Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = gamma- and alpha-tocopherols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 699 KB  
Article
Association of Vitamins and Minerals with Type 1 Diabetes Risk: A Mendelian Randomization Study
by Lucia Shi, Wiame Belbellaj and Despoina Manousaki
Nutrients 2025, 17(20), 3297; https://doi.org/10.3390/nu17203297 - 20 Oct 2025
Viewed by 553
Abstract
Background/Objectives: Previous studies suggest that nutrient deficiencies can alter immune responses in animals. However, the impact of micronutrients on autoimmune diseases like type 1 diabetes (T1D) in humans remains unclear since the described associations are based on observational data and they cannot establish [...] Read more.
Background/Objectives: Previous studies suggest that nutrient deficiencies can alter immune responses in animals. However, the impact of micronutrients on autoimmune diseases like type 1 diabetes (T1D) in humans remains unclear since the described associations are based on observational data and they cannot establish causality. This study aims to examine the causal relationship between various micronutrients and T1D using Mendelian randomization (MR). Methods: We performed a two-sample MR analysis using genetic variants from genome-wide association studies (GWASs) of 17 micronutrients as instrumental variables (IVs). We analyzed T1D GWAS datasets of European (18,942 cases/520,580controls), multi-ancestry (25,717 cases/583,311 controls), Latin American/Hispanic (2295 cases/55,134 controls), African American/Afro-Caribbean (6451 cases/109,410 controls), and East Asian (1219 cases/132,032 controls) ancestries. We applied the inverse variance weighted (IVW) method in our main analysis, and additional MR estimators (MR-Egger, weighted median, weighted mode, MR-PRESSO) to address pleiotropy, and the Steiger test to test directionality in sensitivity analyses. Results: Following Bonferroni correction (p < 0.05/17), we found positive association between potassium levels and T1D risk (OR = 1.098, 95% CI [1.075, 1.122] p = 5.5 × 10−18) in the multi-ancestry analysis. Zinc, vitamin B12, retinol, and alpha tocopherol showed nominal associations. Vitamin C, D, K1, B6, beta- and gamma-tocopherol, magnesium, iron, copper, selenium, carotene, and folate showed no significant effects on T1D risk. For the multi-ancestry analysis, we had sufficient power to detect ORs for T1D larger than 1.065. Conclusions: Higher serum potassium levels were associated with increased T1D risk in our MR study, though supporting observational evidence is currently limited. Other micronutrients are unlikely to have large effects on T1D. Full article
(This article belongs to the Special Issue Vitamins and Human Health: 3rd Edition)
Show Figures

Graphical abstract

20 pages, 2542 KB  
Review
Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties
by Basma Es-Sai, Hicham Wahnou, Salma Benayad, Soufiane Rabbaa, Yassir Laaziouez, Riad El Kebbaj, Youness Limami and Raphaël Emmanuel Duval
Molecules 2025, 30(3), 653; https://doi.org/10.3390/molecules30030653 - 1 Feb 2025
Cited by 27 | Viewed by 6904
Abstract
Gamma-tocopherol (γ-tocopherol), a major isoform of vitamin E, exhibits potent antioxidant, anti-inflammatory, and anticancer properties, making it a promising therapeutic candidate for treating oxidative stress-related diseases. Unlike other tocopherol isoforms, γ-tocopherol effectively neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), providing [...] Read more.
Gamma-tocopherol (γ-tocopherol), a major isoform of vitamin E, exhibits potent antioxidant, anti-inflammatory, and anticancer properties, making it a promising therapeutic candidate for treating oxidative stress-related diseases. Unlike other tocopherol isoforms, γ-tocopherol effectively neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), providing robust cellular protection against oxidative damage and lipid peroxidation. Its anti-inflammatory effects are mediated through the modulation of pathways involving cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α), reducing chronic inflammation and its associated risks. In cancer therapy, γ-tocopherol demonstrates multifaceted activity, including the inhibition of tumor growth, induction of apoptosis, and suppression of angiogenesis, with significant efficacy observed in cancers such as prostate, lung, and colon. Preclinical and clinical studies support its efficacy in mitigating oxidative stress, inflammation, and cancer progression, with excellent tolerance at physiological levels. However, high doses necessitate careful evaluation to minimize adverse effects. This review consolidates current knowledge on γ-tocopherol’s biological activities and clinical implications, underscoring its importance as a natural compound for managing inflammation, oxidative stress, and cancer. As a perspective, advancements in nanoformulation technology could enhance γ-tocopherol’s bioavailability, stability, and targeted delivery, offering the potential to optimize its therapeutic application in the future. Full article
(This article belongs to the Special Issue Advances in Plant-Sourced Natural Compounds as Anticancer Agents)
Show Figures

