracted from the electronic medical record. Results: OGM identified reportable structural variants in 82% (41/50) of cases. The most frequent abnormality was del(13q), observed in 29/50 (58%) and comprising 73% (29/40) of all OGM-detected deletions with pathologic significance. Among these, 12/29 (42%) represented large RB1-spanning deletions, while 17/29 (58%) were focal deletions restricted to the miR15a/miR16-1 minimal region, mapping to the non-coding host gene DLEU2. Co-occurrence of adverse lesions, including deletion 11q/ATM, BIRC3 loss, trisomy 12, and deletion 17p/TP53, were recurrent and strongly associated with shorter TTFT. OGM also uncovered multiple cryptic rearrangements involving chromosomal loci that are not represented in the canonical CLL FISH probe panel, including IGL::CCND1, IGH::BCL2, IGH::BCL11A, IGH::BCL3, and multi-chromosomal copy-number complexity. IGHV data were available in 37/50 (74%) of patients; IGHV-unmutated status frequently co-segregated with OGM-defined high-risk profiles (del(11q), del(17p), trisomy 12 with secondary hits, and complex genomes whereas mutated IGHV predominated in OGM-negative or structurally simple del(13q) cases and aligned with indolent TTFT. Integration of OGM with NGS further improved genomic risk classification, particularly in cases with discordant or inconclusive routine testing. Conclusions: OGM provides a comprehensive, genome-wide view of structural variation in CLL, resolving deletion architecture, identifying cryptic translocations, and defining complex multi-hit genomic profiles that tracked closely with clinical behavior. Combining OGM and NGS analysis refined risk stratification beyond standard FISH panels and supports more precise, individualized management strategies in CLL. Prospective studies are warranted to evaluate the clinical utility of OGM-guided genomic profiling in contemporary treatment paradigms. Full article
Show Figures

Figure 1

18 pages, 6582 KB  
Article
First High-Density Linkage Map and Quantitative Trait Loci for Disease Resistance in Striped Catfish Pangasianodon hypophthalmus
by Nguyen Thanh Vu, Tran Huu Phuc, Tran Thi Mai Huong and Nguyen Hong Nguyen
Int. J. Mol. Sci. 2026, 27(2), 784; https://doi.org/10.3390/ijms27020784 - 13 Jan 2026
Viewed by 140
Abstract
While striped catfish (Pangasianodon hypophthalmus) is an economically important aquaculture species, its genomic resources remain limited. To date, linkage maps, QTL (quantitative trait loci) analyses, and the identification of candidate genes associated with disease resistance traits are very limited. Therefore, the [...] Read more.
While striped catfish (Pangasianodon hypophthalmus) is an economically important aquaculture species, its genomic resources remain limited. To date, linkage maps, QTL (quantitative trait loci) analyses, and the identification of candidate genes associated with disease resistance traits are very limited. Therefore, the present study aimed to construct a high-density linkage map and identify candidate genes for this species. Our analysis was conducted on a pedigree population consisting of 560 individuals (490 offspring and 70 parents for 40 families), whose genomes were analyzed using a genotyping-by-sequencing platform. After stringent filtering, 9882 high-quality SNPs were retained for linkage analysis. Linkage analysis placed 8786 markers onto 30 linkage groups (LGs), with an average density of 0.43 SNPs per cM. Recombination rates varied across the 30 linkage groups (LGs), averaging of 3.6 cM/Mb in males, 6.7 cM/Mb in females, and 5.1 cM/Mb when sex-averaged. Using the linkage map, our QTL analysis identified three significant QTLs for disease resistance to Edwardsiella ictaluri, the causative agent of Bacillary Necrosis of Pangasius (BNP). The QTLs were located on LG1, LG9 and LG29, and their peak markers explained 17.03% of the phenotypic variance. An LD-based interval of approximately ±25 kb surrounding the QTL peak was identified as the putative candidate region. However, subsequent genome-wide association analysis did not identify significant SNP effects within these regions, suggesting that the QTLs may represent polygenic or small-effect loci that are detectable only in linkage-based analyses. In summary, this study presents the first high-density SNP-based linkage map for striped catfish and reports significant QTL and associated candidate genes related to disease resistance and growth traits. These findings provide valuable insights into the genetic architecture of economically important traits in P. hypophthalmus. Nevertheless, further validation in independent populations is required before incorporating these markers into selective breeding programs. Full article
Show Figures

