Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (174)

Search Parameters:
Keywords = gas amplification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3795 KB  
Article
A Controlled System for Parahydrogen Hyperpolarization Experiments
by Lorenzo Franco, Federico Floreani, Salvatore Mamone, Ahmed Mohammed Faramawy, Marco Ruzzi, Cristina Tubaro and Gabriele Stevanato
Molecules 2025, 30(21), 4299; https://doi.org/10.3390/molecules30214299 - 5 Nov 2025
Viewed by 287
Abstract
Parahydrogen-induced hyperpolarization (PHIP), introduced nearly four decades ago, provides an elegant solution to one of the fundamental limitations of nuclear magnetic resonance (NMR)—its notoriously low sensitivity. By converting the spin order of parahydrogen into nuclear spin polarization, NMR signals can be boosted by [...] Read more.
Parahydrogen-induced hyperpolarization (PHIP), introduced nearly four decades ago, provides an elegant solution to one of the fundamental limitations of nuclear magnetic resonance (NMR)—its notoriously low sensitivity. By converting the spin order of parahydrogen into nuclear spin polarization, NMR signals can be boosted by several orders of magnitude. Here we present a portable, compact, and cost-effective setup that brings PHIP and Signal Amplification by Reversible Exchange (SABRE) experiments within easy reach, operating seamlessly across ultra-low-field (0–10 μT) and high-field (>1 T) conditions at 50% parahydrogen enrichment. The system provides precise control over bubbling pressure, temperature, and gas flow, enabling systematic studies of how these parameters shape hyperpolarization performance. Using the benchmark Chloro(1,5-cyclooctadiene)[1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene]iridium(I) (Ir–IMes) catalyst, we explore the catalyst activation time and response to parahydrogen flow and pressure. Polarization transfer experiments from hydrides to [1-13C]pyruvate leading to the estimation of heteronuclear J-couplings are also presented. We further demonstrate the use of Chloro(1,5-cyclooctadiene)[1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene]iridium(I) (Ir–SIPr), a recently introduced catalyst that can also be used for pyruvate hyperpolarization. The proposed design is robust, reproducible, and easy to implement in any laboratory, widening the route to explore and expand the capabilities of parahydrogen-based hyperpolarization. Full article
(This article belongs to the Special Issue Emerging Horizons of Hyperpolarization in Chemistry and Biomedicine)
Show Figures

Graphical abstract

10 pages, 14490 KB  
Article
Mid-Infrared Fiber Amplification of a DFB Interband Cascade Laser
by Louis-Charles Michaud, Tommy Boilard, Réal Vallée and Martin Bernier
Photonics 2025, 12(10), 988; https://doi.org/10.3390/photonics12100988 - 7 Oct 2025
Viewed by 510
Abstract
The limited availability of powerful, tunable, and reliable mid-infrared sources has historically prevented their widespread adoption in spectroscopy applications, even if most greenhouse gases’ fundamental absorption lines are found in this region of the electromagnetic spectrum. However, both mid-infrared fiber lasers and ICLs [...] Read more.
The limited availability of powerful, tunable, and reliable mid-infrared sources has historically prevented their widespread adoption in spectroscopy applications, even if most greenhouse gases’ fundamental absorption lines are found in this region of the electromagnetic spectrum. However, both mid-infrared fiber lasers and ICLs have enjoyed substantial growth in available output powers in recent years. Since the two technologies have complementary benefits, combining them could prove to be an interesting avenue to explore toward the development of a powerful, easily tunable, and narrow linewidth mid-infrared source. We report what we believe to be the first demonstration of fiber amplification of a distributed feedback interband cascade laser (DFB-ICL) operating in the mid-infrared. The system, based on an in-band pumped dysprosium-doped fluoride fiber amplifier, yields 10 dB of gain and up to 30 mW of output power at 3240 nm. We believe this is an important milestone toward power scaling of single-mode, single-frequency, and rapidly tunable mid-infrared laser sources suitable for advanced gas spectroscopy. Full article
(This article belongs to the Special Issue Mid-IR Active Optical Fiber: Technology and Applications)
Show Figures

