Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = galactoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1100 KiB  
Article
Bioactive Power of Black Chokeberry Pomace as Affected by Advanced Extraction Techniques and Cryogrinding
by Maja Repajić, Marija Zorić, Ivan Magnabosca, Sandra Pedisić, Verica Dragović-Uzelac and Ivona Elez Garofulić
Molecules 2025, 30(16), 3383; https://doi.org/10.3390/molecules30163383 - 14 Aug 2025
Viewed by 269
Abstract
Black chokeberry (Aronia melanocarpa L.) pomace (BCP), a major by-product of juice production, is an underutilized source of polyphenols and anthocyanins with strong antioxidant properties. This study aimed to optimize and compare three green extraction techniques—pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), [...] Read more.
Black chokeberry (Aronia melanocarpa L.) pomace (BCP), a major by-product of juice production, is an underutilized source of polyphenols and anthocyanins with strong antioxidant properties. This study aimed to optimize and compare three green extraction techniques—pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE)—for recovering total polyphenols (TP) and total monomeric anthocyanins (TMA) from BCP, with reflux extraction as a benchmark. The effects of temperature, extraction time, and solid–solvent ratio were evaluated, and cryogrinding was assessed as a pre-treatment. PLE achieved the highest TP yields at elevated temperatures but reduced anthocyanin recovery, while MAE offered a balance of high TP and TMA, with strong antioxidant capacity. Cryogrinding enhanced TP extraction, with only 1 min of cryogrinding maximizing yield. UPLC-MS/MS analysis of optimized MAE extract confirmed cyanidin-3-glucoside and cyanidin-3-galactoside as dominant anthocyanins, alongside notable flavonols and phenolic acids, validating the rich phenolic profile. Overall, MAE combined with 1 min of cryogrinding proved to be the most effective approach for preserving heat-sensitive compounds while achieving high yields. These findings demonstrate that optimized green extraction can efficiently valorize BCP, supporting sustainable food processing and waste reduction in line with circular economy principles. Full article
Show Figures

Figure 1

23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 - 5 Aug 2025
Viewed by 290
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

38 pages, 4533 KiB  
Review
A Narrative Review on the Multifaceted Roles of Galectins in Host–Pathogen Interactions During Helicobacter pylori Infection
by Bojan Stojanovic, Natasa Zdravkovic, Marko Petrovic, Ivan Jovanovic, Bojana S. Stojanovic, Milica Dimitrijevic Stojanovic, Jelena Nesic, Milan Paunovic, Ivana Milivojcevic Bevc, Nikola Mirkovic, Mladen Pavlovic, Nenad Zornic, Bojan Milosevic, Danijela Tasic-Uros, Jelena Zivic, Goran Colakovic and Aleksandar Cvetkovic
Int. J. Mol. Sci. 2025, 26(15), 7216; https://doi.org/10.3390/ijms26157216 - 25 Jul 2025
Viewed by 326
Abstract
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly [...] Read more.
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly galectins, in modulating host–pathogen interactions within the gastric mucosa. Galectins are β-galactoside-binding proteins with highly conserved structures but diverse biological functions, ranging from regulation of innate and adaptive immunity to modulation of cell signaling, apoptosis, and epithelial integrity. This review provides a comprehensive synthesis of current knowledge on the involvement of key galectin family members—especially Galectin-1, -2, -3, -8, and -9—in the context of H. pylori infection. Their dual roles in enhancing mucosal defense and facilitating bacterial persistence are examined along with their contributions to immune evasion, inflammation, and gastric carcinogenesis. Understanding the interplay between galectins and H. pylori enhances our knowledge of mucosal immunity. This interaction may also reveal potential biomarkers for disease progression and identify novel therapeutic targets. Modulating galectin-mediated pathways could improve outcomes in H. pylori-associated diseases. Full article
(This article belongs to the Special Issue New Insights into Lectins)
Show Figures