Figure 1

13 pages, 991 KB  
Article
Fatty Acid Composition, Oxidative Status, and Content of Biogenic Elements in Raw Oats Modified Through Agricultural Practices
by Michał Wojtacki, Krystyna Żuk-Gołaszewska, Robert Duliński, Joanna Giza-Gołaszewska, Barbara Kalisz and Janusz Gołaszewski
Foods 2024, 13(22), 3622; https://doi.org/10.3390/foods13223622 - 13 Nov 2024
Cited by 1 | Viewed by 1404
Abstract
The chemical composition of raw oat grain is responsible for the high dietary value and health-promoting properties of oat products. This article presents the results of a study investigating the biofortification of grain in two oat genotypes—hulless and hulled—through agronomic treatments: chemical plant [...] Read more.
The chemical composition of raw oat grain is responsible for the high dietary value and health-promoting properties of oat products. This article presents the results of a study investigating the biofortification of grain in two oat genotypes—hulless and hulled—through agronomic treatments: chemical plant protection against weeds and fungi and mineral nitrogen fertilization. The applied agronomic treatments induced different changes in the fatty acid profiles, content of tocopherols, macronutrients, and micronutrients in the grain of hulled and hulless oats. Plant health contributed to higher concentrations of unsaturated fatty acids and potassium in oat grain. In turn, nitrogen fertilization decreased the content of unsaturated fatty acids, potassium, and copper and increased the content of saturated fatty acids, calcium, and manganese in oat grain. At the same time, agronomic treatments reduced the tocopherol content of the grain, which implies that the nutritional value of oats increases in the absence of chemical plant protection agents. The correlations between the content of desirable chemical compounds and agronomic treatments were stronger in hulless oat grain, which may suggest that the agronomic modification of oat-based foods is more effective in this genotype. The content of exogenous alpha-linoleic acid C18:3 n-3 and alpha-tocopherol was higher in grain harvested from the control treatment (without chemical plant protection), whereas grain harvested from fully protected treatments accumulated more essential gamma-linolenic acid C18:3 n-6. The content of gamma-tocopherol and copper in oat grain was higher in the absence of nitrogen fertilization. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 664 KB  
Article
Day-to-Day Fluctuation in Micronutrient Content in Human Milk Relative to Maternal Diet
by Noelia Ureta-Velasco, Adriana Montealegre-Pomar, Kristin Keller, Diana Escuder-Vieco, José C. E. Serrano, Nadia Raquel García-Lara and Carmen R. Pallás-Alonso
Nutrients 2024, 16(21), 3727; https://doi.org/10.3390/nu16213727 - 31 Oct 2024
Cited by 1 | Viewed by 1919
Abstract
Background/Objectives: The impact of daily variations in habitual maternal intake on human milk (HM) composition has been poorly studied. We aimed to investigate the associations between day-to-day fluctuation in the micronutrient concentration in HM and daily maternal diet. Methods: To this end, an [...] Read more.
Background/Objectives: The impact of daily variations in habitual maternal intake on human milk (HM) composition has been poorly studied. We aimed to investigate the associations between day-to-day fluctuation in the micronutrient concentration in HM and daily maternal diet. Methods: To this end, an observational longitudinal study was carried out. A total of 143 lactating women each compiled a five-day weighed dietary record and concomitantly expressed milk for four successive days. Maternal daily intakes of micronutrients and food groups were analyzed. Free thiamine, free riboflavin, nicotinamide, pantothenic acid, pyridoxal, folic acid, cobalamin, ascorbic and dehydroascorbic acids, retinol, alpha- and gamma-tocopherol, cholecalciferol, and calcidiol in HM were determined for each of the four investigated days. A longitudinal data analysis with generalized estimating equation models was performed. Results: For each daily serving of meat, fish, and eggs, total vitamin D3 levels increased by 243.2 pg/mL (p = 0.027) and selenium levels increased by 0.16 ppb (p = 0.031) in HM. For every 1 mg/day of riboflavin supplementation, free riboflavin levels in HM increased by 28.6 mcg/L (p = 0.019). Pyridoxal levels in HM increased by 6.3 mcg/L per 1 mg/day of vitamin B6 supplementation (p = 0.001), and by 2 mcg/L per daily fruit ration (p = 0.016). Conclusions: In conclusion, we were able to quantify the impact of the usual day-to-day variations in the diet and in the intake of commonly used supplements on the fluctuation of vitamin D, free riboflavin, pyridoxal, and selenium concentration in the milk of lactating women. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