Figure 1

16 pages, 1580 KB  
Article
Polymorphism of the BMPR1B Variants for Prolific Traits in the Indonesian Local Ettawah Goat
by Mudawamah Mudawamah, Muhammad Zainul Fadli, Gatot Ciptadi, Fatchiyah Fatchiyah, Mahayu Woro Lestari, Yudith Oktanella, Susiati Susiati and Albert Linton Charles
Animals 2025, 15(19), 2781; https://doi.org/10.3390/ani15192781 - 24 Sep 2025
Viewed by 477
Abstract
The Indonesian Local Ettawah Goat (ILEG) exhibits substantial genetic variation, suggesting its potential for high productivity and promote sustainable practices in farm animal breeding. This study aimed to investigate the molecular characteristics of prolific ILEG by identifying potential candidate genes through polymerase chain [...] Read more.
The Indonesian Local Ettawah Goat (ILEG) exhibits substantial genetic variation, suggesting its potential for high productivity and promote sustainable practices in farm animal breeding. This study aimed to investigate the molecular characteristics of prolific ILEG by identifying potential candidate genes through polymerase chain reaction (PCR) analysis of the bone morphogenetic protein receptor type 1B (BMPR1B) gene with two variants: alleles G and A. The research involved PCR amplification and sequencing of the BMPR1B A allele, followed by a combined PCR approach integrating both A and G alleles for genotyping. Blood samples were collected from 73 does with documented prolificacy history and 358 does without prolificacy histories, sourced from seven village breeding operations in East Java. PCR amplification yielded fragments of 556–1181 base pairs in all samples. Haplotype analysis revealed 15 unique haplotypes with a diversity of 0.94 and a mutation frequency of 27.15%. Integration of the BMPR1B alleles G and A revealed polymorphic prolific traits. Polymorphism analysis of 385 ILEGs demonstrated allele frequencies of 0.55 for allele A and 0.45 for the allele G. Average fecundity rates associated with the BMPR1B polymorphism were 1.49 offspring for the homozygous AA, 1.60 for the heterozygous GA, and 1.89 for the homozygous GG. While overall differences among genetic groups were approached statistically significantly (Kruskal–Wallis, p = 0.056), pairwise comparison (Mann–Whitney test) revealed that homozygous GG was significantly associated with higher prolificacy compare to the heterozygous GA (p = 0.029) and homozygous AA (p = 0.040). Similar results were also obtained from data without documented history. These findings suggest that the GG polymorphism of BMPR1B may increase prolificacy in ILEG. Furthermore, the higher frequency of allele G highlights the importance of considering prolificacy traits in breeding selection strategies to enhance sustainable genetic improvement and increase litter size in ILEG. It is recommended to apply dual-primer specific amplification and fragment size differentiation as key molecular approaches for polymorphism of the BMPR1B gene and prolificacy, since these methods can highlight genetic variation and provide valuable markers for breeding programs of the Indonesian Local Etawah Goat. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Graphical abstract

