Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = gas–liquid two-phase flow nozzle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6486 KiB  
Article
Optimisation of Atomisation Parameters of Gas–Liquid Two-Phase Flow Nozzles and Application to Downhole Dust Reduction
by Jianguo Wang, Xinni He and Shilong Luo
Processes 2025, 13(8), 2396; https://doi.org/10.3390/pr13082396 - 28 Jul 2025
Viewed by 308
Abstract
Considering the serious hazard of respiratory dust in underground coal mines and the low efficiency of traditional dust-reduction technology, this study optimizes the atomisation parameters of the gas–liquid two-phase flow nozzle through numerical simulation and experimental testing, and designs an on-board dust-reduction system. [...] Read more.
Considering the serious hazard of respiratory dust in underground coal mines and the low efficiency of traditional dust-reduction technology, this study optimizes the atomisation parameters of the gas–liquid two-phase flow nozzle through numerical simulation and experimental testing, and designs an on-board dust-reduction system. Based on the Fluent software (version 2023 R2), a flow field model outside the nozzle was established, and the effects of the air supply pressure, gas-phase inlet velocity, and droplet mass flow rate on the atomisation characteristics were analyzed. The results show that increasing the air supply pressure can effectively reduce the droplet particle size and increase the range and atomisation angle, and that the dust-reduction efficiency is significantly improved with the increase in pressure. The dust-reduction efficiency reached 69.3% at 0.6 MPa, which was the economically optimal operating condition. Based on the parameter optimization, this study designed an annular airborne gas–liquid two-phase flow dust-reduction system, and a field test showed that the dust-reduction efficiency of this system could reach up to 86.0%, which is 53.5% higher than that of traditional high-pressure spraying, and that the dust concentration was reduced to less than 6 mg/m3. This study provides an efficient and reliable technical solution for the management of underground coal mine dust and guidance for promoting the development of the coal industry. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 5598 KiB  
Article
The Influence of the Geometric Properties on the Gas Holdup and Phase Surface Area for Single-Orifice Gas Distributors in a Bubble Column
by Thorsten Jonach, Tetiana Ruzova, Christian Jordan, Michael Harasek and Bahram Haddadi
ChemEngineering 2025, 9(2), 29; https://doi.org/10.3390/chemengineering9020029 - 7 Mar 2025
Viewed by 811
Abstract
The introduction of a gas phase into a liquid is used in a variety of technical applications. Based on the purpose of the application, different flow behaviors of the gas phase and specific gas phase parameters are preferred. In this study, the influence [...] Read more.
The introduction of a gas phase into a liquid is used in a variety of technical applications. Based on the purpose of the application, different flow behaviors of the gas phase and specific gas phase parameters are preferred. In this study, the influence of the diameter and shape of a single-hole orifice sparger on the gas phase behavior was investigated. For this purpose, an experimental setup of a bubble column was built, and different orifice sizes and types were installed. The two different designs that were tested were direct flat orifices and single needle-type nozzles. The flat nozzle diameter was varied from 0.5 mm to 3 mm, whereas two different needle-type nozzles with diameters of 0.5 mm and 1 mm were also tested. Through high-speed imaging and digital image processing, a contour analysis of the bubbles was performed using a special technique for image segmentation and the identification of phase inhomogeneities. The gas holdup and surface area of the gas phase were calculated at different column heights and different flow rates. The results show that smaller nozzle diameters led to a higher gas holdup and a higher phase surface than larger-diameter orifices at the middle and upper sections of the column, implying a better mass and heat transfer performance. Full article
Show Figures