Figure 1

24 pages, 2964 KB  
Article
Unveiling the Genomic Architecture of Phenotypic Plasticity Using Multiple GWAS Approaches Under Contrasting Conditions of Water Availability: A Model for Barley
by Sebastián Arenas and Andrés J. Cortés
Int. J. Mol. Sci. 2026, 27(2), 652; https://doi.org/10.3390/ijms27020652 - 8 Jan 2026
Viewed by 305
Abstract
Phenotypic plasticity is a key mechanism by which crops adjust to fluctuating environmental conditions, yet its genetic basis under drought remains poorly characterized in barley (Hordeum vulgare). We hypothesized that phenotypic plasticity under drought is controlled by a distinct, trait-specific genetic [...] Read more.
Phenotypic plasticity is a key mechanism by which crops adjust to fluctuating environmental conditions, yet its genetic basis under drought remains poorly characterized in barley (Hordeum vulgare). We hypothesized that phenotypic plasticity under drought is controlled by a distinct, trait-specific genetic architecture that can be detected using complementary plasticity metrics and genome-wide association studies (GWAS). Here, we examined data from 1277 spring barley genotypes grown under well-watered and water-limited conditions to quantify plastic responses across two developmental traits (i.e., heading time, and maturity) and seven productivity-related traits (i.e., total dry matter, plant grain yield, grain number, grain weight, harvest index, vegetative dry weight, and grain-filling period). The experimental design, based on contrasting water regimes across a large diversity panel, allowed robust assessment of genotype-by-environment interactions. We combined five complementary plasticity estimators with four independent GWAS approaches to resolve the genomic architecture underlying trait-specific plasticity. Environmental effects dominated variation in yield-related traits, whereas developmental traits remained more genetically determined. The different plasticity metrics captured distinct but partially overlapping response dimensions, and their integration greatly increased the robustness of association signals. A total of 239 high-confidence SNPs obtained for top traits, those associated across metrics and methods, were enriched in coding regions and mapped to genes involved in osmoregulation, carbohydrate metabolism, hormonal pathways, and ion transport. A total of 27 high-confidence SNPs were located in coding regions, showing genotype-specific differences in the magnitude and even direction of phenotypic plasticity. These loci exhibited opposite allelic effects across water regimes, consistent with context-dependent antagonistic pleiotropy. The fact that candidate alleles for the plastic response modulate environmental sensitivity differently highlights that drought resilience arises from environment-contingent genetic architectures. Overall, these results provide a comprehensive framework for dissecting plasticity and identify concrete genomic targets for indirect selection targeting crop resilience with improved performance under increasingly variable water availability. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Genetic Diversity in Plants, 2nd Edition)
Show Figures

Figure 1

13 pages, 1443 KB  
Article
ATAC-Seq and RNA-Seq Integration Reveals Chromatin Accessibility and Transcriptional Dynamics During Fruit Color Development in Mulberry
by Yichun Zeng, Yilei Wu, Jie Dai, Jiang Liu, Ling Wei, Sanmei Liu, Gang Liu and Gaiqun Huang
Int. J. Mol. Sci. 2026, 27(1), 456; https://doi.org/10.3390/ijms27010456 - 1 Jan 2026
Viewed by 390
Abstract
Fruit color, a defining characteristic in mulberry, varies markedly across cultivars, ranging from black and red to pink and white. However, the regulatory mechanisms governing pigmentation during fruit development remain poorly characterized. In this study, ATAC-seq and RNA-seq were integrated to investigate genome-wide [...] Read more.
Fruit color, a defining characteristic in mulberry, varies markedly across cultivars, ranging from black and red to pink and white. However, the regulatory mechanisms governing pigmentation during fruit development remain poorly characterized. In this study, ATAC-seq and RNA-seq were integrated to investigate genome-wide chromatin accessibility and identify putative transcription factors involved in fruit development in Da10 (Yueshenda10, Morus atropurpurea Roxb.). Differentially accessible chromatin regions and differentially expressed genes were jointly analyzed to generate a genome-wide map of regulatory elements and transcriptional activity. This integrative approach enabled the reconstruction of a transcriptional regulatory network that facilitated the identification of candidate transcription factors and target genes associated with the biosynthesis of bioactive compounds, including sugars, flavonoids, diterpenoids, and anthocyanins. The expression levels of RNA-seq were confirmed by qRT-PCR. Motif enrichment analysis revealed seven and 23 enriched cis-elements at the S1 and S3 developmental stages, respectively. Integration with the transcriptional regulatory network established a robust framework for identifying candidate genes involved in the accumulation of key metabolites. Additionally, the dataset enables exploration of previously uncharacterized traits during turning stages of mulberry fruit development. Collectively, these findings advance our understanding of the regulatory architecture underlying fruit maturation and provide a foundation for future strategies to enhance mulberry fruit quality. Full article
Show Figures

