Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Results of the Base Case
3.1.1. First Second of the Release
3.1.2. First Thirty Seconds of the Release
3.1.3. Sensors and Cloud Volume Time Series
- I.
- The fresh-air entrainment effect:
- (a)
- With the characteristic “V” shape of chosen isosurfaces below the back of the car (Figure 6b,d);
- (b)
- With the velocity vectors below the car that show an air entrainment (red circle in Figure 4g);
- (c)
- With the centre of the below-car recirculation vortex being transferred out of the limits of the chassis, as in Figure 4e (in case this does not happen, we talk about a “weak fresh-air entrainment”);
- (d)
- With chosen streamlines that show fresh air from the back (or sides) of the car entraining just below the chassis towards the jet (Figure 6b);
- (e)
- With the high difference in hydrogen concentration values just below the car between the side of the entrainment (i.e., back of the car) and the opposite side. For example, in Figure 5e,g, the concentrations at the side of the entrainment (left of the jet) are about 10 times lower than those on the other side (right of the jet);
- II.
- The blisters:
- III.
- The street-level backflow at the front of the car:
- (a)
- With the examination of the velocity vectors below the front of the car that show an air entrainment at the street level at chosen times (insets of Figure 6c,e) and a flow towards the back of the car;
- (b)
- With the examination of streamlines, which shows a street-level flow from outside the limits of the car moving below the vehicle (Figure 6h);
- (c)
- With the high difference in concentration values at the front of the car between the area just below the chassis and the street-level area (inset of Figure 6e,g): concentrations can be over 10 times lower at the street level.
3.2. Sensitivity Tests on Physical Parameters
3.2.1. TPRD Diameter of 2 mm or Smaller
3.2.2. No-Car Case
3.2.3. Wheels Added to the Car
3.2.4. Greater Distance of the Car from the Street
3.2.5. Other Positions of TPRD
3.2.6. Different Widths of the Car
3.2.7. Other Roughness of the Solid Objects
3.3. Numerical Sensitivity Studies
3.3.1. Convective Numerical Scheme
3.3.2. Grid
3.3.3. Source Mass Flow Reduction Method
3.3.4. Values of k and ε at the Source
3.3.5. Turbulence Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abánades, A. Perspectives on Hydrogen. Energies 2022, 16, 437. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an Energy Carrier: Prospects and Challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an Energy Vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in Energy Transition: A Review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Bairrão, D.; Soares, J.; Almeida, J.; Franco, J.F.; Vale, Z. Green Hydrogen and Energy Transition: Current State and Prospects in Portugal. Energies 2023, 16, 551. [Google Scholar] [CrossRef]
- Molkov, V. Fundamentals of Hydrogen Safety Engineering, Part I; bookboon.com (Ventus Publishing ApS): Copenhagen, Denmark, 2012; ISBN 978-87-403-0226-4. Available online: https://bookboon.com/en/fundamentals-of-hydrogen-safety-engineering-i-ebook (accessed on 30 August 2023).
- Molkov, V. Fundamentals of Hydrogen Safety Engineering, Part II; bookboon.com (Ventus Publishing ApS): Copenhagen, Denmark, 2012; Available online: https://bookboon.com/en/fundamentals-of-hydrogen-safety-engineering-ii-ebook (accessed on 30 August 2023).
- Felseghi, R.-A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef]
- Bethoux, O. Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition. Energies 2020, 13, 6132. [Google Scholar] [CrossRef]
- Global EV Outlook 2022. Available online: https://www.iea.org/reports/global-ev-outlook-2022 (accessed on 26 June 2023).
- Global Hydrogen Fuel Stations by Country 2022. Available online: https://www.statista.com/statistics/1026719/number-of-hydrogen-fuel-stations-by-country (accessed on 7 January 2023).