Figure 1

24 pages, 9112 KiB  
Article
High-Pressure Fine Water Mist Nozzle Retrofit Experiment and Numerical Simulation Study
by Xin-Zhi Yang, Chen-Yang Du, Yuan-Jun Liu, Yan Tang, Xi-Lin Dong and An-Chi Huang
Processes 2025, 13(3), 642; https://doi.org/10.3390/pr13030642 - 24 Feb 2025
Cited by 2 | Viewed by 1275
Abstract
Currently, the existing high-pressure water mist fire protection systems in cold storage facilities face challenges in achieving efficient atomization and uniform water mist distribution, which may limit their effectiveness in rapid cooling and flame suppression. The objective of this investigation is to improve [...] Read more.
Currently, the existing high-pressure water mist fire protection systems in cold storage facilities face challenges in achieving efficient atomization and uniform water mist distribution, which may limit their effectiveness in rapid cooling and flame suppression. The objective of this investigation is to improve the performance of high-pressure fine water mist nozzles by integrating a Venturi microbubble generator to improve mist atomization and distribution, particularly in the context of flames involving combustible polyurethane foam insulation materials. The gas–liquid two-phase flow characteristics within Venturi tubes were investigated through numerical simulations using ANSYS-Fluent 2022 R1 software. This study focused on critical parameters, including the water inlet pressure (1–9 MPa), pharynx diameter (8–12 mm), contraction angle (15–45°), and expansion angle (15–45°). The average water mist droplet diameters at 1, 3, and 9 MPa were 169.890, 150.002, and 115.606 μm, respectively, in the absence of the Venturi tube, according to the experimental results. A reduction of up to 16.7% was achieved by reducing the particulate sizes to 141.462, 139.142, and 109.525 μm using the Venturi tube. The fire-extinguishing time and water consumption were substantially reduced at higher pressures, such as 9 MPa. Under high-pressure conditions, the results indicated that the Venturi microbubble technology was significantly more effective in suppressing fires. The novelty of this study lies in the application of Venturi microbubble technology to improve fine water mist systems for fire protection in cold storage facilities. This enhanced system achieves better atomization, uniform water mist distribution, faster cooling, and more efficient flame suppression, making it a viable solution for improving fire protection in such environments. Full article
(This article belongs to the Special Issue Numerical Simulation and Optimization in Thermal Processes)
Show Figures

Figure 1

20 pages, 15144 KiB  
Article
Gas–Liquid Mixability Study in a Jet-Stirred Tank for Mineral Flotation
by Yehao Huang, Mingwei Gao, Baozhong Shang, Jia Yao, Weijun Peng, Xiangyu Song and Dan Mei
Appl. Sci. 2024, 14(19), 8600; https://doi.org/10.3390/app14198600 - 24 Sep 2024
Cited by 3 | Viewed by 1132
Abstract
Micro- and nano-bubble jet stirring, as an emerging technology, shows great potential in complex mineral sorting. Flow field characteristics and structural parameters of the gas–liquid two-phase system can lead to uneven bubble distribution inside the reaction vessel. Gas–liquid mixing uniformity is crucial for [...] Read more.
Micro- and nano-bubble jet stirring, as an emerging technology, shows great potential in complex mineral sorting. Flow field characteristics and structural parameters of the gas–liquid two-phase system can lead to uneven bubble distribution inside the reaction vessel. Gas–liquid mixing uniformity is crucial for evaluating stirring effects, as increasing the contact area enhances reaction efficiency. To improve flotation process efficiency and resource recovery, further investigation into flow field characteristics and structural optimization is necessary. The internal flow field of the jet-stirred tank was analyzed using computational fluid dynamics (CFDs) with the Eulerian multiphase flow model and the Renormalization Group (RNG) k − ε turbulence model. Various operating (feeding and aerating volumes) and structural parameters (nozzle direction, height, inner diameter, and radius ratio) were simulated. Dimensionless variance is a statistical metric used to assess gas–liquid mixing uniformity. The results indicated bubbles accumulated in the middle of the vessel, leading to uneven mixing. Lower velocities resulted in low gas volume fractions, while excessively high velocities increased differences between the center and near-wall regions. Optimal mixing uniformity was achieved with a circumferential nozzle direction, 80 mm height, 5.0 mm inner diameter, and 0.55 radius ratio. Full article
Show Figures

