Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = gelatin nanoparticle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4007 KiB  
Article
Tannic Acid-Enhanced Gelatin-Based Composite Hydrogel as a Candidate for Canine Periodontal Regeneration
by Laura C. Pinho, Marta Ferreira, Angélica Graça, Joana Marto, Bruno Colaço, Maria Helena Fernandes and Catarina Santos
Gels 2025, 11(8), 650; https://doi.org/10.3390/gels11080650 - 15 Aug 2025
Abstract
Periodontal disease in dogs leads to progressive bone loss and adversely impacts overall health. However, cost-effective regenerative strategies are still limited in veterinary practice. This study aimed to develop and evaluate a novel tannic acid (TA)–gelatin-based hydrogel (Gel), incorporating graphene oxide (GO) and [...] Read more.
Periodontal disease in dogs leads to progressive bone loss and adversely impacts overall health. However, cost-effective regenerative strategies are still limited in veterinary practice. This study aimed to develop and evaluate a novel tannic acid (TA)–gelatin-based hydrogel (Gel), incorporating graphene oxide (GO) and hydroxyapatite nanoparticles (HA), as a potential barrier material for guided tissue regeneration (GTR) applications. The hydrogels—Gel, Gel-GO, Gel-HA, and Gel-GO-HA—were characterized for chemical structure, molecular interactions, surface morphology, nanoparticle dispersion, and tensile strength. Cytotoxicity was assessed using L929 fibroblasts (ISO 10993-5), while cell viability/proliferation, morphology, and alkaline phosphatase (ALP) production were evaluated using canine periodontal ligament-derived cells. Results show that crosslinking with tannic acid enhanced the incorporation of graphene oxide and hydroxyapatite nanoparticles via hydrogen bonding into TA–gelatin-based hydrogels. This combination increased surface roughness, reduced degradation rate, and enabled shape memory behavior, critical for guided tissue regeneration (GTR) membranes. The extracts from Gel-HA-GO showed that cytotoxicity was both time- and concentration-dependent in L929 fibroblasts, whereas enhanced cell proliferation and increased ALP production were observed in cultures derived from canine periodontal ligament cells. These findings suggest that TA–gelatin-based hydrogels incorporating GO and HA demonstrated favorable mechanical and physicochemical properties, biocompatibility, and osteogenic potential. These attributes suggest their viability as a promising composite for the development of innovative GTR strategies to address periodontal tissue loss in veterinary medicine. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Graphical abstract

24 pages, 6803 KiB  
Article
Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation
by Chenwei Zhang, Yao Li, Yue Huo, Hongtao Wang and Dandan Wang
Foods 2025, 14(13), 2327; https://doi.org/10.3390/foods14132327 - 30 Jun 2025
Viewed by 354
Abstract
We synthesized QM-AgNPs (Dianthus superbus L.-AgNPs, Qu Mai-AgNPs) by an economical and environmentally friendly method using Dianthus superbus L. extract as a reducing and stabilizing agent. The resulting QM-AgNPs were comprehensively characterized and evaluated for their antioxidant, cytotoxic, and antibacterial activities. Herein, [...] Read more.
We synthesized QM-AgNPs (Dianthus superbus L.-AgNPs, Qu Mai-AgNPs) by an economical and environmentally friendly method using Dianthus superbus L. extract as a reducing and stabilizing agent. The resulting QM-AgNPs were comprehensively characterized and evaluated for their antioxidant, cytotoxic, and antibacterial activities. Herein, TEM analysis revealed that the QM-AgNPs were predominantly spherical, polydisperse, and exhibited a core particle size ranging from 11 to 18 nm. In contrast, DLS analysis showed a larger hydrodynamic diameter (primarily 60–87 nm), reflecting the hydrated shell and surface biomolecular corona. The crystalline nature of QM-AgNPs was confirmed by XRD and SAED spectra while FTIR spectroscopy indicated the presence of functional groups from the plant extract that may contribute to nanoparticle stabilization. Functional assessments demonstrated that QM-AgNPs exhibited strong antioxidant activity, with efficient DPPH radical scavenging, and selective cytotoxicity against A549 cancer cells while sparing normal cells. Moreover, QM-AgNPs showed significant antibacterial activity against both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), likely due to membrane disruption and the leakage of intracellular contents. To explore practical applications, we developed a GEL@AgNPs coating system for the postharvest preservation of grapes. As a result, the reduced weight loss and decay rate suggest a potential role for QM-AgNPs in extending fruit freshness. Comprehensive shelf-life studies are planned to further substantiate the potential of QM-AgNPs as an effective material for active food packaging applications. Full article
Show Figures