- Pawelczyk, E.; Łukasik, N.; Wysocka, I.; Rogala, A.; Gębicki, J. Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers. Energies 2022, 15, 4964. [Google Scholar] [CrossRef]
- Venetsanos, A.G.; Huld, T.; Adams, P.; Bartzis, J.G. Source, Dispersion and Combustion Modelling of an Accidental Release of Hydrogen in an Urban Environment. J. Hazard. Mater. 2003, 105, 1–25. [Google Scholar] [CrossRef]
- Venetsanos, A.G.; Baraldi, D.; Adams, P.; Heggem, P.S.; Wilkening, H. CFD Modelling of Hydrogen Release, Dispersion and Combustion for Automotive Scenarios. J. Loss Prev. Process Ind. 2008, 21, 162–184. [Google Scholar] [CrossRef]
- Baraldi, D.; Venetsanos, A.G.; Papanikolaou, E.; Heitsch, M.; Dallas, V. Numerical Analysis of Release, Dispersion and Combustion of Liquid Hydrogen in a Mock-up Hydrogen Refuelling Station. J. Loss Prev. Process Ind. 2009, 22, 303–315. [Google Scholar] [CrossRef]
- Papanikolaou, E.A.; Venetsanos, A.G.; Heitsch, M.; Baraldi, D.; Huser, A.; Pujol, J.; Garcia, J.; Markatos, N. HySafe SBEP-V20: Numerical Studies of Release Experiments inside a Naturally Ventilated Residential Garage. Int. J. Hydrogen Energy 2010, 35, 4747–4757. [Google Scholar] [CrossRef]
- Venetsanos, A.G.; Papanikolaou, E.; Hansen, O.R.; Middha, P.; Garcia, J.; Heitsch, M.; Baraldi, D.; Adams, P. HySafe Standard Benchmark Problem SBEP-V11: Predictions of Hydrogen Release and Dispersion from a CGH2 Bus in an Underpass. Int. J. Hydrogen Energy 2010, 35, 3857–3867. [Google Scholar] [CrossRef]
- Middha, P.; Hansen, O.R. CFD Simulation Study to Investigate the Risk from Hydrogen Vehicles in Tunnels. Int. J. Hydrogen Energy 2009, 34, 5875–5886. [Google Scholar] [CrossRef]
- Breitung, W.; Bielert, U.; Necker, G.; Veser, A.; Wetzel, F.J.; Pehr, K. Numerical Simulation and Safety Evaluation of Tunnel Accidents with a Hydrogen Powered Vehicle. In Proceedings of the 13th World Hydrogen Energy Confernce, Beijing, China, 12–15 June 2000. [Google Scholar]
- Mukai, S.; Suzuki, J.; Mitsuishi, H.; Oyakawa, K.; Watanabe, S. CFD Simulation of Diffusion of Hydrogen Leakage Caused by Fuel Cell Vehicle Accident in Tunnel, Underground Parking Lot and Multi-Story Parking Garage. In Proceedings of the 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington, DC, USA, 6–9 June 2005. [Google Scholar]
- Houf, W.G.; Evans, G.H.; Merilo, E.; Groethe, M.; James, S.C. Releases from Hydrogen Fuel-Cell Vehicles in Tunnels. Int. J. Hydrogen Energy 2012, 37, 715–719. [Google Scholar] [CrossRef]
- Choi, J.; Hur, N.; Kang, S.; Lee, E.D.; Lee, K.-B. A CFD Simulation of Hydrogen Dispersion for the Hydrogen Leakage from a Fuel Cell Vehicle in an Underground Parking Garage. Int. J. Hydrogen Energy 2013, 38, 8084–8091. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Christopher, D.M. Emergency Blower Ventilation to Disperse Hydrogen Leaking from a Hydrogen-Fueled Vehicle. Int. J. Hydrogen Energy 2015, 40, 8230–8238. [Google Scholar] [CrossRef]
- Liu, W.; Christopher, D.M. Dispersion of Hydrogen Leaking from a Hydrogen Fuel Cell Vehicle. Int. J. Hydrogen Energy 2015, 40, 16673–16682. [Google Scholar] [CrossRef]
- Bie, H.Y.; Hao, Z.R. Simulation Analysis on the Risk of Hydrogen Releases and Combustion in Subsea Tunnels. Int. J. Hydrogen Energy 2017, 42, 7617–7624. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Y. Comparisons of Hazard Distances and Accident Durations between Hydrogen Vehicles and CNG Vehicles. Int. J. Hydrogen Energy 2019, 44, 8954–8959. [Google Scholar] [CrossRef]
- Li, Z.; Makarov, D.; Keenan, J.; Molkov, V. CFD Study of the Unignited and Ignited Hydrogen Releases from TPRD under a Fuel Cell Car. In Proceedings of the 6th International Conference on Hydrogen Safety, Yokohama, Japan, 19–21 October 2015. [Google Scholar]
- Hussein, H.; Brennan, S.; Molkov, V. Dispersion of Hydrogen Release in a Naturally Ventilated Covered Car Park. Int. J. Hydrogen Energy 2020, 45, 23882–23897. [Google Scholar] [CrossRef]
- Shentsov, V.; Makarov, D.; Molkov, V. Effect of TPRD Diameter and Direction of Release on Hydrogen Dispersion in Underground Parking. In Proceedings of the 9th International Conference on Hydrogen Safety (ICHS2021), Edinburgh, UK, 21–23 September 2021. [Google Scholar]