Figure 1

21 pages, 4432 KB  
Article
Patterns and Functional Insights of DNA Methylation Variation in a South American Mayfly Across an Agriculturally Impacted Semi-Arid Watershed
by Angéline Bertin, Ana María Notte, Bouziane Moumen, Diana Coral-Santacruz, Frédéric Grandjean and Nicolas Gouin
Biology 2026, 15(1), 90; https://doi.org/10.3390/biology15010090 - 31 Dec 2025
Viewed by 402
Abstract
By regulating gene expression to maintain homeostasis and enabling rapid responses to environmental change, epigenetic mechanisms can provide valuable insights into how populations respond to external pressures. Here, we examined genome-wide DNA methylation in natural populations of the mayfly Andesiops torrens from a [...] Read more.
By regulating gene expression to maintain homeostasis and enabling rapid responses to environmental change, epigenetic mechanisms can provide valuable insights into how populations respond to external pressures. Here, we examined genome-wide DNA methylation in natural populations of the mayfly Andesiops torrens from a semi-arid watershed of northern Chile exposed to intense climatic and anthropogenic stress. We analyzed 285 individuals from 30 sites using methylRAD sequencing and assembled a draft reference genome to map methylated loci and determine their associated gene functions. Discriminant analyses of principal components revealed a methylation structure among sampling sites, identifying five groups, and the coexistence within localities of individuals with distinct methylation profiles. Non-CpG methylRAD loci accounted for most methylation divergence, consistent with environmental effects. The five groups shared a broad functional spectrum dominated by regulatory processes related to cellular processes, gene regulation, morphogenesis, neurogenesis, and metabolism, and formed a continuum from core cellular regulation in small groups to more integrated developmental and adaptive stress-related control in larger groups. While the drivers of these patterns remain to be clarified, our study suggests that DNA methylation contributes to local responses in A. torrens and also reveals the potential of DNA methylation analyses as an initial approach for exploring ecological pressures in natural populations. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