Figure 1

19 pages, 1195 KiB  
Article
High-Voltage Electrical Discharge Extraction of Polyphenols from Winter Savory (Satureja montana L.): Antioxidant Assessment and Chemometric Interpretation
by Kristian Pastor, Nataša Nastić, Aleksandra Gavarić, Siniša Simić, Ante Lončarić, Marija Banožić, Krunoslav Aladić, Stela Jokić and Jelena Vladić
Plants 2025, 14(14), 2214; https://doi.org/10.3390/plants14142214 - 17 Jul 2025
Viewed by 370
Abstract
This study investigated the potential of high-voltage electrical discharge (HVED), as a green, non-thermal extraction technology, for recovering polyphenols from winter savory (Satureja montana L.). Key process parameters, including frequency (40, 70, 100 Hz) and extraction time (1, 5, 15, 30, 45 [...] Read more.
This study investigated the potential of high-voltage electrical discharge (HVED), as a green, non-thermal extraction technology, for recovering polyphenols from winter savory (Satureja montana L.). Key process parameters, including frequency (40, 70, 100 Hz) and extraction time (1, 5, 15, 30, 45 min), were optimized, using water as a solvent and maintaining a constant solid-to-liquid ratio of 1:100 g/mL. The extracts were characterized for total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH, ABTS, FRAP), while individual phenolics were quantified via HPLC-DAD. Multivariate chemometric analyses, including Pearson correlation, heatmap clustering, and principal component analysis (PCA), were employed to reveal relationships between extraction conditions, polyphenolic profiles, and antioxidant activities. The results showed strong correlations between TPC, TFC, and antioxidant activity, with compounds such as quercetin-3-D-galactoside, procyanidin A2, and rutin identified as key contributors. Among the tested conditions, extraction at 70 Hz for 45 min provided the highest polyphenol yield and bioactivity. The application of HVED demonstrated its potential as an efficient and environmentally friendly technique for obtaining phenolic-rich extracts. In addition, the use of chemometric tools provided useful insights for optimizing extraction conditions and understanding the contributions of specific compounds to bioactivity. These results support future applications in clean-label product development and contribute to broader efforts in sustainable ingredient production for the food, cosmetic, and nutraceutical sectors. Full article
(This article belongs to the Special Issue Challenges of Technology and Processing for Plant Extraction)
Show Figures

Figure 1

21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 418
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

37 pages, 3510 KiB  
Review
Galectins as Master Regulators of Gastric Cancer Progression
by Bojan Stojanovic, Ivan Jovanovic, Milica Dimitrijevic Stojanovic, Bojan Milosevic, Marko Spasic, Bojana S. Stojanovic, Stefan Jakovljevic, Nenad Zornic, Danijela Jovanovic, Jelena Nesic, Milan Paunovic, Ivan Radosavljevic, Nenad Markovic, Mladen Pavlovic and Nikola Mirkovic
Cells 2025, 14(14), 1090; https://doi.org/10.3390/cells14141090 - 16 Jul 2025
Viewed by 538
Abstract
Gastric cancer remains a major global health challenge, largely due to its biological heterogeneity and limited treatment options for advanced stages. Among the numerous molecular players involved in its pathogenesis, galectins—β-galactoside-binding lectins—have emerged as key modulators of tumor behavior. These multifunctional proteins influence [...] Read more.
Gastric cancer remains a major global health challenge, largely due to its biological heterogeneity and limited treatment options for advanced stages. Among the numerous molecular players involved in its pathogenesis, galectins—β-galactoside-binding lectins—have emerged as key modulators of tumor behavior. These multifunctional proteins influence diverse processes including cell proliferation, invasion, immune evasion, stromal remodeling, and therapy resistance. Recent advances in experimental and clinical research have shed light on the complex roles of galectin family members—particularly Galectin-1, -3, and -9—in shaping the tumor microenvironment and driving disease progression. This review highlights the current understanding of galectin biology in gastric cancer, with emphasis on their structural characteristics, cellular localization, functional diversity, and translational relevance. By synthesizing insights from molecular studies and clinicopathological observations, we explore the potential of galectins as biomarkers and therapeutic targets in the evolving landscape of gastric cancer research. Full article
Show Figures