Graphical abstract

25 pages, 3930 KiB  
Article
Influence of Titanium Dioxide (TiO2) Nanocrystallinity on the Optoelectrical Properties of Chitosan Biocomposite Films Prepared via Sol–Gel Casting
by Nuchnapa Tangboriboon, Nitchakarn Malichai and Guytawan Wantaha
J. Compos. Sci. 2025, 9(7), 334; https://doi.org/10.3390/jcs9070334 - 27 Jun 2025
Viewed by 868
Abstract
Bio-nanocomposite films were prepared using chitosan, gelatin, and varying concentrations (0, 0.5, 1.0, 2.0, and 5.0 wt%) of titanium dioxide (TiO2) nanoparticles in acetic acid via a casting method. The incorporation of TiO2 nanoparticles into the bio-chitosan matrix enhanced ultraviolet [...] Read more.
Bio-nanocomposite films were prepared using chitosan, gelatin, and varying concentrations (0, 0.5, 1.0, 2.0, and 5.0 wt%) of titanium dioxide (TiO2) nanoparticles in acetic acid via a casting method. The incorporation of TiO2 nanoparticles into the bio-chitosan matrix enhanced ultraviolet (UV) absorption and improved the films’ physical, mechanical, and electrical properties. Additionally, the TiO2-loaded films exhibited antimicrobial activity, contributing to the extended preservation of packaged products by inhibiting microbial growth. Notably, the bio-nanocomposite films containing 1.0 wt% TiO2 exhibited an electroactive response, bending under relatively low electric field strength (250 V/mm), whereas the control film without TiO2 required higher field strength (550 V/mm) to achieve bending. This indicates potential applications in electroactive actuators requiring precise movement control. Among the tested concentrations, films containing 0.5 wt% and 1.0 wt% TiO2 (Formulas 7 and 8) demonstrated optimal performance. These films presented a visually appealing appearance with no tear marks, low bulk density (0.91 ± 0.04 and 0.85 ± 0.18 g/cm3), a satisfactory electromechanical response at 250 V/m (17.85 ± 2.58 and 61.48 ± 6.97), low shrinkage percentages (59.95 ± 3.59 and 54.17 ± 9.28), high dielectric constant (1.80 ± 0.07 and 8.10 ± 0.73), and superior UV absorption compared with pure bio-chitosan films, without and with gelatin (Formulas 1 and 6). Full article
Show Figures

Graphical abstract

9 pages, 1292 KiB  
Article
Exploring the Feasibility of a Microchip Laser Ablation Method for the Preparation of Biopolymer-Stabilized Gold Nanoparticles: Case Studies with Gelatin and Collagen
by Nazgul Assan, Tomoyuki Suezawa, Yuta Uetake, Yumi Yakiyama, Michiya Matsusaki and Hidehiro Sakurai
Colloids Interfaces 2025, 9(4), 42; https://doi.org/10.3390/colloids9040042 - 20 Jun 2025
Cited by 1 | Viewed by 629
Abstract
Introducing small-sized metal nanoparticles directly into biopolymers susceptible to thermal and chemical stimulations remains a significant challenge. Recently, we showed a novel approach to fabricating gold nanoparticles through pulsed laser ablation in liquid (PLAL) using a microchip laser (MCL). Despite its lower pulse [...] Read more.
Introducing small-sized metal nanoparticles directly into biopolymers susceptible to thermal and chemical stimulations remains a significant challenge. Recently, we showed a novel approach to fabricating gold nanoparticles through pulsed laser ablation in liquid (PLAL) using a microchip laser (MCL). Despite its lower pulse energy compared to conventional lasers, this technique demonstrates high ablation efficiency, offering the potential to produce composites without compromising the distinctive structure of biopolymers. As a proof of concept, we successfully generated gelatin-stabilized gold nanoparticles with a smaller size (average diameter of approximately 4 nm), while preserving the unchanged circular dichroism (CD) spectra, indicating the retention of gelatin’s unique structure. Extending this technique to the preparation of type I collagen-stabilized gold nanoparticles yielded non-aggregated nanoparticles, although challenges in yield still persist. These results highlight the potential of the microchip laser ablation technique for producing metal nanoparticles within a vulnerable matrix. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Graphical abstract