15 pages, 3784 KB  
Article
Identification of Novel QTLs for Iron Content and Development of KASP Marker in Wheat Grain
by Chang Liu, Zhankui Zeng, Xueyan Jing, Yue Zhao, Qunxiang Yan, Junge Bi and Chunping Wang
Agriculture 2026, 16(1), 105; https://doi.org/10.3390/agriculture16010105 - 31 Dec 2025
Viewed by 249
Abstract
Wheat (Triticum aestivum L.) is one of the most important staple crops in the world. Iron (Fe) plays a vital role in the growth and development of wheat as an essential nutrient. Meanwhile, Fe is closely associated with human health, as Fe [...] Read more.
Wheat (Triticum aestivum L.) is one of the most important staple crops in the world. Iron (Fe) plays a vital role in the growth and development of wheat as an essential nutrient. Meanwhile, Fe is closely associated with human health, as Fe deficiency anemia can cause fatigue, weakness, heart problems, and so on. In this study, quantitative trait loci (QTLs) for grain Fe content (GFeC) were detected in two populations: a recombinant inbred line (RIL) population with 175 lines derived from a cross between Avocet and Huites (AH population) genotyped with diversity array technology (DArT) and a natural population of 243 varieties (CH population) genotyped by using the 660K single-nucleotide polymorphism (SNP). Three stable QTLs (QGFe.haust-AH-5B, QGFe.haust-AH-6A, and QGFe.haust-AH-7A.2) were identified through QTL mapping with phenotypic variations of 11.55–13.63%, 3.58–9.89%, and 4.81–11.12% in the AH population in four environments. Genetic effects of QGFe.haust-AH-5B, QGFe.haust-AH-6A, and QGFe.haust-AH-7A.2 were shown to significantly increase GFeC by 8.11%, 14.05%, and 5.25%, respectively. One hundred and thirty-three significant SNPs were identified (p < 0.001) through a genome-wide association study (GWAS) for GFeC on chromosomes 1B, 2B, 3A, 3B, 5D, and 7A with phenotypic variations of 5.26–9.88% in the CH population. A novel locus was co-located within the physical interval 689.86 Mb-690.01 Mb in five environments through QTL mapping and GWAS, with one high-confidence gene, TraesCS7A02G499500, which was temporarily designated as TaqFe-7A, involved in GFeC regulation. A Kompetitive allele-specific PCR, KAFe-7A-2, was developed, which was validated in 181 natural populations. Genetic effect analysis revealed that favorable haplotype AA significantly increased GFeC by 4.64% compared to an unfavorable haplotype (p < 0.05). Therefore, this study provides the theoretical basis for cloning the GFeC gene and nutritional fortification breeding. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

23 pages, 4882 KB  
Article
Integrative Multimodal Profiling of TAp73 and DNp73 Reveals Isoform-Specific Transcriptomic Coregulator Landscapes in Cancer Programs
by Steffen Möller, Alf Spitschak, Nico Murr and Brigitte M. Pützer
Biomolecules 2026, 16(1), 63; https://doi.org/10.3390/biom16010063 - 31 Dec 2025
Viewed by 325
Abstract
(1) Background: The transcription factor p73 exists in multiple isoforms with divergent functions in cancer. While DNp73 promotes stemness, epithelial–mesenchymal transition (EMT), and metastasis, the tumor-suppressive isoform TAp73 can also switch to promoting cancer progression. How isoforms sharing the same DNA-binding domain produce [...] Read more.
(1) Background: The transcription factor p73 exists in multiple isoforms with divergent functions in cancer. While DNp73 promotes stemness, epithelial–mesenchymal transition (EMT), and metastasis, the tumor-suppressive isoform TAp73 can also switch to promoting cancer progression. How isoforms sharing the same DNA-binding domain produce divergent outcomes remains unclear. (2) Methods: Here, we performed CUT&RUN in combination with JASPAR, transcriptomics, proteomics, patient survival and gene expression data to map genome-wide and promoter-associated DNA-binding and coregulatory transcription factor (coTF) profiles of TAp73α and DNp73β in melanoma cells. (3) Results: Systematic screening for motif enrichment in cancer hallmark gene sets revealed TAp73- and DNp73-specific coTF repertoires with distinct functions. We identified a coregulator signature for EMT genes enriched for both isoforms that has tumor context-dependent effects on survival and correlates with unfavorable patient prognosis. Of these EMT-associated coTFs, PATZ1 was validated as a novel direct interactor of DNp73β. (4) Conclusions: Our results provide a comprehensive reference map of p73 isoform-specific binding and coregulator recruitment and establish a workflow to model their influence on cancer reprogramming with implications for AI-based individualized therapy. Full article
(This article belongs to the Special Issue p53 Family: The Molecular Landscape in Cancer and Beyond)
Show Figures

