Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (364)

Search Parameters:
Keywords = gelatine films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3797 KiB  
Article
Amygdalin-Doped Biopolymer Composites as Potential Wound Dressing Films: In Vitro Study on E. coli and S. aureus
by Dorinel Okolišan, Gabriela Vlase, Mihaela Maria Budiul, Mariana Adina Matica and Titus Vlase
Gels 2025, 11(8), 609; https://doi.org/10.3390/gels11080609 - 2 Aug 2025
Viewed by 468
Abstract
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in [...] Read more.
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in vitro testing against the bacterial strains typical of chronic wounds: E. coli and S. aureus. Thus, FTIR characterization suggests minimal chemical interaction between amygdalin and the biopolymer matrix components, indicating potential compatibility, while thermogravimetric analysis highlights the thermal behavior of the films as well as the influence of the polymer matrix composition on the amount of bound water and the shift of Tpeak value for the decomposition process of the base polymer. Moreover, the identity of the secondary biopolymer (gelatin or CMC) significantly influences film morphology and antibacterial performance. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

22 pages, 5646 KiB  
Article
Preparation and Characterization of D-Carvone-Doped Chitosan–Gelatin Bifunctional (Antioxidant and Antibacterial Properties) Film and Its Application in Xinjiang Ramen
by Cong Zhang, Kai Jiang, Yilin Lin, Rui Cui and Hong Wu
Foods 2025, 14(15), 2645; https://doi.org/10.3390/foods14152645 - 28 Jul 2025
Viewed by 354
Abstract
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films [...] Read more.
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films was systematically investigated. The results showed that adding 1% D-carvone increased the water contact angle by 28%, increased the elongation at break by 35%, and decreased the WVTR by 18%. FTIR and SEM confirmed that ≤2% D-carvone uniformly bonded with the substrate through hydrogen bonds, and the film was dense and non-porous. In addition, the DPPH scavenging rate of the 1–2% D-carvone composite film increased to about 30–40%, and the ABTS+ scavenging rate increased to about 35–40%; the antibacterial effect on Escherichia coli and Staphylococcus aureus increased by more than 70%. However, when the addition amount was too high (exceeding 2%), the composite film became agglomerated, microporous, and phase-separated, affecting the film performance, and due to its own taste, it reduced the sensory quality of the noodles. Comprehensively, the composites showed better performance when the content of D-carvone was 1–2% and also the best effect for freshness preservation in Xinjiang ramen. This study provides a broad application prospect for natural terpene compound-based composite films in the field of high-moisture, multi-fat food preservation, and provides a theoretical basis and practical guidance for the development of efficient and safe food packaging materials. In the future, the composite film can be further optimized, and the effect of flavor can be further explored to meet the needs of different food preservation methods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

23 pages, 3632 KiB  
Article
Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
by Joshua Boateng and Sana Khan
Gels 2025, 11(7), 557; https://doi.org/10.3390/gels11070557 - 19 Jul 2025
Viewed by 790
Abstract
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as [...] Read more.
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as the bioactive ingredients and their functional characteristics evaluated and compared. The formulated solvent cast films were functionally characterized for tensile, mucoadhesion and moisture handling properties. The morphology and physical characteristics of the films were also analyzed using FTIR, X-ray diffraction and scanning electron microscopy. Antibacterial susceptibility testing was performed to study the inhibition of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by honey components released from the films. The % elongation values (8.42–40.47%) increased, elastic modulus (30.74–0.62 Nmm) decreased, the stickiness (mucoadhesion) (0.9–1.9 N) increased, equilibrium water content (32.9–72.0%) and water vapor transmission rate (900–298 gm2 day−1) generally decreased, while zones of inhibition (2.4–6.5 mm) increased with increasing honey concentration for 1 and 5% w/v, respectively. The results generally showed similar performance for the different honeys and demonstrate the efficacy of honey-loaded hydrocolloid films as potential wound dressing against bacterial growth and potential treatment of infected chronic wounds. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 572
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