Figure 1

19 pages, 7944 KiB  
Article
Experimental Study on the Performance and Internal Flow Characteristics of Liquid–Gas Jet Pump with Square Nozzle
by Zhengqing Cao, Xuelong Yang, Xiao Xu, Chenbing Zhu, Daohang Zou, Qiwei Zhou, Kaiyue Fang, Xinchen Zhang and Jiegang Mou
Water 2024, 16(17), 2358; https://doi.org/10.3390/w16172358 - 23 Aug 2024
Viewed by 1131
Abstract
In order to ascertain the impact of working water flow rate and inlet pressure on the performance of the liquid–gas jet pump with square nozzle, the pumping volume ratio and efficiency of the liquid–gas jet pump with square nozzle were experimentally investigated at [...] Read more.
In order to ascertain the impact of working water flow rate and inlet pressure on the performance of the liquid–gas jet pump with square nozzle, the pumping volume ratio and efficiency of the liquid–gas jet pump with square nozzle were experimentally investigated at different inlet pressures and working water flow rates. Furthermore, the internal flow characteristics of the liquid–gas jet pump with square nozzle were explored through the utilization of visualization technology in the self-designed square-nozzle liquid–gas jet pump experimental setup. The findings indicate that the pumping ratio of the liquid–gas jet pump increases in conjunction with an elevation in the inlet pressure. Liquid–gas jet pump efficiency is higher at lower inlet pressures, up to 42.48%, and drops rapidly as inlet pressure increases. The pumping volume ratio of the liquid–gas jet pump increases significantly as the working water flow rate increases, and the working water flow rate exerts a minimal effect on the working efficiency of the liquid–gas jet pump. In the context of extreme vacuum conditions, a considerable number of droplets undergo substantial reflux in the posterior section of the throat, with a notable absence of bubbles in the diffusion tube. The size and number of bubbles diminish gradually along the axial direction. The objective of this paper is to provide a reference point for determining the optimal operational parameters for a square-nozzle liquid–gas jet pump in a practical context. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

19 pages, 2897 KiB  
Article
Comparative Study of Droplet Diameter Distribution: Insights from Experimental Imaging and Computational Fluid Dynamics Simulations
by Kasimhussen Vhora, Gábor Janiga, Heike Lorenz, Andreas Seidel-Morgenstern, Maria F. Gutierrez and Peter Schulze
Appl. Sci. 2024, 14(5), 1824; https://doi.org/10.3390/app14051824 - 23 Feb 2024
Cited by 5 | Viewed by 2955
Abstract
The interfacial area between two phases plays a crucial role in the mass transfer rate of gas–liquid processes such as absorption. In this context, the droplet size distribution within the flow field of a droplet-based absorber significantly affects the surface area, thereby influencing [...] Read more.
The interfacial area between two phases plays a crucial role in the mass transfer rate of gas–liquid processes such as absorption. In this context, the droplet size distribution within the flow field of a droplet-based absorber significantly affects the surface area, thereby influencing the absorption efficiency. This study focuses on developing a computational fluid dynamics (CFD) model to predict the size and distribution of water droplets free-falling in a transparent square tube. This model serves as a digital twin of our experimental setup, enabling a comparative analysis of experimental and computational results. For the accurate measurement of droplet size and distribution, specialized experimental equipment was developed, and a high-speed camera along with Fiji software was used for the capturing and processing of droplet images. At the point of injection and at two different heights, the sizes and distributions of falling droplets were measured using this setup. The interaction between the liquid water droplets and the gas phase within the square tube was modeled using the Eulerian–Lagrangian (E-L) framework in the STAR-CCM+ software. The E-L multiphase CFD model yielded approximations with errors ranging from 11 to 27% for various average mean diameters, including d10, d20, d30, and d32, of the liquid droplets at two distinct heights (200 mm and 400 mm) for both nozzle plates. This comprehensive approach provides valuable insights into the dynamics of droplet-based absorption processes. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Graphical abstract

17 pages, 739 KiB  
Article
Regenerative Cooling Comparison of LOX/LCH4 and LOX/LC3H8 Rocket Engines Using the One-Dimensional Regenerative Cooling Modelling Tool ODREC
by Yigithan Mehmet Kose and Murat Celik
Appl. Sci. 2024, 14(1), 71; https://doi.org/10.3390/app14010071 - 20 Dec 2023
Cited by 5 | Viewed by 6898
Abstract
Due to the extreme temperatures inside the combustion chambers of liquid propellant rocket engines, the walls of the combustion chamber and the nozzle are cooled by either the fuel or the oxidizer in what is known as regenerative cooling. This study presents [...] Read more.
Due to the extreme temperatures inside the combustion chambers of liquid propellant rocket engines, the walls of the combustion chamber and the nozzle are cooled by either the fuel or the oxidizer in what is known as regenerative cooling. This study presents an indigenous computational tool developed for the analysis of heat transfer in regenerative cooling of such rocket engines. The developed tool incorporates a one-dimensional (1-D) combustion analysis to calculate the thermophysical properties of the combustion gas. Basic engine properties were calculated and used to generate a thrust chamber profile based on a bell-shaped nozzle. The hot gas side was analyzed using 1-D isentropic flow assumptions, along with heat transfer correlations. The coolant side was evaluated using the hydraulic analysis in the axial direction and the heat transfer analysis in the radial direction. Thermophysical properties and the phase of the coolant were determined using the given property tables and the instantaneous state of the coolant. This flexible and computationally less demanding tool was used to analyze two small-scale engines utilizing liquid hydrocarbon fuels, which are used in modern rocket propulsion. The wall cooling analyses of a liquid oxygen (LOX)/liquid methane (LCH4) engine and a liquid oxygen (LOX)/liquid propane (LC3H8) engine are presented. Fuel and oxidizer were used separately as coolants for both engines, and both of them experienced phase change. Results reveal the advantage of the high mass flow rate of the oxidizer in cooling performance. In addition, the results of this study show that the cooling of the LOX/LC3H8 engine is somewhat more challenging compared to the LOX/LCH4 engine. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