- Li, Y.; Xiao, J.; Zhang, H.; Breitung, W.; Travis, J.; Kuznetsov, M.; Jordan, T. Numerical Analysis of Hydrogen Release, Dispersion and Combustion in a Tunnel with Fuel Cell Vehicles using All-Speed CFD Code GASFLOW-MPI. Int. J. Hydrogen Energy 2021, 46, 12474–12486. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, M.; Ba, Q.; Christopher, D.M.; Li, X. Modeling of Hydrogen Dispersion from Hydrogen Fuel Cell Vehicles in an Underground Parking Garage. Int. J. Hydrogen Energy 2022, 47, 686–696. [Google Scholar] [CrossRef]
- Hansen, O.R.; Hansen, E.S.; Kjellander, M.T.; Martini, R. CFD Study to Assess Safety Aspects of TPRD Releases from Heavy-Duty Hydrogen Vehicles and Trains in Tunnels. Chem. Eng. Trans. 2022, 90, 91–96. [Google Scholar] [CrossRef]
- Lv, H.; Shen, Y.; Zheng, T.; Zhou, W.; Ming, P.; Zhang, C. Numerical Study of Hydrogen Leakage, Diffusion, and Combustion in an Outdoor Parking Space under Different Parking Configurations. Renew. Sustain. Energy Rev. 2023, 173, 113093. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, T.; Lv, H.; Zhou, W.; Zhang, C. Numerical Simulation of Hydrogen Leakage from Fuel Cell Vehicle in an Outdoor Parking Garage. World Electr. Veh. J. 2021, 12, 118. [Google Scholar] [CrossRef]
- Venetsanos, A.G.; Papanikolaou, E.A.; Bartzis, J.G. The ADREA-HF CFD Code for Consequence Assessment of Hydrogen Applications. Int. J. Hydrogen Energy 2010, 35, 3908–3918. [Google Scholar] [CrossRef]
- Koutsourakis, N.; Tolias, I.C.; Venetsanos, A.G.; Bartzis, J.G. Evaluation of an LES Code against a Hydrogen Dispersion Experiment. CFD Lett. 2012, 4, 225–236. [Google Scholar]
- Koutsourakis, N.; Venetsanos, A.G.; Bartzis, J.G. LES Modelling of Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage Using the ADREA-HF CFD Code. Int. J. Hydrogen Energy 2012, 37, 17426–17435. [Google Scholar] [CrossRef]
- Giannissi, S.G.; Hoyes, J.R.; Chernyavskiy, B.; Hooker, P.; Hall, J.; Venetsanos, A.G.; Molkov, V. CFD Benchmark on Hydrogen Release and Dispersion in a Ventilated Enclosure: Passive Ventilation and the Role of an External Wind. Int. J. Hydrogen Energy 2015, 40, 6465–6477. [Google Scholar] [CrossRef]
- Giannissi, S.G.; Tolias, I.C.; Melideo, D.; Baraldi, D.; Shentsov, V.; Makarov, D.; Molkov, V.; Venetsanos, A.G. On the CFD Modelling of Hydrogen Dispersion at Low-Reynolds Number Release in Closed Facility. Int. J. Hydrogen Energy 2021, 46, 29745–29761. [Google Scholar] [CrossRef]
- Bartzis, J. ADREA-HF: A Three-Dimensional Finite Volume Code for Vapour Cloud Dispersion in Complex Terrain. Commission of the European Communities, 1991; Report EUR 13580 EN. Available online: https://op.europa.eu/en/publication-detail/-/publication/32303175-8a49-43bd-acb0-28e9a13d9c54 (accessed on 30 August 2023).
- Bartzis, J.G.; Venetsanos, A.G.; Varvayanni, M.; Catsaros, N.; Megaritou, A. ADREA-I: A Three-Dimensional Transient Transport Code for Complex Terrain and Other Applications. Nucl. Technol. 1991, 94, 135–148. [Google Scholar] [CrossRef]
- Kovalets, I.V.; Andronopoulos, S.; Venetsanos, A.G.; Bartzis, J.G. Optimization of the Numerical Algorithms of the ADREA-I Mesoscale Prognostic Meteorological Model for Real-Time Applications. Environ. Model. Softw. 2008, 23, 96–108. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Birch, A.D.; Brown, D.R.; Dodson, M.G.; Swaffield, F. The Structure and Concentration Decay of High Pressure Jets of Natural Gas. Combust. Sci. Technol. 1984, 36, 249–261. [Google Scholar] [CrossRef]
- Argyropoulos, C.D.; Markatos, N.C. Recent Advances on the Numerical Modelling of Turbulent Flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Tolias, I.C.; Giannissi, S.G.; Venetsanos, A.G.; Keenan, J.; Shentsov, V.; Makarov, D.; Coldrick, S.; Kotchourko, A.; Ren, K.; Jedicke, O.; et al. Best Practice Guidelines in Numerical Simulations and CFD Benchmarking for Hydrogen Safety Applications. Int. J. Hydrogen Energy 2019, 44, 9050–9062. [Google Scholar] [CrossRef]
- FCH2 Education—E-Laboratory. Available online: https://fch2edu.eu/home/e-laboratory/ (accessed on 9 January 2023).