23 pages, 4707 KiB  
Article
One-Pot Synthesis of Gelatin/Gum Arabic Hydrogels Embedding Silver Nanoparticles as Antibacterial Materials
by Irina Popescu, Irina Mihaela Pelin, Irina Rosca and Marieta Constantin
Gels 2025, 11(6), 429; https://doi.org/10.3390/gels11060429 - 3 Jun 2025
Viewed by 808
Abstract
High and large-spectrum antibacterial features and ROS scavenging properties are the most important requirements for efficient wound-dressing materials. A composite hydrogel was synthesized herein by a one-pot procedure embedding silver nanoparticles (AgNPs) covered with oxidized gum arabic (OGA) within gelatin (Gel) hydrogel. Small [...] Read more.
High and large-spectrum antibacterial features and ROS scavenging properties are the most important requirements for efficient wound-dressing materials. A composite hydrogel was synthesized herein by a one-pot procedure embedding silver nanoparticles (AgNPs) covered with oxidized gum arabic (OGA) within gelatin (Gel) hydrogel. Small (2–20 nm), round-shaped AgNPs (ζ = −22 mV) were first obtained by green synthesis using OGA as a reducing and capping agent. Composite hydrogels, containing 0.6 and 1.3 wt.% Ag, were obtained by the covalent cross-linking (Schiff base reaction) of amine groups in gelatin with the dialdehyde groups located on the shell of the AgNPs. Thus, the uniform distribution of the AgNPs in the network contributed to the increased physicochemical and hydrolytic stability of the hydrogels. Moreover, the high swelling degree together with the good mechanical properties make them appropriate candidates for wound-healing materials. The hydrogels exhibited 80% scavenging activity of ABTS●+ free radicals after 6 h of incubation and were effective against E. coli and S. aureus, achieving a 4% survival of bacteria within 3 h (E. coli) and 24 h (S. aureus). These results clearly indicate that the proposed hydrogels have potential in wound-dressing applications. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering (2nd Edition))
Show Figures

Figure 1

20 pages, 13885 KiB  
Article
Biodegradable Double-Layer Hydrogels with Sequential Drug Release for Multi-Phase Collaborative Regulation in Scar-Free Wound Healing
by Xinyu Zhang, Qianhe Zu, Chunlin Deng, Xin Gao, Hongxu Liu, Yi Jin, Xinjian Yang and Enjun Wang
J. Funct. Biomater. 2025, 16(5), 164; https://doi.org/10.3390/jfb16050164 - 7 May 2025
Cited by 1 | Viewed by 1150
Abstract
Scarring is a prevalent and often undesirable outcome of the wound healing process, impacting millions worldwide. The complex and dynamic nature of wound healing, including hemostasis, inflammation, proliferation, and remodeling, necessitates precise, making it hard for stage-specific interventions to prevent pathological scarring. This [...] Read more.
Scarring is a prevalent and often undesirable outcome of the wound healing process, impacting millions worldwide. The complex and dynamic nature of wound healing, including hemostasis, inflammation, proliferation, and remodeling, necessitates precise, making it hard for stage-specific interventions to prevent pathological scarring. This study introduces a double-layer hydrogel system designed for sequential drug release, aligning with the stage-specific need for wound healing. The lower layer, containing curcumin-loaded chitosan nanoparticles, shows early anti-inflammatory and antioxidant effects, while the upper layer, with pirfenidone-encapsulated gelatin microspheres, presents late-stage anti-fibrotic activity. The hydrogel’s unique design, with varying degradation rates and mechanical properties in each layer, facilitates cascade drug release in synchrony with wound healing stages. Rapid release of curcumin from the lower layer promotes proliferation by mitigating inflammation and oxidative stress, while the sustained release of pirfenidone from the upper layer inhibits excessive fibrillation during late proliferation and remodeling. In a rat model of full-thickness skin defect, treatment with a double-layer hydrogel drug delivery system accelerated the wound closure, improved scar quality, and promoted the formation of hair follicles. Therefore, this innovative approach lays a promising foundation for future clinical applications in anti-scar therapies, offering a significant advancement in wound care and regenerative medicine. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Figure 1