19 pages, 11627 KiB  
Article
Numerical Simulation of Flow and Argon Bubble Distribution in a Continuous Casting Slab Mold under Different Argon Injection Modes
by Zexian He, Qiao Cheng, Haibiao Lu, Yunbo Zhong, Changgui Cheng, Jingxin Song and Zuosheng Lei
Metals 2023, 13(12), 2010; https://doi.org/10.3390/met13122010 - 14 Dec 2023
Cited by 2 | Viewed by 2158
Abstract
A three-dimensional model is established to investigate the effect of argon injection mode, argon flow rate and casting speed on the gas–liquid two-phase flow behavior inside a slab continuous casting mold. The Eulerian–Eulerian model is employed to simulate the gas–liquid flow, and the [...] Read more.
A three-dimensional model is established to investigate the effect of argon injection mode, argon flow rate and casting speed on the gas–liquid two-phase flow behavior inside a slab continuous casting mold. The Eulerian–Eulerian model is employed to simulate the gas–liquid flow, and the population balance model is applied to describe the bubble breakage and coalescence process in the mold. The numerical simulation results of the bubble size distribution are verified using the water model experiment. The results show that the flow field and bubble distribution are similar between the argon injection at the upper submerged entry nozzle (SEN) and tundish upper nozzle (TUN), while the number density is larger for the argon injection of TUN. The coalescence rate of bubbles and the bubble size inside the mold increase with increasing argon flow rate. When the argon flow rate exceeds 4 L/min, the flow pattern of liquid steel changes from double-roll flow to complex flow, with aggravation of the level fluctuation of the top surface near the SEN. When the casting speed increases, the bubble breakup rate increases and results in a decrease in the size of bubbles inside the mold. At a high casting speed, the flow pattern tends to form double-roll flow, and the liquid level at the narrow face of the top surface increases. Full article
(This article belongs to the Special Issue Casting and Solidification Processing (Second Edition))
Show Figures

Figure 1

20 pages, 9964 KiB  
Article
Validation of the CFD Tools against In-House Experiments for Predicting Condensing Steam Flows in Nozzles
by Sima Shabani, Mirosław Majkut, Sławomir Dykas, Krystian Smołka, Esmail Lakzian and Guojie Zhang
Energies 2023, 16(12), 4690; https://doi.org/10.3390/en16124690 - 13 Jun 2023
Cited by 8 | Viewed by 2141
Abstract
The issues addressed in this work concern the condensing steam flows as a flow of a two-phase medium, i.e., consisting of a gaseous phase and a dispersed phase in the form of liquid droplets. The two-phase character and the necessity to treat steam [...] Read more.
The issues addressed in this work concern the condensing steam flows as a flow of a two-phase medium, i.e., consisting of a gaseous phase and a dispersed phase in the form of liquid droplets. The two-phase character and the necessity to treat steam as a real gas make the numerical modeling of the flow in the last steam turbine channels very difficult. There are many approaches known to solve this problem numerically, mainly based on the RANS method with the Eulerian approach. In this paper, the two Eulerian approaches were compared. In in-house CFD code, the flow governing equations were defined for a gas–liquid mixture, whereas in ANSYS CFX code, individual equations were defined for the gas and liquid phase (except momentum equations). In both codes, it was assumed that there was no velocity slip between phases. The main aim of this study was to show how the different numerical schemes and different governing equations can affect the modeling of wet steam flows and how difficult and sensitive this type of computation is. The numerical results of condensing steam flows were compared against in-house experimental data for nozzles determined at the Department of Power Engineering and Turbomachinery of the Silesian University of Technology. The presented experimental data can be used as a benchmark test for researchers to model wet steam flows. The geometries of two half nozzles and an International Wet Steam Experimental Project (IWSEP) nozzle were used for the comparisons. The static pressure measurements on the walls of the nozzles, the Schlieren technique, and the droplet size measurement were used to qualitatively identify the location of the condensation onset and its intensity. The CFD results obtained by means of both codes showed their good capabilities in terms of proper prediction of the condensation process; however, there were some visible differences in both codes in the flow field parameters. In ANSYS CFX, the condensation wave location in the half nozzles occurred much earlier compared to the experiments. However, the in-house code showed good agreement with the experiments in this region. In addition, the results of the in-house code for the mean droplet diameter in the IWSEP nozzle were closer to the experimental data. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 5462 KiB  
Article
Atomization Characteristics of Special-Design Pneumatic Two-Fluid Nozzles for Helicopter Main Reducers: A Numerical and Experimental Investigation
by He Liu, Huiyun Cheng, Yu Dai and Xiang Zhu
Aerospace 2022, 9(12), 834; https://doi.org/10.3390/aerospace9120834 - 15 Dec 2022
Cited by 3 | Viewed by 3219
Abstract
Oil mist lubrication can be utilized as an emergency lubrication system in the main reducer of a helicopter. A special-design pneumatic two-fluid nozzle is the crucial system component for atomizing lubricant oil, so exploring the atomization characteristics of the nozzle has a significance [...] Read more.
Oil mist lubrication can be utilized as an emergency lubrication system in the main reducer of a helicopter. A special-design pneumatic two-fluid nozzle is the crucial system component for atomizing lubricant oil, so exploring the atomization characteristics of the nozzle has a significance on effectively improving oil mist lubrication performance. A CFD (computational fluid dynamics) model with a DPM (discrete phase model) technique and a specialized atomization test system were set up to both numerically and experimentally investigate the nozzle’s atomization characteristics. For the atomization properties of the nozzle, the impacts of air pressure, gas–liquid pressure ratio, lubricant oil flow rate, and lubricant oil property factors, including viscosity and surface tension, were investigated. Combining the experimental and the numerical findings reveals that an increasing air pressure and gas–liquid pressure ratio contribute to the atomization effect of the nozzle, especially the air pressure. In addition, a higher lubricant oil flow rate is slightly unfavorable for atomization, but a rise in viscosity and surface tension prevents the atomization of the lubrication oil. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (2nd Edition))
Show Figures

Figure 1

17 pages, 8804 KiB  
Article
Study on Temporal and Spatial Distribution and Transport Characteristics of Dust in New Composite Spraying Slurry
by Changan Liu, Sihua Shao, Xueyou Su, Zhongru Zhang, Zhimeng Sun and Biao Zhang
Minerals 2022, 12(10), 1182; https://doi.org/10.3390/min12101182 - 20 Sep 2022
Cited by 3 | Viewed by 1537
Abstract
In view of the problems of traditional spraying technology, such as complex processes, high costs, large dust amounts, and poor air leakage effects, a new composite spraying slurry is proposed in this paper, which takes clay as the main base material and uses [...] Read more.
In view of the problems of traditional spraying technology, such as complex processes, high costs, large dust amounts, and poor air leakage effects, a new composite spraying slurry is proposed in this paper, which takes clay as the main base material and uses water pressure and wind pressure to ensure intrinsic safety. Firstly, the airtightness, bending resistance, and viscosity of the spraying material were measured in the laboratory; secondly, the gas–liquid–solid three-phase flow process involved in the spraying process was simulated by using the CFD-DPM method, adopting the Eulerian two-fluid model for continuous gas–water two-phases and the discrete phase DPM model for dust generation, and the transport, diffusion, and full space-time distribution characteristics of dust generation were studied. The research shows that: (1) the new composite slurry spraying material made of clay as the main material is made by adding a small proportion of cement and engineering fiber to increase the toughness of the material, and finally, determining the mass ratio of the composite material as follows: clay: cement: additive: engineering fiber = 84:14:1.85:0.15. It has good sealing and bending resistance and good adhesion; (2) the water phase distribution under the action of spray determines the distribution of solid-phase dust, and the distribution area of dust is similar to that of the water phase; (3) under the action of spray, the area at the bottom of the roadway is covered by dust flow, and the dust in this area is obviously stratified. The particle size of the dust gradually decreases from bottom to top. The large particle size dust is deposited at the bottom, while the small particle size dust is suspended at a certain height, and the diffusion area gradually increases; (4) the effect of spray angle on dust is mainly manifested in the initial dust flow shape and dust diffusion time. The larger the spray angle, the faster the diffusion; (5) when the water velocity at the nozzle outlet is large, the dust concentration is low in the whole area, but in areas higher than 1.5 m, the PM2.5 concentration also increases with the increase in water flow. The dust suppression effect of larger a water flow is mainly reflected in the bottom area, and the disturbed surrounding airflow can make PM2.5 diffuse to higher areas. Full article
Show Figures

Figure 1

25 pages, 10151 KiB  
Article
Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver
by Daniel Angel Palomino Solis and Federico Piscaglia
Fluids 2022, 7(9), 289; https://doi.org/10.3390/fluids7090289 - 30 Aug 2022
Cited by 2 | Viewed by 3489
Abstract
We present a fully compressible single-fluid volume of fluid (VOF) solver with phase change for high-speed flows, where the atomization of the liquid can occur either by the aerodynamics or by the effect of the local pressure. The VOF approximation among a non-miscible [...] Read more.
We present a fully compressible single-fluid volume of fluid (VOF) solver with phase change for high-speed flows, where the atomization of the liquid can occur either by the aerodynamics or by the effect of the local pressure. The VOF approximation among a non-miscible phase (non-condensable gas) and a mixture of two fluids (liquid and vapor) represents the liquid core of the jet and its atomization. A barotropic model is used in combination with the equation of state (EoS) to link the mixture density to pressure and temperature. The solver is written with the aim to simulate high-pressure injection in gas–liquid systems, where the pressure of the liquid is great enough to cause significant compression of the surrounding gas. Being designed in an C++ object-oriented fashion, the solver is able to support any kind of EoS; the aim is to apply it to the simulation of the injection of liquid propellant in rocket engines. The present work includes the base development; a verification assessment of the code is provided by the solution of a set of numerical experiments to prove the boundedness, convergence and accuracy of the method. Experimental measurements of a cavitating microscopic in-nozzle flow, available in the literature, are finally used for a first validation with phase change. Full article
Show Figures

Figure 1

14 pages, 2379 KiB  
Article
Experimental Study on Atomization Characteristics of Gas–Liquid Two-Phase Flow Nozzle and Its Dust Removal Effect
by Xueming Fang, Bingyou Jiang, Liang Yuan, Yuxiang Liang, Bo Ren, Wenhan Tao and Xianbao Li
Materials 2022, 15(2), 565; https://doi.org/10.3390/ma15020565 - 12 Jan 2022
Cited by 8 | Viewed by 2239
Abstract
An experimental study on the flow rate and atomization characteristics of a new gas–liquid two-phase flow nozzle was carried out to use high-concentration respirable dust in the workplace of high-efficiency sedimentation coal production based on the gas–liquid two-phase flow nozzle technology. The simulation [...] Read more.
An experimental study on the flow rate and atomization characteristics of a new gas–liquid two-phase flow nozzle was carried out to use high-concentration respirable dust in the workplace of high-efficiency sedimentation coal production based on the gas–liquid two-phase flow nozzle technology. The simulation roadway of dust fall in large coal mines was constructed, and the respirable rock dust produced by fully mechanized mining surfaces was chosen as the research object. The effects of humidity on the capture effect of respirable rock dust were analyzed in the experimental study. The results demonstrated that: (1) the distribution range of the particle size of fogdrops declines with the reduction in fogdrops D50, D[3,2] and D[4,3], which are produced by gas–liquid two-phase flow nozzles. (2) The initial ambient humidity in the simulated roadway was 64.8% RH. After the gas–liquid two-phase flow spray was started, the ambient humidity was elevated by 23.2 to 23.5% RH within 840s and tended to be stable and no longer grew after reaching 88.0–88.3% RH. The initial growth rate of the ambient humidity in the simulated roadway was high, and then was gradually slowed down. (3) Humidity is an important factor influencing the collection of respirable dust. The humidity at 10.0 m leeward of the dust-producing point was increased by 19.6% RH, and the sedimentation rate of respirable dust was increased by 6.73%; the two growth rates were 13.1% RH and 9.90% at 20.0 m; 16.4% RH and 15.42% at 30.0 m; 18.4% RH and 11.20% at 40.0 m. In practical applications of the gas–liquid two-phase flow nozzle in coal mining activities, attention shall be paid to not only the influences of its atomization characteristics on the capture effect of respirable dust but also the influences of the flow rate of the nozzle on the humidity of the working surface. Appropriate gas and water supply pressures shall be chosen according to the space and respirable dust concentration on the working surface to realize a better dust removal effect. Full article
Show Figures

Figure 1

25 pages, 37268 KiB  
Article
Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
by Quanwei Li, Xiaohua He, Yongbing Chen, Jiang Lin, Yi Zhang, Ruiyu Chen and Xia Zhou
Symmetry 2021, 13(12), 2440; https://doi.org/10.3390/sym13122440 - 17 Dec 2021
Cited by 7 | Viewed by 2834
Abstract
In order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in [...] Read more.
In order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in the nozzle on the basis of CFD simulations. Although the structure of the nozzle is axisymmetric, the spatial distribution of the pressure and velocity during the flow and release of gas extinguishing agent is not completely symmetric. It was found that both of the outlet–inlet area ratio (δ) and the length–diameter aspect ratio (ξ) had a significant impact on the distribution characteristics of the pressure and axial velocity in the nozzle. With the increase of δ, the average pressure at the outlet cross-section of the nozzle decreased monotonically, while the average axial velocity at the outlet increased approximately linearly. When ξ2, the uniformity of the pressure and velocity distribution at the nozzle outlet was significantly improved. Moreover, with the increase of ξ, the average pressure and the average axial velocity of the outlet both showed a non-monotonic change trend, and the optimal value of ξ should be about 3.0. Compared with δ and ξ, the influence of the nozzle wall roughness (εN) on the flow and release characteristics of the extinguishing agent was weak. With the increase of εN, the average pressure of the nozzle outlet increased slightly, while the average axial velocity at the nozzle outlet decreased slightly. Full article
(This article belongs to the Special Issue Asymmetry in Fire Dynamics and Modelling)
Show Figures

Figure 1

19 pages, 28241 KiB  
Article
Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus
by Waldemar Fedak, Roman Ulbrich, Grzegorz Ligus, Marek Wasilewski, Szymon Kołodziej, Barbara Wasilewska, Marek Ochowiak, Sylwia Włodarczak, Andżelika Krupińska and Ivan Pavlenko
Energies 2021, 14(14), 4280; https://doi.org/10.3390/en14144280 - 15 Jul 2021
Cited by 6 | Viewed by 3243
Abstract
This article reports the results of a study into the effect of operating parameters on the occurrence and course of gas–liquid two-phase phenomena during the fogging process carried out with the use of a conical pressure-swirl nozzle. Four alternatives of the stub regulation [...] Read more.
This article reports the results of a study into the effect of operating parameters on the occurrence and course of gas–liquid two-phase phenomena during the fogging process carried out with the use of a conical pressure-swirl nozzle. Four alternatives of the stub regulation angles and four values of pressure of air supply to the nozzle were tested as part of the current research. The range of the investigated variables was common for the operation of fumigators used to prevent the spread of SARS-CoV-2 virus. The liquid flow rate (weighting method), the field of velocity, and turbulent flow intensity factor, as well as velocity profiles over the section of 1 m from the nozzle were determined using the particle image velocimetry (PIV) technique. The obtained results were correlated with the measurements of the diameters of spray droplets using the laser light scattering (LLS) technique. On the basis of this research, a dependence between the nozzle parameters and the spray cone pattern was identified in terms of dynamics and droplet diameter distribution. As a result of the research, a wide range of parameters were identified in which the fogging process was carried out in a stable and repeatable manner. There were exceptions to this rule only in the cases when there was a deficiency of the liquid necessary to generate a two-phase mixture. Full article
(This article belongs to the Special Issue Multiphase Flows)
Show Figures

Graphical abstract

Back to TopTop