- Koutsourakis, N.; Bartzis, J.G.; Efthimiou, G.C.; Sakellaris, I. CFD Studies of Pollutant Spatial Distribution in a Large Office. Int. J. Environ. Pollut. 2019, 65, 125–148. [Google Scholar] [CrossRef]
- Tolias, I.C.; Venetsanos, A.G. Comparison of Convective Schemes in Hydrogen Impinging Jet CFD Simulation. In Proceedings of the 6th International Conference on Hydrogen Safety, Yokohama, Japan, 19–21 October 2015. [Google Scholar]
- Fromm, J.E. A Method for Reducing Dispersion in Convective Difference Schemes. J. Comput. Phys. 1968, 3, 176–189. [Google Scholar] [CrossRef]
- van Leer, B. Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme. J. Comput. Phys. 1974, 14, 361–370. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection. J. Comput. Phys. 1977, 23, 276–299. [Google Scholar] [CrossRef]
- Waterson, N.P.; Deconinck, H. Design Principles for Bounded Higher-Order Convection Schemes—A Unified Approach. J. Comput. Phys. 2007, 224, 182–207. [Google Scholar] [CrossRef]
- Koutsourakis, N.; Giannissi, S.G.; Tolias, I.C.; Venetsanos, A.G.; Forero, D.; Studer, E. Simulations of Hydrogen Dispersion from Fuel Cell Vehicles’ Leakages Inside Full-Scale Tunnel. In Proceedings of the 10th International Conference on Hydrogen Safety (ICHS2023), Québec, QC, Canada, 19–21 September 2023. [Google Scholar]
- Giannissi, S.G.; Venetsanos, A.G.; Rattigan, W.; Lyons, K. CFD Dispersion Simulations of Compressed Hydrogen Releases Through TPRD Inside Scaled Tunnel. In Proceedings of the 10th International Conference on Hydrogen Safety (ICHS2023), Québec, QC, Canada, 19–21 September 2023. [Google Scholar]
- Tolias, I.C.; Rattigan, W.; Lyons, K.; Koumroglou, V.C.; Venetsanos, A.G. CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel. In Proceedings of the 10th International Conference on Hydrogen Safety (ICHS2023), Québec, QC, Canada, 19–21 September 2023. [Google Scholar]
- Behnia, M.; Parneix, S.; Shabany, Y.; Durbin, P.A. Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets. Int. J. Heat Fluid Flow 1999, 20, 1–9. [Google Scholar] [CrossRef]
- Sfeir, A.A. The Velocity and Temperature Fields of Rectangular Jets. Int. J. Heat Mass Transf. 1976, 19, 1289–1297. [Google Scholar] [CrossRef]
- Bejan, A.; Ziaei, S.; Lorente, S. Evolution: Why All Plumes and Jets Evolve to Round Cross Sections. Sci. Rep. 2014, 4, 4730. [Google Scholar] [CrossRef]
- Spalart, P.R. Strategies for Turbulence Modelling and Simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Koutsourakis, N.; Tolias, I.C.; Giannissi, S.G.; Venetsanos, A.G. Numerical Study of the Effects of Tunnel Inclination and Ventilation on the Dispersion of Hydrogen Released from a Car. In Proceedings of the 9th International Conference on Hydrogen Safety (ICHS2021), Edinburgh, UK, 21–23 September 2021. [Google Scholar]
- Koutsourakis, N.; Bartzis, J.G.; Markatos, N.C. Evaluation of Reynolds Stress, k-ε and RNG k-ε Turbulence Models in Street Canyon Flows Using Various Experimental Datasets. Environ. Fluid Mech. 2012, 12, 379–403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsourakis, N.; Tolias, I.C.; Giannissi, S.G.; Venetsanos, A.G. Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel. Energies 2023, 16, 6483. https://doi.org/10.3390/en16186483
Koutsourakis N, Tolias IC, Giannissi SG, Venetsanos AG. Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel. Energies. 2023; 16(18):6483. https://doi.org/10.3390/en16186483
Chicago/Turabian StyleKoutsourakis, Nektarios, Ilias C. Tolias, Stella G. Giannissi, and Alexandros G. Venetsanos. 2023. "Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel" Energies 16, no. 18: 6483. https://doi.org/10.3390/en16186483
APA StyleKoutsourakis, N., Tolias, I. C., Giannissi, S. G., & Venetsanos, A. G. (2023). Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel. Energies, 16(18), 6483. https://doi.org/10.3390/en16186483