30 pages, 3236 KB  
Review
Recent Advancements in N-polar GaN HEMT Technology
by Emre Akso, Kamruzzaman Khan, Henry Collins, Boyu Wang, Robert Hamwey, Tanmay Chavan, Christopher Clymore, Weiyi Li, Oguz Odabasi, Matthew Guidry, Stacia Keller, Elaheh Ahmadi, Steven P. DenBaars and Umesh Mishra
Crystals 2025, 15(9), 830; https://doi.org/10.3390/cryst15090830 - 22 Sep 2025
Viewed by 1640
Abstract
N-polar GaN HEMT technology has emerged as a disruptive technology that outperforms Ga-polar GaN HEMTs in terms of high-frequency power amplification capability. In this paper, the authors present a comprehensive review of the evolution of N-polar GaN HEMT technology from the perspective of [...] Read more.
N-polar GaN HEMT technology has emerged as a disruptive technology that outperforms Ga-polar GaN HEMTs in terms of high-frequency power amplification capability. In this paper, the authors present a comprehensive review of the evolution of N-polar GaN HEMT technology from the perspective of crystal growth, dielectrics, and metals on N-polar GaN, transistor design, and performance. Specifically, the authors discuss the progress of the N-polar GaN HEMTs toward high-frequency, high-power, and high-efficiency applications with recent record-level performances, demonstrated by the authors, at mmWave frequencies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 1870 KB  
Article
A Novel Cogu-like Virus Identified in Wine Grapes
by Jennifer Dahan, Gardenia E. Orellana, Edison Reyes-Proaño, Jungmin Lee and Alexander V. Karasev
Viruses 2025, 17(9), 1175; https://doi.org/10.3390/v17091175 - 28 Aug 2025
Viewed by 925
Abstract
A new negative-strand RNA virus was identified in grapevines from a 38-year-old ‘Chardonnay’ block in Idaho through high-throughput sequencing (HTS) of total RNA. This virus was tentatively named grapevine-associated cogu-like Idaho virus (GaCLIdV). GaCLIdV has three negative-sense, single-stranded RNA genome segments of ca. [...] Read more.
A new negative-strand RNA virus was identified in grapevines from a 38-year-old ‘Chardonnay’ block in Idaho through high-throughput sequencing (HTS) of total RNA. This virus was tentatively named grapevine-associated cogu-like Idaho virus (GaCLIdV). GaCLIdV has three negative-sense, single-stranded RNA genome segments of ca. 7 kb, 1.9 kb, and 1.3 kb, encoding L protein (RNA-dependent RNA polymerase, RdRP), a movement protein (MP), and a nucleocapsid protein (NC), respectively, identified based on pair-wise comparisons with other cogu- and cogu-like viruses. In phylogenetic analysis based on the RdRP, GaCLIdV grouped within the family Phenuiviridae and was placed in a lineage of plant-infecting phenuiviruses as a sister clade of the genus Laulavirus, clustering most closely with switchgrass phenui-like virus 1 (SgPLV-1) and more distantly related to grapevine-associated cogu-like viruses from the Laulavirus and Coguvirus clades. Both GaCLIdV and SgPhLV-1 are proposed to form a new genus, Switvirus, within the family Phenuiviridae. The presence of GaCLIdV in the original ‘Chardonnay’ samples was confirmed by RT-PCR amplification and Sanger sequencing. This new virus was found in five wine grape cultivars and in six vineyards sampled in Idaho and in Oregon during the 2020–2024 seasons. GaCLIdV may have contributed to the decline observed in the old ‘Chardonnay’ block, although the role of the virus in symptom development awaits further investigation. Full article
Show Figures

Figure 1

24 pages, 1024 KB  
Article
Seismic Disaster Risk Assessment of Oil and Gas Pipelines
by Hongyuan Jing, Sheng Zhang, Dengke Zhao, Zhaodong Wang, Ji’an Liao and Zhaoyan Li
Appl. Sci. 2025, 15(16), 9135; https://doi.org/10.3390/app15169135 - 19 Aug 2025
Cited by 2 | Viewed by 774
Abstract
Oil and gas pipelines represent critical infrastructure for energy transportation and are essential for ensurin g energy security. The seismic disaster risk assessment of these pipelines is of paramount importance for safeguarding energy supplies. Traditional assessment methodologies primarily focus on the structural integrity [...] Read more.
Oil and gas pipelines represent critical infrastructure for energy transportation and are essential for ensurin g energy security. The seismic disaster risk assessment of these pipelines is of paramount importance for safeguarding energy supplies. Traditional assessment methodologies primarily focus on the structural integrity of the pipeline body, often neglecting the impact of auxiliary structures and site-specific disaster effects. This study proposes an enhanced risk assessment methodology to address these gaps. This research systematically compiles seismic damage case studies of pipelines from major seismic zones in China. By considering the interactions between auxiliary structure types, site conditions, and forms of disasters, 15 typical operating conditions are identified, and a seismic damage case database is constructed. We develop a failure probability model that integrates geotechnical parameters, structural responses, and ground motion characteristics to assess the impact of liquefaction, site amplification, fault activity, and collapse/landslide phenomena. Utilizing Particle Swarm Optimization (PSO) and Fuzzy Analytic Hierarchy Process (Fuzzy AHP) algorithms, this model quantifies the influence weights and coefficients of these disasters on pipeline auxiliary structures, forming a vulnerability matrix centered around Peak Ground Acceleration (PGA). Additionally, a dual-vulnerability assessment framework is established, and a failure probability formula accounting for the superposition effects of multiple disasters is proposed. This study marks a significant advancement, transitioning from traditional single-pipeline evaluations to “structure-disaster-site” coupling analysis, and provides a scientific basis for pipeline seismic design, operation, and maintenance under specific environmental conditions. This work contributes to the development of quantitative and refined seismic risk assessments for oil and gas pipelines. Full article
Show Figures