21 pages, 2743 KB  
Article
Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland
by Artur Szatkowski, Zofia Antoszkiewicz, Cezary Purwin and Krzysztof Józef Jankowski
Agriculture 2024, 14(5), 755; https://doi.org/10.3390/agriculture14050755 - 13 May 2024
Cited by 6 | Viewed by 2908
Abstract
Nitrogen (N) and sulfur (S) fertilization significantly affect seed yield and quality in Brassica oilseed crops. The effect of N and S management on the crop parameters (plant height, stem-base diameter, and number of branches), yield (seed yield components, seed and straw yields, [...] Read more.
Nitrogen (N) and sulfur (S) fertilization significantly affect seed yield and quality in Brassica oilseed crops. The effect of N and S management on the crop parameters (plant height, stem-base diameter, and number of branches), yield (seed yield components, seed and straw yields, harvest index—HI), and the quality of the seeds and oil (crude fat—CF, total protein—TP, crude fiber—CFR, fatty acids profile—FA, acid detergent fiber; and neutral detergent fiber) of oilseed radish (Raphanus sativus L. var. oleiformis Pers.) was analyzed in the study. The effect of N and S fertilization was evaluated in a field experiment in Bałcyny (north-eastern Poland) in 2020–2022. The experiment had a split-plot design with two factors and three replications. The first factor was the N rate (0, 30, 60, 90, 120 kg ha−1) and the second factor was the S rate (0, 15, 30 kg ha−1). Nitrogen fertilization stimulated stem elongation and branching. The average oilseed radish (OSR) seed yield ranged from 0.59 to 1.15–1.25 Mg ha−1. Seed yields increased significantly, up to 90 kg N ha−1 and 15 kg S ha−1. The N fertilizer use efficiency (NFUE) of OSR decreased with a rise in the N rate (from 4.22 to 2.19 kg of seeds per 1 kg N). The application of S did not increase NFUE. The HI ranged from 10% (0–30 kg N ha−1) to 12% (60 kg N ha−1). The contents of CF, TP, and CFR in OSR seeds (kg−1 dry matter—DM) were 383–384 g, 244–249 g, and 97–103 g, respectively. Nitrogen fertilization decreased the CF content (by 5%) and increased the contents of TP (by 5%) and CFR (by 16%) in OSR seeds. Sulfur fertilizer applied at 30 kg ha−1 decreased the CF content (by 2%), but it did not alter the content of TP or CFR. Oilseed radish oil contained 68–70% of monounsaturated FAs (MUFAs) (erucic acid accounted for 2/3 of the total MUFAs), 24–25% of polyunsaturated FAs (PUFAs), and 6–8% of saturated FAs (SFAs). Nitrogen fertilization increased the proportions of SFAs and PUFAs in OSR oil. Nitrogen rates of 60–90 kg ha−1 increased the contents of alpha-tocopherol (α-T), beta-tocopherol (β-T), and gamma-tocopherol (γ-T) in OSR seeds by 32%, 40%, and 27%, respectively. Sulfur fertilization increased the content of PUFAs and decreased the content of MUFAs in OSR oil, while it increased the contents of α-T (by 15%) and γ-T (by 19%) in OSR seeds. Proper N and S management in OSR cultivation can improve crop productivity and the processing suitability of seeds. Full article
Show Figures