Figure 1

21 pages, 1647 KB  
Review
The Donkey Genome: From Evolutionary Insights to Sustainable Breeding Strategies
by Qifei Zhu, Muhammad Zahoor Khan, Yadi Jing, Mingyang Geng, Xuemin Zhang, Yunfan Zheng, Xianggang Cao, Yongdong Peng and Changfa Wang
Animals 2026, 16(1), 93; https://doi.org/10.3390/ani16010093 - 29 Dec 2025
Viewed by 478
Abstract
Donkeys (Equus asinus) are economically and ecologically important livestock species whose genetic potential remains underexplored. This review synthesizes recent advances in donkey genomics, tracing their evolutionary history while evaluating current applications in selective breeding, conservation genetics, and agricultural management. By integrating [...] Read more.
Donkeys (Equus asinus) are economically and ecologically important livestock species whose genetic potential remains underexplored. This review synthesizes recent advances in donkey genomics, tracing their evolutionary history while evaluating current applications in selective breeding, conservation genetics, and agricultural management. By integrating evidence from population genomics, functional genomics, and comparative evolutionary studies, we summarize major genomic discoveries and identify persistent knowledge gaps, with a focus on translating genomic information into practical breeding outcomes. High-quality reference genomes, population resequencing, and ancient DNA analyses have clarified the African origin, global dispersal history, and environmental adaptation of donkeys. Genome-wide approaches, including GWAS, QTL mapping, and multi-omics analyses, have further identified genes and regulatory pathways associated with thermotolerance, metabolism, reproduction, and milk production. Nevertheless, progress is still limited by small sample sizes, variable sequencing depth, and inconsistencies in phenotyping and bioinformatic pipelines, which constrain cross-population comparisons and practical applications. Addressing these challenges through standardized phenotyping, improved data integration, and collaborative research frameworks will lay the groundwork for effective conservation strategies and sustainable genomic breeding of global donkey populations. Full article
(This article belongs to the Special Issue Advances in Genetic Variability and Selection of Equines)
Show Figures

Figure 1

18 pages, 2589 KB  
Article
Global Genomic Landscapes of Lactiplantibacillus plantarum: Universal GABA Biosynthetic Capacity with Strain-Level Functional Diversity
by Monwadee Wonglapsuwan, Thitima Ninrat, Nattarika Chaichana, Thitaporn Dechathai, Sirikan Suwannasin, Kamonnut Singkhamanan, Rattanaruji Pomwised and Komwit Surachat
Life 2026, 16(1), 47; https://doi.org/10.3390/life16010047 - 27 Dec 2025
Viewed by 328
Abstract
Lactiplantibacillus plantarum is widely used in fermented foods and as a probiotic, yet the genomic basis underlying its γ-aminobutyric acid (GABA) production capacity and strain-level functional diversity remains incompletely resolved. We analyzed 1240 publicly available genomes to map species-wide genome architecture, the distribution [...] Read more.
Lactiplantibacillus plantarum is widely used in fermented foods and as a probiotic, yet the genomic basis underlying its γ-aminobutyric acid (GABA) production capacity and strain-level functional diversity remains incompletely resolved. We analyzed 1240 publicly available genomes to map species-wide genome architecture, the distribution of GABA-related genes, and accessory drivers of phenotypes. Pangenome analysis identified 45,201 gene families, including 622 strict core genes (1.38%) and 444 soft-core genes (2.36%). The accessory genome dominated (3138 shell and 40,997 cloud genes; 97.64%), indicating a strongly open pangenome. In contrast, the GABA (gad) operon was universally conserved: gadB (glutamate decarboxylase) and gadC (glutamate/GABA antiporter) were present in all genomes regardless of isolates source. Accessory-genome clustering revealed ecological and geographic structure without loss of the operon, suggesting that phenotypes variability relevant to fermentation and probiotic performance is primarily shaped by accessory modules. Accessory features included carbohydrate uptake and processing islands, bacteriocins and immunity systems, stress- and membrane-associated functions, and plasmid-encoded traits. Analysis of complete genomes confirmed substantial variation in plasmid load (median = 2; range = 0–17), highlighting the role of mobile elements in niche-specific adaptation. Carbohydrate-Active Enzymes database (CAZy) and biosynthetic gene cluster (BGC) profiling revealed a conserved enzymatic and metabolic backbone complemented by rare lineage-specific functions. Collectively, these results position L. plantarum as a genetically stable GABA producer with extensive accessory-encoded flexibility and provide a framework for rational strain selection. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