Figure 1

19 pages, 7045 KB  
Article
Design of an SAR-Assisted Offset-Calibrated Chopper CFIA for High-Precision 4–20 mA Transmitter Front Ends
by Jian Ren, Yiqun Niu, Bin Liu, Meng Li, Yansong Bai and Yuang Chen
Appl. Sci. 2025, 15(16), 9084; https://doi.org/10.3390/app15169084 - 18 Aug 2025
Viewed by 633
Abstract
In loop-powered 4–20 mA transmitter systems, sensors like temperature, pressure, flow, and gas sensors are chosen based on specific application requirements. These systems are widely adopted in high-precision measurement scenarios, including industrial automation, process control, and environmental monitoring. The transmitter requires a high-performance [...] Read more.
In loop-powered 4–20 mA transmitter systems, sensors like temperature, pressure, flow, and gas sensors are chosen based on specific application requirements. These systems are widely adopted in high-precision measurement scenarios, including industrial automation, process control, and environmental monitoring. The transmitter requires a high-performance analog front end (AFE) for precise amplification and signal conditioning. This paper presents a low-noise instrumentation amplifier (IA) for high-precision transmitter front ends, featuring a Successive Approximation Register (SAR)-assisted offset calibration architecture. The proposed structure integrates a chopper current-feedback instrumentation amplifier (CFIA) with an automatic offset calibration loop (AOCL), significantly suppressing internal offset errors and enabling high-accuracy signal acquisition under stringent power and environmental temperature constraints. The designed amplifier provides four selectable gain settings, covering a range from ×32 to ×256. Fabricated in a 0.18 μm CMOS process, the CFIA operates at a 1.8 V supply voltage, consumes a static current of 182 μA, and achieves an input-referred noise as low as 20.28 nV/√Hz at 1 kHz, with a common-mode rejection ratio (CMRR) up to 122 dB and a power-supply rejection ratio (PSRR) up to 117 dB. Experimental results demonstrate that the proposed amplifier exhibits excellent performance in terms of input-referred noise, offset voltage, PSRR, and CMRR, making it well-suited for front-end detection in field instruments that require direct interfacing with measured media. Full article
Show Figures