15 pages, 1871 KiB  
Article
A Gelatin-Based Film with Acerola Pulp: Production, Characterization, and Application in the Stability of Meat Products
by Vitor Augusto dos Santos Garcia, Giovana de Menezes Rodrigues, Victória Munhoz Monteiro, Rosemary Aparecida de Carvalho, Camila da Silva, Cristiana Maria Pedroso Yoshida, Silvia Maria Martelli, José Ignacio Velasco and Farayde Matta Fakhouri
Polymers 2025, 17(13), 1882; https://doi.org/10.3390/polym17131882 - 6 Jul 2025
Viewed by 483
Abstract
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using [...] Read more.
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using gelatin (5%), sorbitol (0,1%), and acerola pulp (60, 70, 80, and 90%). The characterization of the acerola pulp was carried out. Visual aspects, thickness, pH, water vapor permeability, and total phenolic compounds were characterized in the films. The commercial acerola pulp presented the characteristics within the identity and quality standards. A good film formation capacity was obtained in all formulations, presenting the color parameters tending to red coloration, characteristic of the acerola pulp. The total phenolic compounds content ranged from 2.88 ± 70.24 to 3.94 ± 96.05 mg GAE/100 g, with 90 g of acerola pulp per 100 g of filmogenic solution. This film formulation was selected to apply in a vacuum pack of beef and chicken samples, analyzing the weight loss, color parameters, pH, water holding capacity, shear strength after 9 days of refrigeration storage, and soil biodegradability. Additionally, beef and chicken (in nature) were stored under the same conditions without using the wrapping film. The beef and chicken samples showed greater water retention capacity and color maintenance over the storage period compared to the control (without film addition). This way, active gelatin–acerola films can be considered a sustainable packaging alternative to preserve meat products. Full article
Show Figures

Figure 1

24 pages, 5036 KiB  
Article
Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films
by Achilleas Kechagias, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstantinos Zaharioudakis, Katerina Katerinopoulou, Maria Baikousi, Nikolaos D. Andritsos, Charalampos Proestos, Nikolaos Chalmpes, Aris E. Giannakas and Constantinos E. Salmas
Gels 2025, 11(7), 518; https://doi.org/10.3390/gels11070518 - 3 Jul 2025
Viewed by 428
Abstract
In this study, aligned with the principles of the circular economy and sustainability, novel eugenol@natural zeolite (EG@NZ) and citral@natural zeolite (CT@NZ) nanohybrids were developed. These nanohybrids were successfully incorporated into a pork gelatin (Gel)/glycerol (Gl) composite matrix using an extrusion–compression molding method to [...] Read more.
In this study, aligned with the principles of the circular economy and sustainability, novel eugenol@natural zeolite (EG@NZ) and citral@natural zeolite (CT@NZ) nanohybrids were developed. These nanohybrids were successfully incorporated into a pork gelatin (Gel)/glycerol (Gl) composite matrix using an extrusion–compression molding method to produce innovative active packaging films: Gel/Gl/xEG@NZ (where x = 5, 10, and 15%wt.) and Gel/Gl/xCT@NZ (where x = 5 and 10%wt.). All films exhibited zero oxygen barrier properties. Release kinetic studies showed that both EG@NZ and CT@NZ nanohybrids adsorbed up to 58%wt. of their respective active compounds. However, EG@NZ exhibited a slow and nearly complete release of eugenol, whereas CT@NZ released approximately half of its citral content at a faster rate. Consequently, the obtained Gel/Gl/xEG@NZ films demonstrated significantly higher antioxidant activity as measured by the 2,2-diphenyl-1-picrylhydrazylradical (DPPH) assay and superior antibacterial effectiveness against Escherichia coli and Listeria monocytogenes compared to their CT-based counterparts. Overall, the Gel/Gl/xEG@NZ films show strong potential for applications as active pads for fresh pork ham slices, offering zero oxygen permeability, enhanced antioxidant and antibacterial properties, and effective control of total viable count (TVC) growth, maintaining a low and steady rate beyond the 10th day of a 26-day storage period. Full article
(This article belongs to the Special Issue Edible Gel Coatings and Membranes)
Show Figures