17 pages, 2690 KB  
Article
Genome-Wide Association Study on the Estimated Breeding Values for Udder and Longevity and the Candidate Genes in Holstein-Friesian Cows in Hungary
by Attila Zsolnai, László Bognár, Szabolcs Albin Bene, Laszló Rózsa, Péter Póti, Ferenc Szabó and István Anton
Animals 2026, 16(1), 73; https://doi.org/10.3390/ani16010073 - 26 Dec 2025
Viewed by 282
Abstract
Our genome-wide association study identified single-nucleotide polymorphisms (SNPs) associated with estimated breeding values (EBVs) for udder traits and longevity in Holstein-Friesian cows. While no SNP was individually associated with multiple EBVs, the functional profiles of the associated genes revealed overlapping biological processes across [...] Read more.
Our genome-wide association study identified single-nucleotide polymorphisms (SNPs) associated with estimated breeding values (EBVs) for udder traits and longevity in Holstein-Friesian cows. While no SNP was individually associated with multiple EBVs, the functional profiles of the associated genes revealed overlapping biological processes across traits, including cell signaling, transcription regulation, immune response, metabolism, and cellular maintenance. Notably, nearby SNPs BTB-01738708 and ARS-BFGL-NGS-111478 were associated with EBVlongevity and EBVudder and located near numerous genes, including GPR85, BMT2, IFRD1, and DOCK4, suggesting a potential for shared genetic influence on these traits. Our findings provide insights into the complex genetic architecture of these economically important traits and highlight the need for further research, including fine-mapping and functional genomics, to elucidate the specific variants and their effects. Full article
(This article belongs to the Special Issue Advances in Cattle Genetics and Breeding)
Show Figures

Figure 1

38 pages, 1245 KB  
Review
Rising Demand for Winter Crops Under Climate Change: Breeding for Winter Hardiness in Autumn-Sown Legumes
by Katalin Magyar-Tábori, Sripada M. Udupa, Alexandra Hanász, Csaba Juhász and Nóra Mendler-Drienyovszki
Life 2026, 16(1), 17; https://doi.org/10.3390/life16010017 - 22 Dec 2025
Viewed by 932
Abstract
Climate change in the Pannonian region is accelerating a shift toward autumn sowing of cool-season grain legumes (pea, faba bean, lentil, chickpea, lupine) to achieve higher yields, greater biomass production, enhanced nitrogen fixation, improved soil cover, and superior resource use efficiency compared with [...] Read more.
Climate change in the Pannonian region is accelerating a shift toward autumn sowing of cool-season grain legumes (pea, faba bean, lentil, chickpea, lupine) to achieve higher yields, greater biomass production, enhanced nitrogen fixation, improved soil cover, and superior resource use efficiency compared with spring sowing. However, successful overwintering depends on the availability of robust winter-hardy cultivars. This review synthesizes recent breeding advances, integrating traditional approaches—such as germplasm screening, hybridization, and field-based selection—with genomics-assisted strategies, including genome-wide association studies (GWAS), quantitative trait locus (QTL) mapping, marker-assisted selection (MAS), and CRISPR/Cas-mediated editing of CBF transcription factors. Key physiological mechanisms—LT50 determination, cold acclimation, osmoprotectant accumulation (sugars, proline), and membrane stability—are assessed using field survival rates, electrolyte leakage assays, and chlorophyll fluorescence measurements. Despite challenges posed by genotype × environment interactions, variable winter severity, and polygenic trait control, the release of cultivars worldwide (e.g., ‘NS-Mraz’, ‘Lavinia F’, ‘Ghab series’, ‘Pinklevi’, and ‘Rézi’) and ongoing breeding programs demonstrate substantial progress. Future breeding efforts will increasingly rely on genomic selection (GS), high-throughput phenomics, pangenomics, and G×E modeling to accelerate the development of climate-resilient legume cultivars, ensuring stable and sustainable production under increasingly unpredictable winter conditions. Full article
Show Figures