Figure 1

18 pages, 1710 KB  
Article
Analysis of the Bacterial Community and Fatty Acid Composition in the Bacteriome of the Lac Insect Llaveia axin axin
by Reiner Rincón-Rosales, Miriam Díaz-Hernández, Luis Alberto Manzano-Gómez, Francisco Alexander Rincón-Molina, Víctor Manuel Ruíz-Valdiviezo, Adriana Gen-Jiménez, Juan José Villalobos-Maldonado, Julio César Maldonado-Gómez and Clara Ivette Rincón-Molina
Microorganisms 2025, 13(8), 1930; https://doi.org/10.3390/microorganisms13081930 - 18 Aug 2025
Viewed by 656
Abstract
Microbial symbioses play crucial roles in insect physiology, contributing to nutrition, detoxification, and metabolic adaptations. However, the microbial communities associated with the lac insect Llaveia axin axin, an economically significant species used in traditional lacquer production, remain poorly characterized. In this study, [...] Read more.
Microbial symbioses play crucial roles in insect physiology, contributing to nutrition, detoxification, and metabolic adaptations. However, the microbial communities associated with the lac insect Llaveia axin axin, an economically significant species used in traditional lacquer production, remain poorly characterized. In this study, the bacterial diversity and community structure of L. axin axin were investigated using both culture-dependent and culture-independent (metagenomic) approaches, combined with fatty acid profile analysis. The insects were bred at the laboratory level, in controlled conditions, encompassing stages from eggs to adult females. Bacterial strains were isolated from bacteriomes and identified through 16S rRNA gene amplification and genomic fingerprinting through ARDRA analysis. Metagenomic DNA was sequenced using the Illumina MiSeq platform, and fatty acid profiles were determined by gas chromatography–mass spectrometry (GC-MS). A total of 20 bacterial strains were isolated, with Acinetobacter, Moraxella, Pseudomonas, and Staphylococcus detected in first-instar nymphs; Methylobacterium, Microbacterium, and Bacillus in pre-adult females; and Bacillus and Microbacterium in adults. Metagenomic analysis revealed key genera including Sodalis, Blattabacterium, and Candidatus Walczuchella, with Sodalis being predominant in early stages and Blattabacteriaceae in adults. Fatty acid analysis identified palmitic, oleic, linoleic, arachidic, and stearic acids, with stearic acid being the most abundant. These results suggest that dominant bacteria contribute to lipid biosynthesis and metabolic development in L. axin axin. Full article
Show Figures

Figure 1

14 pages, 1209 KB  
Article
Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia
by Maribeb Castro-González and Verónica Molina
Limnol. Rev. 2025, 25(3), 32; https://doi.org/10.3390/limnolrev25030032 - 15 Jul 2025
Viewed by 505
Abstract
In this study, we evaluated the nitrous oxide production potential of denitrifying bacterial strains isolated from sediments of the urban wetland Santa María del Lago under anaerobic and aerobic conditions to determine their potential role in mitigating anthropogenic N2O emissions, which [...] Read more.
In this study, we evaluated the nitrous oxide production potential of denitrifying bacterial strains isolated from sediments of the urban wetland Santa María del Lago under anaerobic and aerobic conditions to determine their potential role in mitigating anthropogenic N2O emissions, which have increased by approximately 40% since 1980, and if these emissions could be related to the absence of the nitrous oxide reductase gene (nosZ). The results demonstrated that denitrifying bacteria belonging to the genus Bacillus were able to generate nitrous oxide in high concentrations under both aerobic (up to 83 nM/h) and anaerobic (up to 3865.5 nM/h) conditions in cultures with optimal concentrations of nitrate and carbon. The amplification of the nosZ gene as marker of denitrifying microorganisms showed that only 50% of strains possess this gene, and its presence did not correlate with nitrous oxide reduction under anoxic conditions. Interestingly, one strain was able to reduce nitrous oxide in the presence of air, which is promising for its potential use in aerobic bioremediation systems that require microorganisms with a high affinity for this greenhouse gas to reduce emissions into the atmosphere. Full article
Show Figures