Figure 1

24 pages, 6803 KiB  
Article
Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation
by Chenwei Zhang, Yao Li, Yue Huo, Hongtao Wang and Dandan Wang
Foods 2025, 14(13), 2327; https://doi.org/10.3390/foods14132327 - 30 Jun 2025
Viewed by 320
Abstract
We synthesized QM-AgNPs (Dianthus superbus L.-AgNPs, Qu Mai-AgNPs) by an economical and environmentally friendly method using Dianthus superbus L. extract as a reducing and stabilizing agent. The resulting QM-AgNPs were comprehensively characterized and evaluated for their antioxidant, cytotoxic, and antibacterial activities. Herein, [...] Read more.
We synthesized QM-AgNPs (Dianthus superbus L.-AgNPs, Qu Mai-AgNPs) by an economical and environmentally friendly method using Dianthus superbus L. extract as a reducing and stabilizing agent. The resulting QM-AgNPs were comprehensively characterized and evaluated for their antioxidant, cytotoxic, and antibacterial activities. Herein, TEM analysis revealed that the QM-AgNPs were predominantly spherical, polydisperse, and exhibited a core particle size ranging from 11 to 18 nm. In contrast, DLS analysis showed a larger hydrodynamic diameter (primarily 60–87 nm), reflecting the hydrated shell and surface biomolecular corona. The crystalline nature of QM-AgNPs was confirmed by XRD and SAED spectra while FTIR spectroscopy indicated the presence of functional groups from the plant extract that may contribute to nanoparticle stabilization. Functional assessments demonstrated that QM-AgNPs exhibited strong antioxidant activity, with efficient DPPH radical scavenging, and selective cytotoxicity against A549 cancer cells while sparing normal cells. Moreover, QM-AgNPs showed significant antibacterial activity against both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), likely due to membrane disruption and the leakage of intracellular contents. To explore practical applications, we developed a GEL@AgNPs coating system for the postharvest preservation of grapes. As a result, the reduced weight loss and decay rate suggest a potential role for QM-AgNPs in extending fruit freshness. Comprehensive shelf-life studies are planned to further substantiate the potential of QM-AgNPs as an effective material for active food packaging applications. Full article
Show Figures

Graphical abstract

25 pages, 3930 KiB  
Article
Influence of Titanium Dioxide (TiO2) Nanocrystallinity on the Optoelectrical Properties of Chitosan Biocomposite Films Prepared via Sol–Gel Casting
by Nuchnapa Tangboriboon, Nitchakarn Malichai and Guytawan Wantaha
J. Compos. Sci. 2025, 9(7), 334; https://doi.org/10.3390/jcs9070334 - 27 Jun 2025
Viewed by 744
Abstract
Bio-nanocomposite films were prepared using chitosan, gelatin, and varying concentrations (0, 0.5, 1.0, 2.0, and 5.0 wt%) of titanium dioxide (TiO2) nanoparticles in acetic acid via a casting method. The incorporation of TiO2 nanoparticles into the bio-chitosan matrix enhanced ultraviolet [...] Read more.
Bio-nanocomposite films were prepared using chitosan, gelatin, and varying concentrations (0, 0.5, 1.0, 2.0, and 5.0 wt%) of titanium dioxide (TiO2) nanoparticles in acetic acid via a casting method. The incorporation of TiO2 nanoparticles into the bio-chitosan matrix enhanced ultraviolet (UV) absorption and improved the films’ physical, mechanical, and electrical properties. Additionally, the TiO2-loaded films exhibited antimicrobial activity, contributing to the extended preservation of packaged products by inhibiting microbial growth. Notably, the bio-nanocomposite films containing 1.0 wt% TiO2 exhibited an electroactive response, bending under relatively low electric field strength (250 V/mm), whereas the control film without TiO2 required higher field strength (550 V/mm) to achieve bending. This indicates potential applications in electroactive actuators requiring precise movement control. Among the tested concentrations, films containing 0.5 wt% and 1.0 wt% TiO2 (Formulas 7 and 8) demonstrated optimal performance. These films presented a visually appealing appearance with no tear marks, low bulk density (0.91 ± 0.04 and 0.85 ± 0.18 g/cm3), a satisfactory electromechanical response at 250 V/m (17.85 ± 2.58 and 61.48 ± 6.97), low shrinkage percentages (59.95 ± 3.59 and 54.17 ± 9.28), high dielectric constant (1.80 ± 0.07 and 8.10 ± 0.73), and superior UV absorption compared with pure bio-chitosan films, without and with gelatin (Formulas 1 and 6). Full article
Show Figures