Figure 1

19 pages, 1186 KB  
Review
Research Progress on Genetic Factors of Poultry Egg Quality: A Review
by Liu Yang, Yang Yang, Yadi Jing, Meixia Zhang, Min Zhang, Shuer Zhang, Chao Qi, Weiqing Ma, Muhammad Zahoor Khan and Mingxia Zhu
Animals 2025, 15(24), 3652; https://doi.org/10.3390/ani15243652 - 18 Dec 2025
Viewed by 494
Abstract
Egg quality is a critical economic trait in poultry production, influencing consumer preference and production efficiency. The genetic and epigenetic regulation of egg quality involves complex biological pathways across various traits such as shell quality, albumen composition, and yolk biochemistry. This review synthesizes [...] Read more.
Egg quality is a critical economic trait in poultry production, influencing consumer preference and production efficiency. The genetic and epigenetic regulation of egg quality involves complex biological pathways across various traits such as shell quality, albumen composition, and yolk biochemistry. This review synthesizes recent advances in the genetic, molecular, and epigenetic mechanisms that determine poultry egg quality. Specifically, it focuses on external traits such as eggshell strength, color, and thickness, and internal traits including albumen height, yolk composition, and the Haugh unit. Through genome-wide association studies (GWAS), quantitative trait loci (QTL) mapping, whole-genome sequencing (WGS), and multi-omics approaches, key candidate genes such as OC-116, CALB1, CA2 (shell formation), OVAL, SPINK5, SERPINB14 (albumen quality), and FGF9, PIAS1, NOX5 (lipid metabolism) have been identified. These genes play a pivotal role in shell biomineralization, albumen protein regulation, and yolk lipid transport. This review also explores the heritability of these traits, emphasizing the challenges posed by polygenic architecture and the influence of environmental factors. Furthermore, it addresses the dynamic spatiotemporal regulation of egg quality traits, including epigenetic layers such as DNA methylation, histone modifications, RNA methylation, and post-translational protein modifications. This paper highlights the application of these findings to breeding programs via genomic selection, marker-assisted breeding, and epigenetic engineering approaches. Future directions for precision breeding and the development of functional eggs with enhanced quality are also discussed. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

24 pages, 20843 KB  
Article
Unraveling the Shared Genetic Architecture and Polygenic Overlap Between Loneliness, Major Depressive Disorder, and Sleep-Related Traits
by Zainab Rehman, Abdul Aziz Khan, Jun Ye, Xianda Ma, Yifang Kuang, Ziying Wang, Zhaohui Lan, Qian Zhao, Jiarun Yang, Xu Zhang, Sanbing Shen and Weidong Li
Biomedicines 2025, 13(12), 3101; https://doi.org/10.3390/biomedicines13123101 - 16 Dec 2025
Cited by 1 | Viewed by 525
Abstract
Background: Loneliness (LON) is a heritable psychosocial trait that frequently co-occurs with major depressive disorder (MDD) and sleep traits. Despite known genetic contributions, the shared genetic architecture and molecular mechanisms underlying their co-occurrence remain largely unknown. This study aimed to uncover novel [...] Read more.
Background: Loneliness (LON) is a heritable psychosocial trait that frequently co-occurs with major depressive disorder (MDD) and sleep traits. Despite known genetic contributions, the shared genetic architecture and molecular mechanisms underlying their co-occurrence remain largely unknown. This study aimed to uncover novel genetic risk loci and cross-trait gene expression effects. Methods: Large-scale genome-wide association study (GWAS) datasets were analyzed using the causal mixture model (MiXeR) to estimate polygenicity and shared genetic architecture. Genetic correlation analyses were performed using linkage disequilibrium score regression (LDSC) and local analysis of [co]variant annotation (LAVA). Conditional and conjunctional FDR methods further identified single nucleotide polymorphisms (SNPs). FUMA was used for gene mapping and annotation, and transcriptome-wide association studies (TWAS) assessed cross-trait gene expression effects. Results: Analyses revealed extensive polygenic overlap between LON, MDD, and sleep-related traits, with concordant and discordant effects. Several novel loci were identified, and cross-trait gene expression effects were observed in multiple brain-expressed genes, including WNT3, ARHGAP27, PLEKHM1, and FOXP2. These findings provide insight into the shared genetic architecture and relevance of these traits. Conclusions: This study demonstrates a significant shared polygenic architecture among LON, MDD, and sleep traits, providing new biological insights. It advances our understanding of cross-trait genetic mechanisms and identifies potential targets for future research, offering broader implications for trait co-occurrence. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

Back to TopTop