Figure 1

16 pages, 2888 KB  
Article
Vitamin K Epoxide Reductase Complex (VKORC1) Electrochemical Genosensors: Towards the Identification of 1639 G>A Genetic Polymorphism
by Tiago Barbosa, Stephanie L. Morais, Renato Carvalho, Júlia M. C. S. Magalhães, Valentina F. Domingues, Cristina Delerue-Matos, Hygor Ferreira-Fernandes, Giovanny R. Pinto, Marlene Santos and Maria Fátima Barroso
Chemosensors 2025, 13(7), 248; https://doi.org/10.3390/chemosensors13070248 - 10 Jul 2025
Viewed by 777
Abstract
Anticoagulants, including warfarin, are often administered to patients who are exhibiting early symptoms of thromboembolic episodes or who have already experienced such episodes. However, warfarin has a limited therapeutic index and might cause bleeding and other clinical problems. Warfarin inhibits the vitamin K [...] Read more.
Anticoagulants, including warfarin, are often administered to patients who are exhibiting early symptoms of thromboembolic episodes or who have already experienced such episodes. However, warfarin has a limited therapeutic index and might cause bleeding and other clinical problems. Warfarin inhibits the vitamin K epoxide reductase complex subunit 1 (VKORC1), an enzyme essential for activating vitamin K, in the coagulation cascade. Genetic factors, such as polymorphisms, can change the natural function of VKORC1, causing variations in the medication reaction among individuals. Hence, before prescribing warfarin, the patient’s genetic profile should also be considered. In this study, an electrochemical genosensor capable of detecting the VKORC1 1639 G>A polymorphism was designed and optimized. This analytical approach detects the electric current obtained during the hybridization reaction between two 52 base pair complementary oligonucleotide sequences. Investigating public bioinformatic platforms, two DNA sequences with the A and G single-nucleotide variants were selected and designed. The experimental protocol of the genosensor implied the formation of a bilayer composed of a thiolate DNA and an alkanethiol immobilized onto gold electrodes, as well as the formation of a DNA duplex using a sandwich-format hybridization reaction through a fluorescein labelled DNA signalling probe and the enzymatic amplification of the electrochemical signal, detected by chronoamperometry. A detection limit of 20 pM and a linear range of 0.05–1.00 nM was obtained. A clear differentiation between A/A, G/A and G/G genotypes in biological samples was successfully identified by his novel device. Full article
Show Figures

Figure 1

14 pages, 2327 KB  
Article
A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching
by Dongwan Kang, Yeonggeon Lee and Dae-Woong Park
Electronics 2025, 14(14), 2771; https://doi.org/10.3390/electronics14142771 - 10 Jul 2025
Viewed by 951
Abstract
This paper presents a 17–38 GHz wideband low-noise amplifier (LNA) designed in a 150-nm GaAs pHEMT process. The proposed amplifier adopts a cascode topology with an interstage inductor between the common-source (CS) and common-gate (CG) stages, and a series inductor at the source [...] Read more.
This paper presents a 17–38 GHz wideband low-noise amplifier (LNA) designed in a 150-nm GaAs pHEMT process. The proposed amplifier adopts a cascode topology with an interstage inductor between the common-source (CS) and common-gate (CG) stages, and a series inductor at the source node of the CS stage for source degeneration. By incorporating these inductors in the amplification stage, simultaneous noise and input matching is facilitated, while achieving flat gain characteristics over a broad frequency range and ensuring stability. In addition, the amplification stage with inductors achieves input matching using only a shunt component in the DC bias path, without any series matching elements. This approach allows the amplifier to achieve simultaneous noise and input matching (SNIM), ensuring low-noise performance over a wide bandwidth. The simulation results show a flat gain of 20–23 dB and a low noise figure of 1.1–2.1 dB over the 17–38 GHz band. Full article
(This article belongs to the Special Issue Radio Frequency/Microwave Integrated Circuits and Design Automation)
Show Figures