Figure 1

11 pages, 1295 KB  
Article
Tocopherols in Cultivated Apple Malus sp. Seeds: Composition, Variability and Specificity
by Paweł Górnaś, Gunārs Lācis, Inga Mišina and Laila Ikase
Plants 2023, 12(5), 1169; https://doi.org/10.3390/plants12051169 - 3 Mar 2023
Cited by 5 | Viewed by 1691
Abstract
The seeds of 111 Malus sp. different fruit use (dessert and cider apples) cultivars/genotypes developed in 18 countries were analysed to evaluate composition of tocopherol homologues and identify crop-specific profile, including diploid, triploid, and tetraploid apple cultivars with and without scab-resistance to ensure [...] Read more.
The seeds of 111 Malus sp. different fruit use (dessert and cider apples) cultivars/genotypes developed in 18 countries were analysed to evaluate composition of tocopherol homologues and identify crop-specific profile, including diploid, triploid, and tetraploid apple cultivars with and without scab-resistance to ensure high genetic diversity. The percentage of individual tocopherols was as follows: alpha-tocopherol (alpha-T) (38.36%), beta-tocopherol (beta-T) (40.74%), gamma-tocopherol (gamma-T) (10.93%), and delta-tocopherol (delta-T) (9.97%), represented by average measurements of 17.48, 18.56, 4.98, and 4.54 mg/100 g dry weight, respectively. The values of the variation coefficient showed high variability for delta (0.695) and gamma (0.662) homologue content, whereas measurements of alpha-T and beta-T were less variable (coefficient of variation 0.203 and 0.256, respectively). The unweighted pair group method with arithmetic mean (UPGMA) revealed three main cultivar groups characterised by almost equal content of all four tocopherol homologues (Group I), high concentrations of alpha-T and beta-T, but very low content of gamma-T and delta-T (Group II), and relatively high average content of alpha-T and beta-T, but higher gamma-T and delta-T content (Group III). Specific tocopherol homologues showed association with certain valuable traits, such as harvesting time (total content of tocopherols) and resistance to apple scab (alpha-T and total content of tocopherols). This study represents the first large-scale tocopherol homologue (alpha, beta, gamma, and delta) screening in apple seeds. The dominant tocopherol homologues in cultivated apple cultivars are alpha-T and beta-T, with the prevalence of alpha-T or beta-T depending on genotype. It is a unique finding due to the rare occurrence of beta-T in the plant world and is considered a unique feature of the species. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants)
Show Figures

Figure 1

14 pages, 2431 KB  
Article
Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts
by Svetlana Momchilova, Adriana Kazakova, Sabina Taneva, Katerina Aleksieva, Ralitsa Mladenova, Yordanka Karakirova, Zhanina Petkova, Mariana Kamenova-Nacheva, Desislava Teneva and Petko Denev
Molecules 2023, 28(3), 1439; https://doi.org/10.3390/molecules28031439 - 2 Feb 2023
Cited by 21 | Viewed by 3127
Abstract
Gamma irradiation has been applied as an efficient and inexpensive method for the sterilization of nuts for years. However, along with the benefits of such treatment, negative effects are possible because of the formation of reactive oxygen species with a toxic effect on [...] Read more.
Gamma irradiation has been applied as an efficient and inexpensive method for the sterilization of nuts for years. However, along with the benefits of such treatment, negative effects are possible because of the formation of reactive oxygen species with a toxic effect on important biologically active substances. Because of the scarce and contradictory information in the literature about gamma-irradiated almonds, the aim of our work was the examination of the lipid changes, antioxidant activity, and oxidative stability of almonds treated by 10 and 25 kGy gamma rays, as well as changes in intensity of the EPR spectra as an indicator for the stability of radiation-induced free radicals. The results revealed no significant differences in the EPR spectra of almonds treated at 10 and 25 kGy doses, neither in their intensity nor in kinetic behaviour. The EPR signals decayed exponentially over 250 days, with a decreasing of central line by 90%, with satellite lines by about 73%. No significant changes in the fat content, fatty acids composition, and acid value of irradiated almonds were observed. However, the amount of (alpha)tocopherols decreased from 292 to 175 mg/kg, whereas the conjugated dienes and trienes increased, K232 from 1.3 to 3 and K268 from 0.04 to 0.15, respectively, with the increasing of irradiation dose. The same was observed for total polyphenols in defatted almonds (1374 to 1520 mg/100 g), where in vitro antioxidant activity determined by ORAC and HORAC methods increased from 100 to 156 µmol TE/g and from 61 to 86 µmol GAE/g, respectively. The oxidative stability of oil decreased from 6 to 4 h at 120 °C and from 24.6 to 18.6 h at 100 °C (measured by Rancimat equipment). The kinetic parameters characterizing the oxidative stability of oil from 10 kGy irradiated almonds were studied before and after addition of different concentrations of ascorbyl palmitate as a synergist of tocopherols. Its effectiveness was concentration-dependent, and 0.75 mM ensured the same induction period as that of non-irradiated nut oil. Further enrichment with alpha-tocopherol in equimolar ratio with palmitate did not improve the oil stability. In conclusion, gamma irradiation is an appropriate method for the treatment of almonds without significant changes in fat content and fatty acids composition. The decreasing of oxidative stability after higher irradiation could be prevented by the addition of ascorbyl palmitate. Full article
Show Figures