Graphical abstract

18 pages, 3019 KiB  
Article
Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation
by Wladimir Silva-Vera, Sebastián Escobar-Aguirre, Robert Emilio Mora-Luna and Romina L. Abarca
Foods 2025, 14(12), 2100; https://doi.org/10.3390/foods14122100 - 14 Jun 2025
Viewed by 499
Abstract
The increasing demand for reliable food preservation strategies has driven the development of active biopolymer-based films as alternatives to conventional packaging. This study evaluates Nisin/Na-EDTA-enriched alginate and gelatin films for preserving Dosidicus gigas (jumbo squid) during refrigerated storage. Films were formulated using alginate, [...] Read more.
The increasing demand for reliable food preservation strategies has driven the development of active biopolymer-based films as alternatives to conventional packaging. This study evaluates Nisin/Na-EDTA-enriched alginate and gelatin films for preserving Dosidicus gigas (jumbo squid) during refrigerated storage. Films were formulated using alginate, gelatin 220/280 Bloom, and glycerol, and characterized in terms of their mechanical, optical, and biodegradation properties. Their effectiveness for the preservation of squid fillets was tested, focusing on weight loss and color stability during refrigerated storage. The incorporation of Nisin/Na-EDTA significantly modified the film’s properties: elongation at break increased from 4.95% (alginate control) to 65.13% (gelatin 280 active), while tensile strength decreased from 8.86 MPa to 0.798 MPa (alginate). Transparency was reduced by up to 2.5 times in active agent-incorporated alginate films. All films degraded within 14 days under soil exposure, with polysaccharide-based films degrading faster. In refrigerated storage, squid fillets coated with gelatin–alginate films containing Nisin showed reduced weight loss (24.05%) compared with uncoated controls (66.36%), particularly in skin-on samples. Color parameters and whiteness index were better preserved with gelatin-based coatings. These results demonstrate the potential of gelatin–alginate films with Nisin/Na-EDTA as biodegradable, active packaging to extend the shelf life of high-protein seafood. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

20 pages, 2727 KiB  
Article
Mechanochemical Effects of High-Intensity Ultrasound on Dual Starch Modification of Mango Cotyledons
by Ramiro Torres-Gallo, Ricardo Andrade-Pizarro, Diego F. Tirado, Andrés Chávez-Salazar and Francisco J. Castellanos-Galeano
AgriEngineering 2025, 7(6), 190; https://doi.org/10.3390/agriengineering7060190 - 13 Jun 2025
Viewed by 544
Abstract
The starch modification of mango cotyledons with both single ultrasound (US) and dual (US followed by octenyl succinic anhydride, OSA) was optimized by response surface methodology (RSM). The mechanochemical effects of ultrasound on amylose content, particle size, and dual modification efficiency were assessed. [...] Read more.
The starch modification of mango cotyledons with both single ultrasound (US) and dual (US followed by octenyl succinic anhydride, OSA) was optimized by response surface methodology (RSM). The mechanochemical effects of ultrasound on amylose content, particle size, and dual modification efficiency were assessed. In addition, the structural, thermal, morphological, and functional properties were evaluated. After optimization with single US (41 min and 91% sonication intensity), sonication induced starch granule fragmentation, altering amorphous and partially crystalline regions, which increased amylose content (34%), reduced particle size (Dx50 = 12 μm), and modified granule surface morphology. The dual modification (the subsequent OSA reaction lasted 4.6 h under the same conditions) reached a degree of substitution of 0.02 and 81% efficiency, imparting amphiphilic properties to the starch. OSA groups were mainly incorporated into amorphous and surface regions, which decreased crystallinity, gelatinization temperature, and enthalpy. The synergistic effect of the modification with US and OSA in the dual modification significantly improved the solubility and swelling power of starch, resulting in better dispersion, functionality in aqueous systems, and chemical reactivity. These findings highlight the potential of dual modification to transform mango cotyledon starch into a versatile ingredient in the food industry as a thickener, a stabilizer in soups and sauces, an emulsifier, a carrier of bioactive and edible films; in the cosmetic industry as a gelling and absorbent agent; and in the pharmaceutical industry for the controlled release of drugs. Furthermore, valorizing mango cotyledons supports circular economy principles, promoting sustainable and value-added food product development. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

29 pages, 9493 KiB  
Article
Development and Optimization of Edible Antimicrobial Films Based on Dry Heat–Modified Starches from Kazakhstan
by Marat Muratkhan, Kakimova Zhainagul, Kamanova Svetlana, Dana Toimbayeva, Indira Temirova, Sayagul Tazhina, Dina Khamitova, Saduakhasova Saule, Tamara Tultabayeva, Berdibek Bulashev and Gulnazym Ospankulova
Foods 2025, 14(11), 2001; https://doi.org/10.3390/foods14112001 - 5 Jun 2025
Viewed by 3079
Abstract
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in [...] Read more.
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in vitro digestibility. Corn and cassava starches were selected as optimal components based on their physicochemical performance. A series of single-factor experiments and a Box–Behnken design were employed to assess the influence of starch concentration, gelatinization time, glycerol, and chitosan content on film properties including tensile strength, elongation at break, water vapor permeability (WVP), and transparency. The optimized formulation (5.0% starch, 28.2 min gelatinization, 2.6% glycerol, 1.4% chitosan) yielded a transparent (77.64%), mechanically stable (10.92 MPa tensile strength; 50.0% elongation), and moisture-resistant film. Structural and thermal analyses (SEM, AFM, DSC, TGA) confirmed the film’s homogeneity and stability. Furthermore, the film exhibited moderate antioxidant activity and antibacterial efficacy against Escherichia coli and Staphylococcus aureus. These findings demonstrate the feasibility of using dry heat–modified Kazakhstani starches to develop sustainable antimicrobial packaging materials. However, further studies are needed to explore sensory attributes, long-term storage performance, and compatibility with different food matrices. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