Figure 1

22 pages, 1377 KiB  
Article
Formulation of Black Soybean Yogurt and Evaluation of Changes in the Bioactive Profile and Other Compositional Aspects During Fermentation and Storage
by Thiana Claudia Freire Esteves, Ilana Felberg, Adriana Farah, Adelia Ferreira de Faria-Machado, Eduardo Henrique Miranda Walter, Manuela Cristina Pessanha de Araujo Santiago, Sidney Pacheco, Rosemar Antoniassi, Rosires Deliza, Mercedes Concórdia Carrão-Panizzi and Veronica Calado
Beverages 2025, 11(4), 103; https://doi.org/10.3390/beverages11040103 - 2 Jul 2025
Viewed by 833
Abstract
Black soybean is known for its antioxidant and anti-inflammatory properties that help prevent several degenerative diseases, but in the Western diet, it is poorly used, despite the interest in foods rich in bioactive compounds. This study aimed to formulate a black soybean yogurt [...] Read more.
Black soybean is known for its antioxidant and anti-inflammatory properties that help prevent several degenerative diseases, but in the Western diet, it is poorly used, despite the interest in foods rich in bioactive compounds. This study aimed to formulate a black soybean yogurt (BSY) fermented by a probiotic culture of L. acidophilus and evaluate the nutritional and bioactive profiles, the total antioxidant capacity, and complementary parameters during fermentation and storage for one month. We also evaluated the potential for acceptance by Rio de Janeiro consumers (n = 103). The final BSY water content was 92.8%. The dry matter contained 50.2% protein, 20.1% lipid, 5.9% ashes, 23.8% carbohydrates, and other constituents, including 1% sucrose, 5.9% α-galactosides, 26.9 mg/100 g anthocyanins (mainly cyanidin-3-glucoside), 140.5mg/100 g isoflavones (mainly genistin and daidzin). Titratable acidity was 0.44% and pH 4.5. In the sensory test, 12% sucrose and fruit extracts (strawberry, prune, and grape) were added individually to the product to evaluate the acceptability. The sweetened strawberry extract offered the highest acceptability, with a 7.6 score in a nine-point hedonic scale, against a 5.6 of the sweetened control with no fruit extract. Furthermore, all products scored well in the clusters with assessors who consumed soy products often and daily (total n = 26), with the strawberry-flavored one scoring, on average, 8 or 9. One month storage at 8 ± 2 °C caused a 22% decrease in the anthocyanins content and no significant change in isoflavones, titratable acidity, and pH. Fermentation and the addition of a sweetened fruit extract proved to be promising tools to increase the consumption of black soy milk in the West. Full article
(This article belongs to the Special Issue Recent Research in Plant-Based Drinks)
Show Figures

Graphical abstract

21 pages, 7526 KiB  
Article
Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors
by Weijun Ye, Zejiang Wu, Dongfeng Tian and Bin Zhou
Agronomy 2025, 15(7), 1609; https://doi.org/10.3390/agronomy15071609 - 30 Jun 2025
Viewed by 395
Abstract
Pea (Pisum sativum L.) is a significant source of dietary protein, starch, fiber, and minerals, offering health benefits and serving as both a green vegetable and dry grain. The pigment contents in pea pods with different colors and related genes are still [...] Read more.
Pea (Pisum sativum L.) is a significant source of dietary protein, starch, fiber, and minerals, offering health benefits and serving as both a green vegetable and dry grain. The pigment contents in pea pods with different colors and related genes are still unclear. We conducted an integrated transcriptome and metabolome analysis on three cultivars, including QiZhen (QZ) with green immature pods, FengMi (FM) with yellow immature pods, and ZiYu (ZY) with purple immature pods, to identify the key genes and metabolites involved in anthocyanin accumulation. ZY showed the highest total anthocyanin content compared with FM and QZ. Subsequent quantification revealed that four metabolites, including Delphinidin-3-O-galactoside, Delphinidin-3-O-(6″-O-xylosyl)glucoside, Cyanidin-3-O-galactoside, and Pelargonidin-3-O-(xylosyl)glucoside, were the most highly accumulated in the ZY cultivar, suggesting their role in the purple pigmentation of ZY pea pods. There were 49 differentially accumulated anthocyanidins in ZY vs. FM, 43 differentially accumulated anthocyanidins in ZY vs. QZ, and 21 differentially accumulated anthocyanidins in FM vs. QZ. These findings highlight the importance of the type and concentration of anthocyanin compounds, especially those based on delphinidin, cyanidin, and pelargonidin, in the development of purple pea pods. The transcriptomic analysis revealed that certain anthocyanin biosynthetic genes were expressed at higher levels in ZY than in FM and QZ. In ZY, the higher expression levels of five key genes (PAL, 4CL, CHS, F3H, and UFGT) resulted in elevated anthocyanin content compared to FM and QZ. Furthermore, the BSA-seq analysis identified a candidate region associated with purple color in pea pods, which is located on chromosome 6 and contains 21 DEGs. Sequence variation in KIW84_061698, which encodes a bHLH transcription factor, was identified as the key candidate gene controlling anthocyanin content. This study clarifies the molecular mechanisms behind pea pod coloration and identifies potential genetic engineering targets for breeding anthocyanin-rich sugar snap peas. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics—2nd Edition)
Show Figures