Figure 1

20 pages, 863 KB  
Article
Different Effects of Vitamin C-Based Supplements on the Advance of Linseed Oil Component Oxidation and Lipolysis during In Vitro Gastrointestinal Digestion
by Bárbara Nieva-Echevarría, Encarnación Goicoechea, Patricia Sopelana and María D. Guillén
Foods 2022, 11(1), 58; https://doi.org/10.3390/foods11010058 - 27 Dec 2021
Cited by 3 | Viewed by 6021
Abstract
Although widely consumed, dietary supplements based on Vitamin C contain high doses of this compound, whose impact on lipid oxidation during digestion needs to be addressed. Therefore, the effect of seven commercial supplements and of pure l-ascorbic acid and ascorbyl palmitate on [...] Read more.
Although widely consumed, dietary supplements based on Vitamin C contain high doses of this compound, whose impact on lipid oxidation during digestion needs to be addressed. Therefore, the effect of seven commercial supplements and of pure l-ascorbic acid and ascorbyl palmitate on linseed oil during in vitro gastrointestinal digestion was tackled. The advance of lipid oxidation was studied through the generation of oxidation compounds, the degradation of polyunsaturated fatty acyl chains and of gamma-tocopherol, by employing Proton Nuclear Magnetic Resonance. Supplements containing exclusively l-ascorbic acid enhanced the advance of linseed oil oxidation during digestion. This was evidenced by increased formation of linolenic-derived conjugated hydroxy-dienes and alkanals and by the generation of conjugated keto-dienes and reactive alpha,beta-unsaturated aldehydes, such as 4,5-epoxy-2-alkenals; moreover, gamma-tocopherol was completely degraded. Conversely, supplements composed of mixtures of ascorbic acid/salt with citric acid and carotenes, and of ascorbyl palmitate, protected linseed oil against oxidation and reduced gamma-tocopherol degradation. The study through Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry of the volatile compounds of the digests corroborated these findings. Furthermore, a decreased lipid bioaccessibility was noticed in the presence of the highest dose of l-ascorbic acid. Both the chemical form of Vitamin C and the presence of other ingredients in dietary supplements have shown to be of great relevance regarding oxidation and hydrolysis reactions occurring during lipid digestion. Full article
Show Figures

Graphical abstract

12 pages, 2530 KB  
Article
Fatty Acid Profile, Tocopherol Content of Seed Oil, and Nutritional Analysis of Seed Cake of Wood Apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species
by Shrinivas Lamani, Konerira Aiyappa Anu-Appaiah, Hosakatte Niranjana Murthy, Yaser Hassan Dewir and Hail Z. Rihan
Horticulturae 2021, 7(9), 275; https://doi.org/10.3390/horticulturae7090275 - 1 Sep 2021
Cited by 16 | Viewed by 5618
Abstract
The present study was aimed at analyzing the fatty acid composition, tocopherols, and physico-chemical characterization of wood apple (Limonia acidissima L.) seed oil and the nutritional profile of seed cake. The fatty acids in seed oil were analyzed by gas chromatography–mass spectrometry [...] Read more.
The present study was aimed at analyzing the fatty acid composition, tocopherols, and physico-chemical characterization of wood apple (Limonia acidissima L.) seed oil and the nutritional profile of seed cake. The fatty acids in seed oil were analyzed by gas chromatography–mass spectrometry (GC-MS), and the total seed oil was 32.02 ± 0.08%, comprising oleic (21.56 ± 0.57%), alpha-linolenic (16.28 ± 0.29%), and linoleic acid (10.02 ± 0.43%), whereas saturated fatty acid content was 33.38 ± 0.60% including palmitic (17.68 ± 0.65%) and stearic acid (14.15 ± 0.27%). A greater amount of unsaturated fatty acids (52.37%) were noticed compared to saturated fatty acids (33.38%); hence the seed is highly suitable for nutritional and industrial applications. Gamma-tocopherol was present in a higher quantity (39.27 ± 0.07 mg/100 g) as compared to alpha (12.64 ± 0.01 mg/100 g) and delta (3.77 ± 0.00 mg/100 g) tocopherols, which are considered as natural antioxidants. The spectrophotometric technique was used for quantitative analysis of total phenolic content, and it revealed 135.42 ± 1.47 mg gallic acid equivalent /100 g DW in seed cake. All the results of the studied seed oil and cake showed a good source of natural functional ingredients for several health benefits. Full article
Show Figures