19 pages, 3669 KiB  
Article
Dual Delivery of Cells and Bioactive Molecules for Wound Healing Applications
by Petras Winkler and Yong Mao
Molecules 2025, 30(7), 1577; https://doi.org/10.3390/molecules30071577 - 31 Mar 2025
Cited by 1 | Viewed by 718
Abstract
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased [...] Read more.
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased susceptibility to infections. While antimicrobial agents have traditionally been used to treat infections, stem cells have recently emerged as a promising therapy due to their regenerative properties, including the secretion of cytokines and immunomodulators that support wound healing. This study aims to develop an advanced dual-delivery system integrating stem cells and antibiotics. Stem cells have previously been delivered by encapsulation in gelatin methacrylate (GelMA) hydrogels. To explore a more effective delivery method, GelMA was processed into microparticles (MP). Compared to a bulk GelMA hydrogel (HG) encapsulation, GelMA MP supported greater cell growth and enhanced in vitro wound healing activity of human mesenchymal stem cells (hMSCs), likely due to a larger surface area for cell attachment and improved nutrient exchange. To incorporate antimicrobial properties, the broad-spectrum antibiotics penicillin/streptomycin (PS) were loaded into a bulk GelMA hydrogel, which was then cryo-milled into MPs to serve as carriers for hMSCs. To achieve a more sustained antibiotic release, gelatin nanoparticles (NP) were used as carriers for PS. PS was either incorporated during NP synthesis (NP+PS(S)) or absorbed into NP after synthesis (NP+PS(A)). MPs containing PS, NP+PS(S), or NP+PS(A) were tested for their cell carrier functions and antibacterial activities. The incorporation of PS did not compromise the cell-carrying function of MP configurations. The anti-S. aureus activity was detected in conditioned media from MPs for up to eight days—four days longer than from bulk HG containing PS. Notably, the presence of hMSCs prolonged the antimicrobial activity of MPs, suggesting a synergistic effect between stem cells and antibiotics. PS loaded via synthesis (NP+PS(S)) exhibited a delayed initial release, whereas PS loaded via absorption (NP+PS(A)) provided a more immediate release, with potential for sustained delivery. This study demonstrates the feasibility of a dual-delivery system integrating thera Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

18 pages, 7150 KiB  
Article
Development of Films for Wound Healing Based on Gelatin and Oil/Water Emulsions as Carriers of Bioactive Compounds
by Ayelen M. Sosa, Celeste Cottet, Belén E. Berin, Luis M. Martínez, Mercedes A. Peltzer, María J. Prieto and Carolina S. Martinez
Pharmaceutics 2025, 17(3), 357; https://doi.org/10.3390/pharmaceutics17030357 - 11 Mar 2025
Cited by 1 | Viewed by 1362
Abstract
Background: Natural biopolymeric matrices for developing dressings have been extensively studied, as they may exhibit beneficial properties for wound healing. Gelatin possesses promising structural and physicochemical properties for incorporating active compounds (ACs). O/W emulsions are an alternative delivery system for AC with different [...] Read more.
Background: Natural biopolymeric matrices for developing dressings have been extensively studied, as they may exhibit beneficial properties for wound healing. Gelatin possesses promising structural and physicochemical properties for incorporating active compounds (ACs). O/W emulsions are an alternative delivery system for AC with different properties and solubilities, promoting wound healing. Objective: This study aimed to develop gelatin films by adding silver nanoparticles and healing agents encapsulated in an O/W emulsion to treat skin wounds. Methods: A film-forming dispersion was prepared using gelatin and glycerol as a plasticizer, and films were obtained using the casting technique. Emulsions with ACs (EAs) and without ACs (ECs) were incorporated into the films. The formulations were analyzed by FESEM and characterized for their mechanical, thermal, and swelling properties, as well as their water vapor permeability. Results: The results showed that films with a higher amount of emulsion exhibited greater structural rigidity and lower permeability, while films with lower amounts of emulsion demonstrated more elasticity and higher permeability. General and organ-specific toxicity were evaluated in zebrafish larvae. The films showed no lethal or sub-lethal effects on the morphology or activity of the brain, heart, and liver. Conclusions: The active films developed could provide stable support and a safe delivery system for active compounds to treat skin lesions, minimizing the risk of infection and the need to heal a wound. Full article
Show Figures