Figure 1

24 pages, 11751 KB  
Article
Identification, Classification of the MIKC-Type MADS-Box Gene Family, and Expression Analysis of Female and Male Flower Buds in Walnut (Juglans regia, Juglandaceae)
by Caihua Guo, Olumide Phillip Fesobi, Zhongrong Zhang, Xing Yuan, Haochang Zhao, Shaowen Quan and Jianxin Niu
Horticulturae 2025, 11(7), 787; https://doi.org/10.3390/horticulturae11070787 - 3 Jul 2025
Viewed by 650
Abstract
MIKC-type MADS-box transcription factors constitute one of the largest gene families in plants, playing pivotal roles in regulating plant growth and development, hormone signaling transduction, and responses to biotic and abiotic stresses. However, there have been no reports on the systematic identification and [...] Read more.
MIKC-type MADS-box transcription factors constitute one of the largest gene families in plants, playing pivotal roles in regulating plant growth and development, hormone signaling transduction, and responses to biotic and abiotic stresses. However, there have been no reports on the systematic identification and characterization of MIKC-type MADS-box proteins in walnuts. In this study, we identified 52 JrMADS genes in the walnut genome and transcriptome, and categorized them into 14 subfamilies through structural domain and phylogenetic tree analysis. It was found that these genes were unevenly distributed across 16 chromosomes. Within the MIKC-type MADS-box gene family, we identified three pairs of tandem-duplicated genes and 40 pairs of segmental duplicated genes, indicating that segmental duplication was the primary mechanism of gene amplification in walnut. Ka/Ks analysis showed that the family genes have undergone purifying selection during evolutionary processes. The promoter was predicted to contain cis-acting elements related to growth, development, plant hormones, and stress response. Expression profile analysis showed that JrMADS genes have different expression patterns in various tissues and developmental stages of male and female flower buds. Notably, an ancient clade of TM8 (JrMADS43) genes was found, which is absent in Arabidopsis but present in other flowering plants. Another gene, TM6 gene (JrMADS4), belongs to the AP3 subfamily and is a clade that has diverged from tomatoes. Through qPCR analysis, we verified the differential expression of JrMADS genes at different developmental stages (MB-1/2/3 and FB-1/2/3), with JrMADS5, JrMADS8, JrMADS14, JrMADS24, JrMADS40, JrMADS46, JrMADS47, JrGA3ox1, and JrGA3ox3 showing significantly higher expression in male than in female flower buds. In summary, our results provide valuable information for further biological functions research on MIKC-type MADS-box genes in walnut, such as flower organ development, and lays a solid foundation for future studies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

24 pages, 20406 KB  
Article
Single-Mode Richtmyer–Meshkov Instability in Light Fluid Layer: Insights from Numerical Simulations
by Ahmed Hussein Msmali, Satyvir Singh and Mutum Zico Meetei
Axioms 2025, 14(6), 473; https://doi.org/10.3390/axioms14060473 - 19 Jun 2025
Cited by 4 | Viewed by 756
Abstract
This study presents high-fidelity numerical simulations of the shock-accelerated single-mode Richtmyer–Meshkov instability (RMI) in a light helium layer confined between two interfaces and surrounded by nitrogen gas. A high-order modal discontinuous Galerkin method is employed to solve the two-dimensional compressible Euler equations, enabling [...] Read more.
This study presents high-fidelity numerical simulations of the shock-accelerated single-mode Richtmyer–Meshkov instability (RMI) in a light helium layer confined between two interfaces and surrounded by nitrogen gas. A high-order modal discontinuous Galerkin method is employed to solve the two-dimensional compressible Euler equations, enabling detailed investigation of interface evolution, vorticity dynamics, and flow structure development under various physical conditions. The effects of helium layer thickness, initial perturbation amplitude, and incident shock Mach number are systematically explored by analyzing interface morphology, vorticity generation, enstrophy, and kinetic energy. The results show that increasing the helium layer thickness enhances vorticity accumulation and interface deformation by delaying interaction with the second interface, allowing more sustained instability growth. Larger initial perturbation amplitudes promote earlier onset of nonlinear deformation and stronger baroclinic vorticity generation, while higher shock strengths intensify pressure gradients across the interface, accelerating instability amplification and mixing. These findings highlight the critical interplay between layer confinement, perturbation strength, and shock strength in governing the nonlinear evolution of RMI in light fluid layers. Full article
Show Figures