Figure 1

16 pages, 692 KB  
Article
Feeding Broiler Chickens with Grape Seed and Skin Meals to Enhance α- and γ-Tocopherol Content and Meat Oxidative Stability
by Carlos Romero, Maria Nardoia, Ignacio Arija, Agustín Viveros, Ana I. Rey, Marin Prodanov and Susana Chamorro
Antioxidants 2021, 10(5), 699; https://doi.org/10.3390/antiox10050699 - 28 Apr 2021
Cited by 23 | Viewed by 3341
Abstract
Grape seeds (GS) and grape skins (GK) are natural sources of polyphenols with featured antioxidant capacity. An experiment was conducted to investigate the effect of these polyphenol sources in diets formulated to contain the same total extractable grape polyphenol content on growth performance, [...] Read more.
Grape seeds (GS) and grape skins (GK) are natural sources of polyphenols with featured antioxidant capacity. An experiment was conducted to investigate the effect of these polyphenol sources in diets formulated to contain the same total extractable grape polyphenol content on growth performance, protein and extractable polyphenol digestibility, plasma and meat α- and γ-tocopherol and thigh meat oxidation in broiler chickens. Five experimental diets were formulated: control, control + vitamin E (200 mg/kg), 30 g/kg GS diet, 110 g/kg GK diet, GS + GK diet (a mixture of 24.4 g/kg GS and 13.1 g/kg GK designed to simulate a reconstituted grape pomace). Feeding chickens with 110 g/kg GK reduced (p < 0.001) daily weight gain, worsened (p < 0.001) feed conversion ratio, increased (p < 0.001) non-extractable polyphenol content in the ileum and in the excreta and decreased (p < 0.05) ileal protein digestibility. Regardless of the grape polyphenol source used, the inclusion of grape byproducts in the diets led to an increase of total extractable polyphenol contents in the ileum (p < 0.01) and the excreta (p < 0.001), which resulted (p < 0.001) in a decrease of extractable polyphenol digestibilities. Alpha- and gamma-tocopherol concentrations increased (p < 0.001) in plasma and in seven-day stored meat in birds fed the diet combining GS and GK with respect to the control group. As it happened with the vitamin E supplementation, feeding the combination of GS and GK also reduced (p < 0.001) the concentration of the lipid peroxidation marker (malondialdehyde) in the stored meat of chickens. Full article
Show Figures

Figure 1

21 pages, 1662 KB  
Article
Effect of the Enrichment of Corn Oil With alpha- or gamma-Tocopherol on Its In Vitro Digestion Studied by 1H NMR and SPME-GC/MS; Formation of Hydroperoxy-, Hydroxy-, Keto-Dienes and Keto-E-epoxy-E-Monoenes in the More alpha-Tocopherol Enriched Samples
by Jon Alberdi-Cedeño, María L. Ibargoitia and María D. Guillén
Antioxidants 2020, 9(3), 246; https://doi.org/10.3390/antiox9030246 - 18 Mar 2020
Cited by 20 | Viewed by 4504
Abstract
The aim of this study is the analysis of the in vitro digestion of corn oil, and of the effect of its enrichment with three levels of gamma- and alpha-tocopherol, by using, for the first time, 1H nuclear magnetic resonance [...] Read more.
The aim of this study is the analysis of the in vitro digestion of corn oil, and of the effect of its enrichment with three levels of gamma- and alpha-tocopherol, by using, for the first time, 1H nuclear magnetic resonance (1H NMR) and a solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). The attention is focused on the hydrolysis degree, the degradation of oil’s main components, the occurrence of oxidation reactions and main compounds formed, as well as on the bioaccessibility of oil’s main components, of compounds formed in the oxidation, and, of gamma- and alpha-tocopherol. The lipolysis levels reached are high and show a similar pattern in all cases. The oxidation of corn oil components during in vitro digestion is proven, as is the action of gamma-tocopherol as an antioxidant and alpha-tocopherol as a prooxidant. In the more alpha-tocopherol enriched samples, hydroperoxy-, hydroxy-, and keto-dienes, as well as keto-epoxy-monoenes and aldehydes, are generated. The bioaccessibility of the oil’s main components is high. The compounds formed in the oxidation process during in vitro digestion can also be considered bioaccessible. The bioaccessibility of alpha-tocopherol is smaller than that of gamma-tocopherol. The concentration of this latter compound remains unchanged during the in vitro digestion of the more alpha-tocopherol enriched oil samples. Full article
(This article belongs to the Special Issue Feature Papers in Antioxidants in 2020)
Show Figures

Figure 1

19 pages, 3206 KB  
Article
Gamma Tocopherol Reduced Chemotherapeutic-Induced ROS in an Ovarian Granulosa Cell Line, But Not in Breast Cancer Cell Lines In Vitro
by Daniela Figueroa Gonzalez and Fiona Young
Antioxidants 2020, 9(1), 51; https://doi.org/10.3390/antiox9010051 - 7 Jan 2020
Cited by 15 | Viewed by 5467
Abstract
Doxorubicin and cyclophosphamide are used to treat breast cancer, but they also cause infertility through off-target cytotoxicity towards proliferating granulosa cells that surround eggs. Each chemotherapeutic generates reactive oxygen species (ROS) but the effects of the combination, or the antioxidants alpha (αToc) and [...] Read more.
Doxorubicin and cyclophosphamide are used to treat breast cancer, but they also cause infertility through off-target cytotoxicity towards proliferating granulosa cells that surround eggs. Each chemotherapeutic generates reactive oxygen species (ROS) but the effects of the combination, or the antioxidants alpha (αToc) and gamma tocopherol (γToc) on ROS in breast cancer or ovarian cells are unknown. Human breast cancer (MCF7, T47D) and ovarian cancer (OVCAR, COV434) cells were loaded with DCDFA and exposed (1, 2, 3, 24 h) to the MCF7-derived EC25 values of individual agents, or to combinations of these. ROS were quantified and viable cells enumerated using crystal violet or DAPI. Each chemotherapeutic killed ~25% of MCF7, T47D and OVCAR cells, but 57 ± 2% (doxorubicin) and 66 ± 2% (cyclophosphamide) of the COV434 granulosa cells. The combined chemotherapeutics decreased COV434 cell viability to 34 ± 5% of control whereas doxorubicin + cyclophosphamide + γToc reduced ROS within 3 h (p < 0.01) and reduced cytotoxicity to 54 ± 4% (p < 0.05). αToc was not cytotoxic, whereas γToc killed ~25% of the breast cancer but none of the ovarian cells. Adding γToc to the combined chemotherapeutics did not change ROS or cytotoxicity in MCF7, T47D or OVCAR cells. The protection γToc afforded COV434 granulosa cells against chemotherapy-induced ROS and cytotoxicity suggests potential for fertility preservation. Full article
Show Figures

Graphical abstract

22 pages, 597 KB  
Article
The Profile of Secondary Metabolites and Other Bioactive Compounds in Cucurbita pepo L. and Cucurbita moschata Pumpkin Cultivars
by Bartosz Kulczyński and Anna Gramza-Michałowska
Molecules 2019, 24(16), 2945; https://doi.org/10.3390/molecules24162945 - 14 Aug 2019
Cited by 116 | Viewed by 10670
Abstract
Plants and animals are sources of various bioactive compounds that exhibit a broad spectrum of health-promoting effects. Scientists continue studies on the chemical composition of many products in search of foods with high nutritional value. The pumpkin (Cucurbita sp.) is unquestionably a [...] Read more.
Plants and animals are sources of various bioactive compounds that exhibit a broad spectrum of health-promoting effects. Scientists continue studies on the chemical composition of many products in search of foods with high nutritional value. The pumpkin (Cucurbita sp.) is unquestionably a source of valuable nutrients. This vegetable is well-known all over the world and it is appreciated due to its high content of carotenoids, but it is still not much used in the processing industry. The aim of present study was to compare the flesh of 15 pumpkin varieties belonging to the Cucurbita pepo and C. moschata species in terms of the bioactive compound content (carotenoids, phenolic acids, flavonols, minerals and vitamins) and to demonstrate whether the variety has an effect on the chemical composition. To date, no such extensive research has been carried out in this area. The research revealed that the pumpkin pulp had high content of carotenoids. In nearly all cases lutein was the most abundant carotenoid. Numerous phenolic acids and flavonols were also identified. All the cultivars contained gallic acid, protocatechuic acid, 4-hydroxybenzoic acid, vanillic acid, chlorogenic acid, caffeic acid, and rutin. The pumpkin pulp also contained alpha- and gamma-tocopherol. No beta- or delta-tocopherol was found. Potassium, calcium, and sodium were the most abundant minerals. The research also proved that the profile of bioactive compounds in the pumpkin pulp was considerably diversified and depended on the species and cultivar Full article
(This article belongs to the Special Issue Secondary Metabolites in Plant Foods)
Show Figures

Graphical abstract

14 pages, 3254 KB  
Article
Extraction of Carotenoids and Fat-Soluble Vitamins from Tetradesmus Obliquus Microalgae: An Optimized Approach by Using Supercritical CO2
by Laura Chronopoulou, Chiara Dal Bosco, Fabrizio Di Caprio, Letizia Prosini, Alessandra Gentili, Francesca Pagnanelli and Cleofe Palocci
Molecules 2019, 24(14), 2581; https://doi.org/10.3390/molecules24142581 - 16 Jul 2019
Cited by 38 | Viewed by 6724
Abstract
In recent years, great attention has been focused on rapid, selective, and environmentally friendly extraction methods to recover pigments and antioxidants from microalgae. Among these, supercritical fluid extraction (SFE) represents one of the most important alternatives to traditional extraction methods carried out with [...] Read more.
In recent years, great attention has been focused on rapid, selective, and environmentally friendly extraction methods to recover pigments and antioxidants from microalgae. Among these, supercritical fluid extraction (SFE) represents one of the most important alternatives to traditional extraction methods carried out with the use of organic solvents. In this study, the influence of parameters such as pressure, temperature, and the addition of a polar co-solvent in the SFE yields of carotenoids and fat-soluble vitamins from T. obliquus biomass were evaluated. The highest extraction of alpha-tocopherol, gamma-tocopherol, and retinol was achieved at a pressure of 30 MPa and a temperature of 40 °C. It was observed that overall, the extraction yield increased considerably when a preliminary step of sample pre-treatment, based on a matrix solid phase dispersion, was applied using diatomaceous earth as a dispersing agent. The use of ethanol as a co-solvent, under certain conditions of pressure and temperature, resulted in selectively increasing the yields of only some compounds. In particular, a remarkable selectivity was observed if the extraction was carried out in the presence of ethanol at 10 MPa and 40 °C: under these conditions, it was possible to isolate menaquinone-7, a homologous of vitamin K2, which, otherwise, cannot not recovered by using traditional extraction procedures. Full article
(This article belongs to the Collection Advances in Food Analysis)
Show Figures

Figure 1

15 pages, 1212 KB  
Article
Fat Soluble Vitamins in Institutionalized Elderly and the Effect of Exercise, Nutrition and Cognitive Training on Their Status—The Vienna Active Aging Study (VAAS): A Randomized Controlled Trial
by Bernhard Franzke, Barbara Schober-Halper, Marlene Hofmann, Stefan Oesen, Anela Tosevska, Eva-Maria Strasser, Rodrig Marculescu, Barbara Wessner and Karl-Heinz Wagner
Nutrients 2019, 11(6), 1333; https://doi.org/10.3390/nu11061333 - 14 Jun 2019
Cited by 15 | Viewed by 7889
Abstract
Background: Institutionalized elderly are at higher risk for micronutrient deficiency. In particular, fat soluble micronutrients, which additionally have antioxidative function, are of interest. The purpose of this secondary investigation of the Vienna Active Ageing Study was to assess and evaluate the plasma status [...] Read more.
Background: Institutionalized elderly are at higher risk for micronutrient deficiency. In particular, fat soluble micronutrients, which additionally have antioxidative function, are of interest. The purpose of this secondary investigation of the Vienna Active Ageing Study was to assess and evaluate the plasma status of retinol, alpha- and gamma-tocopherol, alpha- and beta-carotene, lutein, zeaxanthin, beta-cryptoxanthin, and lycopene, as well as vitamin D (25(OH)D) in a cohort of institutionalized elderly. We further determined the effect of six months strength training with or without supplementing (antioxidant) vitamins and protein on the plasma status of these ten micronutrients. Methods: Three groups (n = 117, age = 83.1 ± 6.1 years)—resistance training (RT), RT combined with protein and vitamin supplementation (RTS), or cognitive training (CT)—performed two guided training sessions per week for six months. Micronutrients were measured with High Performance Liquid Chromatography (HPLC) at baseline and after 6 months of intervention. Physical fitness was assessed by the 6-min-walking, the 30-s chair rise, isokinetic dynamometry, and the handgrip strength tests. Results: At baseline, the plasma status of retinol was satisfactory, for alpha-tocopherol, beta-carotene, and 25(OH)D, the percentage of individuals with an insufficient status was 33%, 73% and 61%/81% (when using 50 nmol/L or 75 nmol/L as threshold levels for 25(OH)D), respectively. Plasma analyses were supported by intake data. Six months of elastic band resistance training with or without protein-vitamin supplementation had no biological impact on the status of fat soluble micronutrients. Even for vitamin D, which was part of the nutritional supplement (additional 20 µg/d), the plasma status did not increase significantly, however it contributed to a lower percentage of elderly below the threshold levels of 50/75 nmol/L (49%/74%). Conclusions: The findings of the study lead to the strong recommendation for regular physical activity and increased consumption of plant-based foods in institutionalized elderly. When supported by blood analysis, supplementing micronutrients in a moderate range should also be considered. Full article
(This article belongs to the Special Issue Nutrients Intake, Exercise and Healthy Ageing)
Show Figures

Figure 1

Back to TopTop