Graphical abstract

16 pages, 6479 KiB  
Article
Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy
by Nelly Aimelyne Mpuhwe, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(5), 1125; https://doi.org/10.3390/ma18051125 - 2 Mar 2025
Cited by 1 | Viewed by 1152
Abstract
We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)–cerium oxide (CeO2) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO2 nanoparticles with a round shape were synthesized [...] Read more.
We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)–cerium oxide (CeO2) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO2 nanoparticles with a round shape were synthesized by the precipitation method coupled with calculation at 600 °C. In addition, they had highly crystalline phases and the desired chemical structures (oxidation states of Ce3+ and Ce4+) required for outstanding antimicrobial efficacy. A range of GelMA/PEGDA-CeO2 hydrogel scaffolds with different CeO2 contents (0% w/v, 0.1% w/v, 0.5% w/v, 1% w/v, and 5% w/v with respect to distilled water content) were manufactured. The photopolymerization behavior, mechanical properties, and biological properties (swelling and biodegradation behaviors) of hydrogel scaffolds were characterized to optimize the CeO2 content. GelMA/PEGDA-CeO2 hydrogel scaffolds produced with the highest CeO2 content (5% w/v) showed reasonable mechanical properties (compressive strength = 0.56 ± 0.09 MPa and compressive modulus = 0.19 ± 0.03 MPa), a high swelling ratio (1063.3 ± 10.9%), and the desired biodegradation rate (remaining weight after 28 days = 39.6 ± 2.3%). Furthermore, they showed outstanding antimicrobial efficacy (the number of colony-forming units = 76 ± 44.6 (×103)). In addition, macroporous GelMA/PEGDA-CeO2 hydrogel scaffolds with tightly controlled porous structures could be manufactured by vat photopolymerization. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

19 pages, 5879 KiB  
Article
Therapeutic Assessment of Diverse Doxycycline-Based Formulations in Promoting Deep Corneal Wound Healing: Evidence from a Rat Model
by Sze-Min Chan, Ching-Li Tseng, Wei-Hsiang Huang and Chung-Tien Lin
Vet. Sci. 2025, 12(2), 143; https://doi.org/10.3390/vetsci12020143 - 8 Feb 2025
Viewed by 979
Abstract
Doxycycline (Dxy), a broad-spectrum antibiotic with anti-inflammatory effects, is commonly used in ophthalmology but is unstable as a topical eyedrop, degrading quickly into inactive forms and requiring frequent application. To address this, gelatin nanoparticles (GNPs) loaded with Dxy (DNPs) were developed as a [...] Read more.
Doxycycline (Dxy), a broad-spectrum antibiotic with anti-inflammatory effects, is commonly used in ophthalmology but is unstable as a topical eyedrop, degrading quickly into inactive forms and requiring frequent application. To address this, gelatin nanoparticles (GNPs) loaded with Dxy (DNPs) were developed as a stable ophthalmic nanomedicine for enhancing corneal wound healing by inhibiting matrix metalloproteinases (MMPs). In this study, female Sprague–Dawley rats underwent lamellar keratectomy, and various Dxy formulations—oral, conventional eyedrops, and DNP-containing eyedrops—were evaluated for corneal wound repair. Clinical assessments included fluorescein staining, slit-lamp biomicroscopy, spectral-domain optical coherence tomography (SD-OCT) imaging, histopathology, and immunohistochemistry for MMP-2, MMP-9, and α-SMA. The DNP group (0.01% Dxy in DNPs, applied twice daily) demonstrated faster corneal thickness recovery and epithelial healing on days 7 and 14 compared to 0.1% Dxy eyedrop treatments applied twice or four times daily. DNP-treated eyes also showed reduced angiogenesis intensity and lower MMP-2 and MMP-9 immunoreactive scores, with enhanced stromal recovery and reduced neovascularization. These results highlight DNPs’ potential as a superior treatment for corneal wounds, providing effective healing with less frequent dosing and lower drug concentrations. This study supports DNPs’ potential for clinical application as a stable and efficient therapeutic agent in ophthalmology. Full article
Show Figures