Figure 1

17 pages, 2015 KB  
Article
Modulatory Effects of Tetraselmis chuii Gastrointestinal Digests on Human Colonic Microbiota
by Marta Majchrzak, Samuel Paterson, Javier Gutiérrez-Corral, Dulcenombre Gómez-Garre, Adriana Ortega-Hernández, Miguel Ángel de la Fuente, Blanca Hernández-Ledesma and Pilar Gómez-Cortés
Foods 2025, 14(12), 2106; https://doi.org/10.3390/foods14122106 - 16 Jun 2025
Viewed by 980
Abstract
Tetraselmis chuii is a microalga commercialized because of its richness in health-beneficial molecules. Previous studies have profusely demonstrated the biological properties of compounds isolated from T. chuii, but data are not yet available on the impact that gastrointestinal digestion could exert. This [...] Read more.
Tetraselmis chuii is a microalga commercialized because of its richness in health-beneficial molecules. Previous studies have profusely demonstrated the biological properties of compounds isolated from T. chuii, but data are not yet available on the impact that gastrointestinal digestion could exert. This article describes the passage of T. chuii through the gastrointestinal tract, combining the INFOGEST procedure and in vitro colonic fermentation to examine potential effects on the human colonic microflora composition and its metabolic activity. Microbial plate counting was conducted to determine the different groups of microorganisms. Amplification of the 16S ribosomal RNA gene was performed via polymerase chain reaction to examine in detail the main genera of bacteria, and its metabolic activity was evaluated by measuring of short-chain fatty acids (SCFAs) by gas chromatography. The presence of T. chuii modified the fecal microbiota. Although the evolution of lactic acid bacteria and Enterococcus spp. content during 72 h showed that the use of T. chuii, compared to fructopolysaccharides such as inulin, would not provide nutritional advantages, the microalgae extract contributed to a significant decrease in Clostridium, Staphylococcus, and Enterobacteriaceae. Furthermore, T. chuii increased the relative abundance of Akkermansia and Butyricimonas, genera considered highly beneficial. In correlation with the presence of these microorganisms, the results show that the presence of T. chuii favored the release of SCFA, such as acetic (20 mM), propionic (>5 mM), isovaleric (0.3 mM), isobutyric (0.15 mM), and, mainly, butyric (>2 mM), after 72 h colonic fermentation, being indicators of gut health. These findings suggest that T. chuii has potential as a functional ingredient for promoting health through its modulatory effects on the intestinal microbiota. Full article
Show Figures

Figure 1

16 pages, 4779 KB  
Communication
Binary Solvent Engineering Modulates the Microstructure of Stretchable Organic Field-Effect Transistors for Highly Sensitive NO2 Sensing
by Xiao Jiang, Jiaqi Zeng, Linxuan Zhang, Zhen Zhang and Rongjiao Zhu
Nanomaterials 2025, 15(12), 922; https://doi.org/10.3390/nano15120922 - 13 Jun 2025
Cited by 2 | Viewed by 632
Abstract
Stretchable organic field-effect transistors (OFETs), with inherent flexibility, versatile sensing mechanisms, and signal amplification properties, provide a unique device-level solution for the real-time, in situ detection of trace gaseous pollutants. However, serious challenges remain regarding the synergistic optimization of OFET gas sensor production [...] Read more.
Stretchable organic field-effect transistors (OFETs), with inherent flexibility, versatile sensing mechanisms, and signal amplification properties, provide a unique device-level solution for the real-time, in situ detection of trace gaseous pollutants. However, serious challenges remain regarding the synergistic optimization of OFET gas sensor production preparation, mechano-electrical properties, and gas-sensing performance. Although the introduction of microstructures can theoretically provide OFETs with enhanced sensing performance, the high-precision process required for microstructure fabrication limits scale-up. Herein, a straightforward hybrid solvent strategy is proposed for regulating the intrinsic microstructure of the organic semiconductor layer, with the aim of constructing an ultrasensitive PDVT-10/SEBS fully stretchable OFET NO2 sensor. The binary solvent system induces the formation of nanoneedle-like structures in the PDVT-10/SEBS organic semiconductor, which achieves a maximum mobility of 2.71 cm2 V−1 s−1, a switching current ratio generally exceeding 106, and a decrease in mobility of only 30% at 100% strain. Specifically, the device exhibits a response of up to 77.9 × 106 % within 3 min and a sensitivity of up to 1.4 × 106 %/ppm, and it demonstrates effective interference immunity, with a response of less than 100% to nine interferences. This work paves the way for next-generation wearable smart sensors. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop