Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = gas tanks for vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 5715 KiB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 496
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

31 pages, 4719 KiB  
Review
Exploring the Gas Permeability of Type IV Hydrogen Storage Cylinder Liners: Research and Applications
by Xinshu Li, Qing Wang, Shuang Wu, Dongyang Wu, Chunlei Wu, Da Cui and Jingru Bai
Materials 2025, 18(13), 3127; https://doi.org/10.3390/ma18133127 - 1 Jul 2025
Viewed by 618
Abstract
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions, the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety, efficiency, and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings, [...] Read more.
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions, the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety, efficiency, and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings, analyzes the influence of different materials and structures on gas permeability, elucidates the dissolution and diffusion mechanisms of hydrogen in plastic liners, and discusses their engineering applications. We focus on measurement methods, influencing factors, and improvement strategies for liner gas permeability. Additionally, we explore the prospects of Type IV hydrogen storage tanks in fields such as automotive, aerospace, and energy storage industries. Through this comprehensive review of liner gas permeability, critical insights are provided to guide the development of efficient and safe hydrogen storage and transportation systems. These insights are vital for advancing the widespread application of hydrogen energy technology and fostering sustainable energy development, significantly contributing to efforts aimed at enhancing the performance and safety of Type IV hydrogen storage tanks. Full article
Show Figures

Figure 1

24 pages, 5570 KiB  
Article
Study on Propellant Management Device for Small-Scale Supersonic Flight Experiment Vehicle
by Ryoji Imai and Takuya Wada
Aerospace 2025, 12(6), 561; https://doi.org/10.3390/aerospace12060561 - 19 Jun 2025
Viewed by 364
Abstract
To commercialize supersonic and hypersonic passenger aircraft and reusable spaceplanes, we are developing a small-scale supersonic flight experiment vehicle as a flying testbed for technical demonstrations in high-speed flight environments. This experiment vehicle is equipped with a fuel tank and an oxidizer tank, [...] Read more.
To commercialize supersonic and hypersonic passenger aircraft and reusable spaceplanes, we are developing a small-scale supersonic flight experiment vehicle as a flying testbed for technical demonstrations in high-speed flight environments. This experiment vehicle is equipped with a fuel tank and an oxidizer tank, and the propellants inside the tanks slosh due to changes in acceleration during flight. In this situation, there is a risk of gas entrainment during liquid discharge, which could potentially cause an engine malfunction. To avoid such a situation, we considered installing a propellant management device (PMD) inside the tank to suppress the gas entrainment. In this study, a capillary type PMD with a screen channel structure, commonly used in satellites featuring no moving parts, was adopted due to its applicability to a wide acceleration range. The PMD was designed with a structure featuring cylindrical mesh screen nozzles installed at the top and bottom of a cylindrical tank. A one-dimensional flow analysis model was developed taking into account factors such as the pressure loss across the mesh screens and the flow loss within the mesh screen nozzles, which enabled the identification of conditions under which gas entrainment occurred. In this analytical model, separate formulations were developed using Hartwig’s and Ingmanson’s formulas for evaluating the flow losses through the mesh screens. Furthermore, by applying the flow analysis model, the specifications of the mesh screens as key parameters of the PMD, together with the nozzle diameter and nozzle length, were selected. Moreover, we fabricated prototype PMDs with each nozzle and conducted visualization tests using a transparent tank. The tests were conducted under static conditions, where a gravitational acceleration acted downward, and the effects of the cylindrical mesh screen length and discharge flow rate on the free surface height at which gas entrainment occurred were investigated. This experiment demonstrated the effectiveness of the propellant acquisition mechanism of the present PMD. The height of the free surface was also compared with the experimental and analytical results, and it was shown that the results obtained by using Ingmanson’s formula for pressure loss through the screen mesh were closer to the experimental results. These findings demonstrated the validity of the one-dimensional flow analysis model. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 6658 KiB  
Article
Dynamic Modeling of a Compressed Natural Gas Refueling Station and Multi-Objective Optimization via Gray Relational Analysis Method
by Fatih Özcan and Muhsin Kılıç
Appl. Sci. 2025, 15(9), 4908; https://doi.org/10.3390/app15094908 - 28 Apr 2025
Viewed by 572
Abstract
Compressed natural gas (CNG) refueling stations operate under highly dynamic thermodynamic conditions, requiring accurate modeling and optimization to ensure efficient performance. In this study, a dynamic simulation model of a CNG station was developed using MATLAB-SIMULINK, including detailed subsystems for multi-stage compression, cascade [...] Read more.
Compressed natural gas (CNG) refueling stations operate under highly dynamic thermodynamic conditions, requiring accurate modeling and optimization to ensure efficient performance. In this study, a dynamic simulation model of a CNG station was developed using MATLAB-SIMULINK, including detailed subsystems for multi-stage compression, cascade storage, and vehicle tank filling. Real gas effects were incorporated to improve prediction accuracy of the pressure, temperature, and mass flow rate variations during fast filling. The model was validated against experimental data, showing good agreement in both pressure rise and flow rate evolution. A two-stage multi-objective optimization approach was applied using Taguchi experimental design and gray relational analysis (GRA). In the first stage, storage pressures were optimized to maximize the number of vehicles filled and gas mass delivered, while minimizing compressor-specific work. The second stage focused on optimizing the volume distribution among the low, medium, and high-pressure tanks. The combined optimization led to a 12.33% reduction in compressor-specific energy consumption with minimal change in refueling throughput. These results highlight the critical influence of pressure levels and volume ratios in cascade storage systems on station performance. The presented methodology provides a systematic framework for the analysis and optimization of transient operating conditions in CNG infrastructure. Full article
Show Figures

Figure 1

20 pages, 3099 KiB  
Article
Comparison of Battery Electrical Vehicles and Internal Combustion Engine Vehicles–Greenhouse Gas Emission Life Cycle Assessment
by Vasco Vieira, Andresa Baptista, Adélio Cavadas, Gustavo F. Pinto, Joaquim Monteiro and Leonardo Ribeiro
Appl. Sci. 2025, 15(6), 3122; https://doi.org/10.3390/app15063122 - 13 Mar 2025
Viewed by 4335
Abstract
Battery electrical vehicle (BEV) ownership has increased in recent years. There is a general concern over the life cycle of the batteries used in such vehicles. This study provides a comprehensive overview of electric vehicles, encompassing their technical evolution, autonomy, and ownership. The [...] Read more.
Battery electrical vehicle (BEV) ownership has increased in recent years. There is a general concern over the life cycle of the batteries used in such vehicles. This study provides a comprehensive overview of electric vehicles, encompassing their technical evolution, autonomy, and ownership. The analysis delved into the various types of batteries utilized in these vehicles, examining the composition of their constituent materials and the mechanisms underlying their operation. Additionally, it assessed their performance in terms of energy density storage, recharge capabilities, autonomy, and prospects. A critical evaluation of electric vehicles and their internal combustion engine vehicle (ICEV) counterparts, considering the Life Cycle Assessment (LCA) criterion, was conducted. The LCA criterion encompasses emissions during the entire lifecycle, from the “cradle” to the “tank” (WTT) and the “tank” until the end of its cycle (TTW). The findings of this study indicate that BEVs consistently outperformed ICEVs in terms of greenhouse gas (GHG) emissions in all the sizes of vehicles studied. Full article
(This article belongs to the Special Issue Recent Developments in Electric Vehicles)
Show Figures

Figure 1

17 pages, 6018 KiB  
Article
The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level
by Andrzej Rusin, Katarzyna Stolecka-Antczak, Wojciech Kosman and Krzysztof Rusin
Energies 2024, 17(21), 5504; https://doi.org/10.3390/en17215504 - 4 Nov 2024
Cited by 3 | Viewed by 1112
Abstract
The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels [...] Read more.
The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels or a dispenser. This may lead to a hydrogen cloud occurring near the source of the release or at a given distance. The range of the cloud was analyzed in connection to the amount of the released gas and the wind velocity. The results of the calculations were compared for chosen structures in the station. Then potential fires and explosions were investigated. The hazard zones were calculated with respect to heat fluxes generated in the fires and the overpressure generated in explosions. The maximum ranges of these zones vary from about 14 to 30 m and from about 9 to 14 m for a fires and an explosions of hydrogen, respectively. Finally, human death probabilities are presented as functions of the distance from the sources of the uncontrolled hydrogen releases. These are shown for different amounts and pressures of the released gas. In addition, the risk of human death is determined along with the area, where it reaches the highest value in the whole station. The risk of human death in this area is 1.63 × 10−5 [1/year]. The area is approximately 8 square meters. Full article
Show Figures

Figure 1

19 pages, 4227 KiB  
Article
Monitoring CH4 Fluxes in Sewage Sludge Treatment Centres: Challenging Emission Underreporting
by Hiniduma Gamage Kavindi Abeywickrama, Yadira Bajón-Fernández, Bharanitharan Srinamasivayam, Duncan Turner and Mónica Rivas Casado
Remote Sens. 2024, 16(13), 2280; https://doi.org/10.3390/rs16132280 - 22 Jun 2024
Cited by 1 | Viewed by 1576
Abstract
In this manuscript, CH4 emissions from sludge treatment centres are quantified using an unmanned aerial vehicle (UAV) framework, with particular focus on anaerobic digesters and digestate storage tanks. The outcomes are compared to those obtained using the carbon accounting workbook (CAW), which [...] Read more.
In this manuscript, CH4 emissions from sludge treatment centres are quantified using an unmanned aerial vehicle (UAV) framework, with particular focus on anaerobic digesters and digestate storage tanks. The outcomes are compared to those obtained using the carbon accounting workbook (CAW), which is the most commonly used industry tool by UK and Irish water companies to estimate the annual greenhouse gas emissions from their process operations. Path integrated concentrations are monitored with the use of an open-path tuneable diode laser absorption spectroscopy sensor embedded on a UAV. Measurements are interpolated using geostatistics (Kriging) and coupled with the mass balance approach to estimate emissions. The findings show that the CAW seems to underestimate emissions from digestate storage tanks by up to an order of magnitude. The results also show that CH4 emissions are linked with the residence time in the tank and temperature of the digestate. This study highlights the limitations of assumptions made using current reporting methods based on the carbon accounting workbook. This study proves that the UAV framework, together with the mass balance approach, provides high spatial resolution data; it captures the dynamic nature of emissions compared to the CAW and can be a cost-effective solution to estimate CH4 fluxes compared to other sensor-based systems. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

23 pages, 2058 KiB  
Article
RETRACTED: Analysis of Scalable Resonant DC–DC Converter Using GaN Switches for xEV Charging Stations
by Rajanand Patnaik Narasipuram, Subbarao Mopidevi, Anton Dianov and Amit Singh Tandon
World Electr. Veh. J. 2024, 15(5), 218; https://doi.org/10.3390/wevj15050218 - 17 May 2024
Cited by 15 | Viewed by 2368 | Retraction
Abstract
In this research, an innovative electric vehicle (EV) charger is designed and presented for xEV charging stations. The key feature of our system is a scalable, interleaved inductor–inductor–capacitor (iL2C) DC-DC converter operation. The proposed system employs two parallel L2C [...] Read more.
In this research, an innovative electric vehicle (EV) charger is designed and presented for xEV charging stations. The key feature of our system is a scalable, interleaved inductor–inductor–capacitor (iL2C) DC-DC converter operation. The proposed system employs two parallel L2C converters with 8-GaN switches on the primary side and a shared rectifier circuit on the secondary side. This configuration not only amplifies the resonant tank internal currents and losses generated by the switches but also improves current sharing. A novel closed-loop technique is proposed with a constant-voltage method of operation, along with a hybrid control scheme of variable frequency + phase shift modulation (VFPSM). To examine the controller and converter’s performance, an experimental demonstration is conducted under varying load conditions, including full load, half load, and light load, where the source voltage and load voltage are maintained at constant levels of 400 Vin and 48 V0, respectively. Furthermore, line regulation is conducted and verified to accommodate a broad input voltage range of 300 Vin–500 Vin and 500 Vin–300 Vin while maintaining an output voltage of 48 V0 at 3.3 kW, 1.65 kW, and 0.33 kW with a peak efficiency of 98.2%. Full article
Show Figures

Figure 1

24 pages, 27974 KiB  
Article
Experimental Investigation on the Performance of the Scroll Expander under Various Driving Cycles
by Hailong Yang, Yonghong Xu, Xiaohui Zhong, Jiajun Zeng and Fubin Yang
Energies 2024, 17(2), 433; https://doi.org/10.3390/en17020433 - 16 Jan 2024
Viewed by 1403
Abstract
Energy storage is considered a crucial unit in utilizing renewable energy sources, and compressed air energy storage (CAES) provides a cost-effective solution. It offers the benefits of zero pollution, a long lifespan, low maintenance costs, and minimal environmental impact. In order to increase [...] Read more.
Energy storage is considered a crucial unit in utilizing renewable energy sources, and compressed air energy storage (CAES) provides a cost-effective solution. It offers the benefits of zero pollution, a long lifespan, low maintenance costs, and minimal environmental impact. In order to increase the possibilities of compressed air energy storage for vehicle power, the performance of the expander needs to be studied. First, a CAES unit test bench is established. Then, the volumetric flow rate, rotational speed, torque, and output power are examined. Additionally, the isentropic exhaust temperature, pressure, and gas consumption rate of the scroll expander are analyzed. Finally, analyzing the economic feasibility of the CAES unit entails running the unit under varied driving conditions. Results reveal that the pressure of the input expander is high, which will lead to greater torque, greater peak power, and a greater temperature drop, but the gas in the air tank will also run out quickly. The peak power of the scroll expander does not occur at the maximum volume flow rate, rotation speed, and torque. The basic investment of the CAES unit mainly depends on the peak output power. Full article
(This article belongs to the Special Issue Novel Method, Optimization and Applications of Thermodynamic Cycles)
Show Figures

Figure 1

25 pages, 1811 KiB  
Article
Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
by Lucian-Ioan Dulău
Sustainability 2023, 15(22), 15750; https://doi.org/10.3390/su152215750 - 8 Nov 2023
Cited by 5 | Viewed by 1821
Abstract
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2) emissions [...] Read more.
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2) emissions and a power generation cost close to that of conventional power plants. Therefore, it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads, RESs (micro-hydro and photovoltaic power plants), a hydrogen storage tank, an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios, including the four seasons of the year, compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn, the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter, while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%. Full article
Show Figures

Figure 1

23 pages, 4795 KiB  
Article
Multi-Objective Optimization for Solar-Hydrogen-Battery-Integrated Electric Vehicle Charging Stations with Energy Exchange
by Lijia Duan, Zekun Guo, Gareth Taylor and Chun Sing Lai
Electronics 2023, 12(19), 4149; https://doi.org/10.3390/electronics12194149 - 5 Oct 2023
Cited by 8 | Viewed by 2542
Abstract
The importance of electric vehicle charging stations (EVCS) is increasing as electric vehicles (EV) become more widely used. EVCS with multiple low-carbon energy sources can promote sustainable energy development. This paper presents an optimization methodology for direct energy exchange between multi-geographic dispersed EVCSs [...] Read more.
The importance of electric vehicle charging stations (EVCS) is increasing as electric vehicles (EV) become more widely used. EVCS with multiple low-carbon energy sources can promote sustainable energy development. This paper presents an optimization methodology for direct energy exchange between multi-geographic dispersed EVCSs in London, UK. The charging stations (CSs) incorporate solar panels, hydrogen, battery energy storage systems, and grids to support their operations. EVs are used to allow the energy exchange of charging stations. The objective function of the solar-hydrogen-battery storage electric vehicle charging station (SHS-EVCS) includes the minimization of both capital and operation and maintenance (O&M) costs, as well as the reduction in greenhouse gas emissions. The system constraints encompass the power output limits of individual components and the need to maintain a power balance between the SHS-EVCSs and the EV charging demand. To evaluate and compare the proposed SHS-EVCSs, two multi-objective optimization algorithms, namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), are employed. The findings indicate that NSGA-II outperforms MOEA/D in terms of achieving higher-quality solutions. During the optimization process, various factors are considered, including the sizing of solar panels and hydrogen storage tanks, the capacity of electric vehicle chargers, and the volume of energy exchanged between the two stations. The application of the optimized SHS-EVCSs results in substantial cost savings, thereby emphasizing the practical benefits of the proposed approach. Full article
Show Figures

Figure 1

16 pages, 4177 KiB  
Article
Research on Gas Recycling of Free-Piston Expander–Linear Generator for Organic Rankine Cycle of Vehicle
by Baoying Peng, Kai Zhang, Liang Tong and Yonghong Xu
Sustainability 2023, 15(18), 13993; https://doi.org/10.3390/su151813993 - 21 Sep 2023
Viewed by 1363
Abstract
A (FPE-LG) is a new type of vehicle waste heat recovery device based on an organic Rankine cycle. It is expected to achieve the reuse of vehicle internal combustion engine waste heat and improve the comprehensive utilization rate of energy. To enable the [...] Read more.
A (FPE-LG) is a new type of vehicle waste heat recovery device based on an organic Rankine cycle. It is expected to achieve the reuse of vehicle internal combustion engine waste heat and improve the comprehensive utilization rate of energy. To enable the FPE-LG to recover exhaust gas to a greater extent in practical applications, based on the FPE-LG coupling gas storage tank test platform, the gas is discharged from the expander cylinder. This paper analyzes the influence of differences to the tank volume, intake pressure, intake duration time, expansion duration time and exhaust duration time on piston motion characteristics and gas storage and release time during the cycle, and verifies the feasibility of gas working as a recycling medium. The results showed that the energy storage of lithium batteries increases with the increase of intake pressure, and the energy stored in lithium batteries during gas release is higher than that during gas storage; the intake duration time, expansion duration time and exhaust duration time have little effect on the storage of lithium battery energy during the cycle. When the intake pressure is 0.5 MPa, the volume of the gas tank is 30 L, and the intake duration time, expansion duration time and exhaust duration time are 50 ms, 80 ms and 30 ms, respectively, the maximum actual stroke of the piston can reach 89.592 mm. Full article
Show Figures