Figure 1

28 pages, 38029 KiB  
Review
Potential of Chitosan/Gelatin-Based Nanofibers in Delivering Drugs for the Management of Varied Complications: A Review
by Popat Mohite, Abhijeet Puri, Shubham Munde, Roshan Dave, Showkhiya Khan, Riteshkumar Patil, Anil Kumar Singh, Pratchaya Tipduangta, Sudarshan Singh and Chuda Chittasupho
Polymers 2025, 17(4), 435; https://doi.org/10.3390/polym17040435 - 7 Feb 2025
Cited by 6 | Viewed by 1985
Abstract
Drug delivery systems have revolutionized traditional drug administration methods by addressing various challenges, such as enhancing drug solubility, prolonging effectiveness, minimizing adverse effects, and preserving potency. Nanotechnology-based drug delivery systems, particularly nanoparticles (NPs) and nanofibers (NFs), have emerged as promising solutions for biomedicine [...] Read more.
Drug delivery systems have revolutionized traditional drug administration methods by addressing various challenges, such as enhancing drug solubility, prolonging effectiveness, minimizing adverse effects, and preserving potency. Nanotechnology-based drug delivery systems, particularly nanoparticles (NPs) and nanofibers (NFs), have emerged as promising solutions for biomedicine delivery. NFs, with their ability to mimic the porous and fibrous structures of biological tissues, have garnered significant interest in drug-delivering applications. Biopolymers such as gelatin (Ge) and chitosan (CH) have gained much more attention due to their biocompatibility, biodegradability, and versatility in biomedical applications. CH exhibits exceptional biocompatibility, anti-bacterial activity, and wound healing capabilities, whereas Ge provides good biocompatibility and cell adhesion properties. Ge/CH-based NFs stimulate cellular connections and facilitate tissue regeneration owing to their structural resemblance to the extracellular matrix. This review explores the additive methods of preparation, including electrospinning, force pinning, and template synthesis, focusing on electrospinning and the factors influencing the fiber structure. The properties of Ge and CH, their role in drug release, formulation strategies, and characterization techniques for electrospun fibers are discussed. Furthermore, this review addresses applications in delivering active moieties in the management of orthopedics and wound healing with regulatory considerations, along with challenges related to them. Thus, the review aims to provide a comprehensive overview of the potential of Ge/CH-based NFs for drug delivery and biomedical applications. Full article
(This article belongs to the Special Issue Multifunctional Application of Electrospun Fiber)
Show Figures

Graphical abstract

18 pages, 5155 KiB  
Article
Antibacterial UV-Curable Gel with Hydroxyapatite Nanoparticles for Regenerative Medicine in the Field of Orthopedics
by Julia A. Burunkova, Valeria V. Semykina, Vera E. Sitnikova, Dmitry M. Dolgintsev, Faliya F. Zaripova, Alina A. Ponomareva, Diana R. Mizina, Attila Csick, Sandor Kokenyesi and Anton Zhilenkov
J. Compos. Sci. 2025, 9(2), 65; https://doi.org/10.3390/jcs9020065 - 1 Feb 2025
Cited by 1 | Viewed by 1080
Abstract
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because [...] Read more.
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because it covers any surface geometry of metal implants and hardens under ultraviolet light. In this work, sorption properties, changes in porosity, and mechanical properties of the material were investigated. The conditions for obtaining hydroxyapatite (HA) nanoparticles and the presence of silicon oxide nanoparticles and organic for the shell in an aqueous medium were studied for the pH of the medium, the sequence of administration and concentration of the material components, as well as antibacterial properties. This polymer material is partially resorbable. That supports not only the growth of bone cells but also serves as a protective layer. It reduces friction between organic tissues and a metal implant and can be a solution to the problem of the aseptic instability of metal implants. The material can also be used to repair damaged bones and cartilage tissues, especially in cases where the application and curing procedure is performed using laparoscopic methods. In this work, the authors propose a simple and quite cheap method for obtaining material based on photopolymerizable acrylates and natural gelatin with nanoparticles of HA, zinc oxide, and silicon oxide. The method allows one to obtain a composite material with different nanoparticles in a polymer matrix which retain the requisite properties needed such as active-sized HA, antibacterial ZnO, and structure-forming and stability-improving SiO2 nanoparticles. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