25 pages, 4878 KiB  
Article
Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films
by Achilleas Kechagias, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstatninos Zaharioudakis, Charalampos Proestos, Emmanuel P. Giannelis, Nikolaos Chalmpes, Constantinos E. Salmas and Aris E. Giannakas
Polymers 2025, 17(11), 1518; https://doi.org/10.3390/polym17111518 - 29 May 2025
Cited by 1 | Viewed by 1507
Abstract
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this [...] Read more.
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this regard. In this study, pork-derived gelatin was used to develop novel edible active packaging films, designed for meat products. Glycerol (Gl) was used as a plasticizer. Two types of montmorillonite-based nanohybrids were employed as both reinforcing agents and carriers of antioxidant/antibacterial compounds: eugenol-functionalized montmorillonite (EG@Mt) and citral-functionalized montmorillonite (CT@Mt). The active films were formulated as Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt, where x = 5, 10, or 15 wt.%. Controlled-release kinetics showed that EG@Mt released up to 95% of its adsorbed eugenol, whereas CT@Mt released up to 55% of its adsorbed citral. The films were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and tested for antibacterial activity against Escherichia coli and Listeria monocytogenes. Results demonstrated that the Gel/Gl/xEG@Mt films exhibited superior antioxidant and antibacterial performance compared to the Gel/Gl/xCT@Mt films. All formulations were impermeable to oxygen. Although the incorporation of EG and CT slightly reduced cell viability, values remained above 80%, indicating non-toxicity. In conclusion, the film containing 15 wt.% EG@Mt achieved an oxygen transmission rate of zero, an effective concentration (EC60) of 9.9 mg/L to reach 60% antioxidant activity, and reduced E. coli and L. monocytogenes populations by at least 5.8 log CFU/mL (p < 0.05), bringing them below the detection limit. Moreover, it successfully extended the shelf life of fresh minced pork by two days. Full article
(This article belongs to the Special Issue Nano-Enhanced Biodegradable Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

18 pages, 4796 KiB  
Article
The Preparation and Characterization of Antioxidant Films Based on Hazelnut Shell-Based Vegetable Carbon Black/Chitosan/Gelatin and the Application on Soybean Oils
by Mengyuan Niu, Jiaxin Wang, Zhaoying Xun, Mengzhuo Liu, He Li, Weiyi Wang, Yuchen Wang, Chao Guo, Hanyu Li, Ning Xu, Huajiang Zhang and Ning Xia
Foods 2025, 14(10), 1678; https://doi.org/10.3390/foods14101678 - 9 May 2025
Viewed by 525
Abstract
In this study, hazelnut shell-based vegetable carbon black (HCB) was synthesized from renewable agricultural waste and incorporated into chitosan (CS) and gelatin (GEL) matrices to fabricate active packaging films. The structure of HCB was characterized, and the structure, physicochemical properties, antibacterial activity, ultraviolet [...] Read more.
In this study, hazelnut shell-based vegetable carbon black (HCB) was synthesized from renewable agricultural waste and incorporated into chitosan (CS) and gelatin (GEL) matrices to fabricate active packaging films. The structure of HCB was characterized, and the structure, physicochemical properties, antibacterial activity, ultraviolet resistance, and functional performance of CS-GEL-HCB films with varying HCB contents (0, 1, 5, and 9 wt% based on GEL) were systematically investigated. The FT-IR results revealed that intermolecular hydrogen bonds were formed between HCB and CS and GEL. The results showed that the tensile strength of CS-GEL film (15.83 ± 0.40~32.06 ± 0.61 MPa), as well as its water vapor and oxygen barrier properties (0.55 ± 0.03~0.15 ± 0.02 g/d·m2), and UV-visible light barrier properties were significantly improved (p < 0.05) after the addition of HCB, while the water permeability, moisture content, and water solubility of CS-GEL film were effectively reduced (24.84 ± 0.45~20.10 ± 0.45%). More importantly, the CS-GEL-HCB film exhibited enhanced ultraviolet barrier properties, which helped delay the oxidation and deterioration of the oil sample during the accelerated light oxidation test. These results suggest that the CS-GEL-HCB film could serve as an effective food packaging material to improve the oxidation stability of soybean oil in the food industry, showing great potential in maintaining food quality and extending shelf life. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

20 pages, 17772 KiB  
Article
Modification of Epoxidized Soybean Oil for the Preparation of Amorphous, Nonretrogradable, and Hydrophobic Starch Films
by Sara Dalle Vacche, Leandro Hernan Esposito, Daniele Bugnotti, Emanuela Callone, Sara Fernanda Orsini, Massimiliano D’Arienzo, Laura Cipolla, Simona Petroni, Alessandra Vitale, Roberta Bongiovanni and Sandra Dirè
Polysaccharides 2025, 6(2), 40; https://doi.org/10.3390/polysaccharides6020040 - 7 May 2025
Viewed by 574
Abstract
Starch was plasticized with epoxidized soybean oil (ESO) modified by reaction with cinnamic acid (CA), and films were prepared using solvent casting from water/ethanol solutions. They exhibited good hydrophobicity, reduced water sensitivity, and showed the same transparency as glycerol-plasticized counterparts, but with less [...] Read more.
Starch was plasticized with epoxidized soybean oil (ESO) modified by reaction with cinnamic acid (CA), and films were prepared using solvent casting from water/ethanol solutions. They exhibited good hydrophobicity, reduced water sensitivity, and showed the same transparency as glycerol-plasticized counterparts, but with less flexibility. Interestingly, modified ESO enhanced gelatinization and hindered retrogradation of the biopolymer. ESO was reacted with CA without the use of catalysts to obtain a β-hydroxyester; in order to optimize the synthesis process, different reaction conditions were explored, varying the stoichiometry and the heating cycles. Products were fully characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR), and the different reactions following the opening of the oxirane ring were discussed. The properties of the novel starch-based films prepared with modified ESO highlight their use in food packaging, disposable devices, and agricultural mulching films. Full article
Show Figures

Graphical abstract

23 pages, 427 KiB  
Article
Effects of Gelatin/Chitosan and Chitosan Active Films with Rice Bran Extract for the Preservation of Fresh Pork Meat
by María Cabeza de Vaca, Rosario Ramírez, Javier Rocha-Pimienta, David Tejerina and Jonathan Delgado-Adámez
Gels 2025, 11(5), 338; https://doi.org/10.3390/gels11050338 - 30 Apr 2025
Cited by 3 | Viewed by 482
Abstract
Films formulated with gelatin and chitosan (GL/CH) or chitosan (CH), without or with 0.3% and 0.5% concentrations of rice bran extract (RBE), have been developed. The migrations of rice bran extract and the antioxidant and antimicrobial properties in vitro have been assessed. The [...] Read more.
Films formulated with gelatin and chitosan (GL/CH) or chitosan (CH), without or with 0.3% and 0.5% concentrations of rice bran extract (RBE), have been developed. The migrations of rice bran extract and the antioxidant and antimicrobial properties in vitro have been assessed. The effects of the film formulations in maintaining color stability, oxidative status and microbial loads on fresh pork meat during 9 days of refrigerated storage were studied. For the films, releases of γ-oryzanol only were observed in low polarity simulant. The highest migrations and antioxidant activity were related to gelatine films, enhanced with the addition of rice bran extract. Only chitosan films showed antimicrobial activity in vitro against Escherichia coli and Listeria innocua, reaching decreases of 7.68 and 8.06 Log CFU at 72 h, respectively. Both gelatin/chitosan and chitosan films prevented the color changes in meat during storage, preventing the paleness, and chitosan films also provoked an increment of redness until 2.88 units of CIE b* at day 9. The films did not prevent either lipid or protein oxidation in meat, despite the rice bran extract inclusion, even increasing the lipid oxidations with chitosan films. However, all films helped to control the microbial counts in meat throughout all the storage, with chitosan being the most effective films, especially with the addition of RBE. Overall, gelatin/chitosan and chitosan films offer a sustainable alternative for fresh pork meat packaging. Full article
(This article belongs to the Special Issue Nature Polymer Gels for Food Packaging)
Back to TopTop