Figure 1

30 pages, 13685 KiB  
Article
Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel
by Nektarios Koutsourakis, Ilias C. Tolias, Stella G. Giannissi and Alexandros G. Venetsanos
Energies 2023, 16(18), 6483; https://doi.org/10.3390/en16186483 - 8 Sep 2023
Cited by 5 | Viewed by 1558
Abstract
Accidental release from a hydrogen car tank in a confined space like a tunnel poses safety concerns. This Computational Fluid Dynamics (CFD) study focuses on the first seconds of such a release, which are the most critical. Hydrogen leaks through a Thermal Pressure [...] Read more.
Accidental release from a hydrogen car tank in a confined space like a tunnel poses safety concerns. This Computational Fluid Dynamics (CFD) study focuses on the first seconds of such a release, which are the most critical. Hydrogen leaks through a Thermal Pressure Relief Device (TPRD), forms a high-speed jet that impinges on the street, spreads horizontally, recirculates under the chassis and fills the area below it in about one second. The “fresh-air entrainment effect” at the back of the car changes the concentrations under the chassis and results in the creation of two “tongues” of hydrogen at the rear corners of the car. Two other tongues are formed near the front sides of the vehicle. In general, after a few seconds, hydrogen starts moving upwards around the car mainly in the form of buoyant blister-like structures. The average hydrogen volume concentrations below the car have a maximum of 71%, which occurs at 2 s. The largest “equivalent stoichiometric flammable gas cloud size Q9” is 20.2 m3 at 2.7 s. Smaller TPRDs result in smaller hydrogen flow rates and smaller buoyant structures that are closer to the car. The investigation of the hydrogen dispersion during the initial stages of the leak and the identification of the physical phenomena that occur can be useful for the design of experiments, for the determination of the TPRD characteristics, for potential safety measures and for understanding the further distribution of the hydrogen cloud in the tunnel. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Hydrogen Safety)
Show Figures

Graphical abstract

26 pages, 8193 KiB  
Article
Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry
by Ahmed G. Elkafas, Massimo Rivarolo, Stefano Barberis and Aristide F. Massardo
J. Mar. Sci. Eng. 2023, 11(9), 1735; https://doi.org/10.3390/jmse11091735 - 2 Sep 2023
Cited by 16 | Viewed by 3100
Abstract
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector, it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public [...] Read more.
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector, it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public transport that could increase general audience acceptability thanks to their showcase potential. In this study, a short sea journey ferry used in the port of Genova as a public transport vehicle is analyzed to evaluate a ”zero emission propulsion” retrofitting process. In the paper, different types of solutions (batteries, proton exchange membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC)) and fuels (hydrogen, ammonia, natural gas, and methanol) are investigated to identify the most feasible technology to be implemented onboard according to different aspects: ferry daily journey and scheduling, available volumes and spaces, propulsion power needs, energy storage/fuel tank capacity needed, economics, etc. The paper presents a multi-aspect analysis that resulted in the identification of the hydrogen-powered PEMFC as the best clean power system to guarantee, for this specific case study, a suitable retrofitting of the vessel that could guarantee a zero-emission journey. Full article
(This article belongs to the Special Issue Advanced Research on the Sustainable Maritime Transportation)
Show Figures

Figure 1

36 pages, 17194 KiB  
Review
A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles
by Hyun Kyu Shin and Sung Kyu Ha
Energies 2023, 16(13), 5233; https://doi.org/10.3390/en16135233 - 7 Jul 2023
Cited by 57 | Viewed by 32546
Abstract
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles, there can be various operational pressure and volume capacity of the [...] Read more.
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles, there can be various operational pressure and volume capacity of the tanks, ranging from passenger vehicles to heavy-duty trucks. The current commercial hydrogen storage method for vehicles involves storing compressed hydrogen gas in high-pressure tanks at pressures of 700 bar for passenger vehicles and 350 bar to 700 bar for heavy-duty trucks. In particular, hydrogen is stored in rapidly refillable onboard tanks, meeting the driving range needs of heavy-duty applications, such as regional and line-haul trucking. One of the most important factors for fuel cell vehicles to be successful is their cost-effectiveness. So, in this review, the cost analysis including the process analysis, raw materials, and manufacturing processes is reviewed. It aims to contribute to the optimization of both the cost and performance of compressed hydrogen storage tanks for various applications. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy III)
Show Figures

Figure 1

Back to TopTop