14 pages, 1503 KiB  
Article
Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains
by Atif Ullah, Fawad Ali, Farman Ullah, Sajid Khan Sadozai, Saeed Ahmed Khan, Sajid Hussain, Abdulwahed Fahad Alrefaei and Sajid Ali
Pharmaceutics 2025, 17(1), 125; https://doi.org/10.3390/pharmaceutics17010125 - 17 Jan 2025
Cited by 3 | Viewed by 1769
Abstract
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by Candida albicans (C. albicans). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine [...] Read more.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by Candida albicans (C. albicans). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy. Silver nanoparticles were produced through a light-activated, gelatin-based method, resulting in particle sizes ranging from 56.8 nm to 66.2 nm, confirmed by dynamic light scattering and scanning electron microscopy. Stability studies indicated that AgNPs produced with 30 mg of silver nitrate (AgNO₃) exhibited the greatest stability over 60 days across different temperature conditions. The analysis through UV-visible spectrophotometry revealed a notable shift in the absorption spectra as AgNO₃ concentrations increased, which was associated with a strengthening of plasmon resonance. The effectiveness of the AgNPs and Terbinafine combination was assessed against three strains of C. albicans (ATCC 10231, ATCC 90028, and ATCC 18804). Terbinafine demonstrated strong antifungal properties with minimum inhibitory concentrations (MIC) values ranging from 2–4 µg/mL, whereas AgNPs on their own displayed moderate effectiveness. The integrated formulation notably enhanced effectiveness, especially against strain ATCC 90028, revealing a synergistic effect (FIFi = 0.369). These results were complemented by the findings of the time-to-kill assay, where the same strain showed a 3.2 log₁₀ CFU/mL decrease in viable cell count. The process by which AgNPs boost activity entails the disruption of the fungal cell membrane and its internal components, probably as a result of silver ion release and the generation of free radicals. The results indicate that the combination of Terbinafine and AgNPs may act as a powerful alternative for addressing resistant fungal infections, presenting an encouraging direction for future antifungal treatments. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

18 pages, 4508 KiB  
Article
Design of the Multi-Bioactive Graphene-Oxide/Gelatin/Alginate Scaffolds as Dual ECM-Mimetic and Specific Wound Healing Phase-Target Therapeutic Concept for Advanced Wound Healing
by Marko Demenj, Martina Žabčić, Marija Vukomanović, Tatjana Ilić-Tomić, Dušan Milivojević, Simonida Tomić, Dubravka Živanović and Marija M. Babić Radić
Pharmaceutics 2025, 17(1), 89; https://doi.org/10.3390/pharmaceutics17010089 - 12 Jan 2025
Viewed by 1956
Abstract
Objectives: To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three [...] Read more.
Objectives: To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. Methods: The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using Caenorhabditis elegans assay. Results: The scaffolds exhibited a highly porous interconnected morphology with adjustable porosity (93–96%) and mechanical strength (1.10–2.90 MPa), hydrophilic nature with high capacity to absorb physiological fluids, and stable adhesion to the skin tissue. The obtained results of MRC5 cell viability indicate that the scaffolds are safe for biomedical applications. No mortality was detected among the Caenorhabditis elegans throughout the incubation period, indicating that the scaffolds are not toxic. The results of in vitro release study of allantoin, quercetin, and caffeic acid confirm the scaffolds’ significant potential for simultaneous release. Conclusion: The graphene oxide/gelatin/alginate scaffolds are promising candidates for non-invasive, dual ECM-mimetic, and multi-target wound therapy, offering an innovative strategy to address the complexities of wound healing process. Full article
Show Figures

Graphical abstract

17 pages, 5952 KiB  
Article
Enhancement of Biopolymer Film Properties Using Spermidine, Zinc Oxide, and Graphene Oxide Nanoparticles: A Study of Physical, Thermal, and Mechanical Characteristics
by Esmaeil Vafaei, Maryam Hasani, Nasrin Salehi, Farzaneh Sabbagh and Shirin Hasani
Materials 2025, 18(2), 225; https://doi.org/10.3390/ma18020225 - 7 Jan 2025
Cited by 2 | Viewed by 1050
Abstract
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of [...] Read more.
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin–chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties. The results show that adding ZnO and GO nanoparticles increased the tensile strength of the layers from 9.203 MPa to 17.787 MPa in films containing graphene oxide and zinc oxide, although the elongation at break decreased. The incorporation of nanoparticles reduced the water vapor permeability from 0.164 to 0.149 (g.m−2.24 h−1). Moreover, the transparency of the layers ranged from 72.67% to 86.17%, decreasing with higher nanoparticle concentrations. The use of nanoparticles enhanced the light-blocking characteristics of the films, making them appropriate for the preservation of light-sensitive food items. The thermal properties improved with an increase in the melting temperature (Tm) up to 115.5 °C and enhanced the thermal stability in the nanoparticle-containing samples. FTIR analysis confirmed the successful integration of all components within the films. In general, the combination of gelatin and chitosan, along with ZnO, GO, and spermidine, significantly enhanced the properties of the layers, making them stronger and more suitable for biodegradable packaging applications. Full article
Show Figures

Figure 1

Back to TopTop