Figure 1

18 pages, 570 KiB  
Article
Exploring the Bioavailability of Red Grape Skin Extract Polyphenols: A Caco-2 Cell Model Study
by Edurne Elejalde, Rosa María Alonso, María Carmen Villarán, Lucía Díez-Gutiérrez, María Chávarri and Iratxe López-de-Armentia
Foods 2025, 14(13), 2253; https://doi.org/10.3390/foods14132253 - 25 Jun 2025
Viewed by 503
Abstract
Grapes are a rich source of polyphenols with a positive impact on human health. Polyphenols need to be bioavailable to exert any beneficial effect. However, there is limited knowledge on the bioavailability of polyphenols in grape extracts. The intestinal permeability of nine polyphenols [...] Read more.
Grapes are a rich source of polyphenols with a positive impact on human health. Polyphenols need to be bioavailable to exert any beneficial effect. However, there is limited knowledge on the bioavailability of polyphenols in grape extracts. The intestinal permeability of nine polyphenols of a red grape skin extract (GSE) was investigated using the Caco-2 cell model that simulates the human intestinal epithelium: three anthocyanins (delphinidin-3-O-glucoside, petunidin-3-O-glucoside and malvidin-3-O-glucoside), three flavonols (quercetin-3-glucoside, kaempferol-3-galactoside and kaempferol-3-glucoside), two hydroxybenzoic acids (gallic acid and syringic acid) and one hydroxycinnamic acid (caftaric acid). Two concentrations of GSE (15 mg/mL and 22 mg/mL) were used. The transport efficiency (TE) through the Caco-2 monolayer was studied. Among anthocyanins, only malvidin-3-O-glucoside was detected at the basolateral side, which represents the bloodstream, with a TE of 1.08 ± 0.01%. Flavonols resulted in a variety of results depending on the GSE concentration. Among flavonols, kaempferol-3-glucoside showed the highest TE of 130 ± 3%. Gallic acid showed the highest TE among the investigated polyphenols with 188 ± 3%. This study provides data on the intestinal transport of red grape skin extract polyphenols that can be used to explore the underlying mechanisms of the intestinal absorption and the bioactivity of natural grape extracts. Full article
Show Figures

Graphical abstract

19 pages, 312 KiB  
Article
The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products
by Khaoula Ben Said, Amel Hedhili, Sihem Bellagha, Hela Gliguem and Marie Dufrechou
Foods 2025, 14(13), 2167; https://doi.org/10.3390/foods14132167 - 21 Jun 2025
Viewed by 605
Abstract
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather [...] Read more.
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather than exploited and valued in human nutrition. In this study, the nutritional properties, anti-nutritional factors, and in vitro protein digestibility of pea pod flour and raw and thermally treated (80, 120, 150, and 180 °C during 30 min) faba bean flours were investigated. For pea pod flours, the results showed a very interesting protein content (12.13%) and insoluble fibers (37.45%), as well as appreciable amounts of minerals, mainly calcium, potassium, magnesium, manganese, and iron. For faba bean flours, thermal treatment did not significantly affect the crude protein, ash, starch, and fat contents of the processed beans. Meanwhile, compared with raw faba bean flours, thermal treatment significantly decreased insoluble dietary fibers, anti-nutritional factors such as phytic acid, tannins, trypsin inhibitors, and alpha-galactosides and progressively improved the in vitro protein digestibility by 7,7%. In conclusion, faba bean and pea pod flours show significant potential as novel ingredients in the food industry. Their combination will enable the development of protein, fiber, and mineral-rich food products. Full article
11 pages, 2378 KiB  
Article
The Antioxidant Properties of Extracts of Cuscuta spp. Depend on the Parasite and the Host Species
by Vanina Lozanova, Denitsa Teofanova, Bilyana Chakarova, Krasimir Rusanov, Kalina Pachedjieva, Anita Tosheva, Tzvetelina Zagorcheva and Lyuben Zagorchev
Antioxidants 2025, 14(7), 761; https://doi.org/10.3390/antiox14070761 - 20 Jun 2025
Viewed by 673
Abstract
Dodders (Cuscuta spp.) are prominent parasitic plants widely known and exploited in traditional medicine. They are rich in polyphenolics, which determine their strong antioxidant potential. However, comparatively few of the nearly 200 known species have been characterized for their medicinal potential. In [...] Read more.
Dodders (Cuscuta spp.) are prominent parasitic plants widely known and exploited in traditional medicine. They are rich in polyphenolics, which determine their strong antioxidant potential. However, comparatively few of the nearly 200 known species have been characterized for their medicinal potential. In the present study, we aimed to explore the antioxidant potential of four of the most widely distributed Cuscuta species in Bulgaria—C. campestris, C. monogyna, C. epithymum, and C. europaea. They differed significantly in polyphenolic content and accordingly differed in their antioxidant properties, although this correlation is not always straightforward, as shown in C. europaeae. Furthermore, we evaluated the host plant species’ influence on the polyphenolic content, antioxidant properties, and flavonoid profile of C. campestris, finding a significant enhancement when the parasite was grown on aromatic plants—rosemary and thyme—compared to a model host—Arabidopsis thaliana. Seven major flavonoids and phenolic acids—chlorogenic acid, kaempferol-3,7-O-diglucoside, quercetin-3-O-galactoside, kaempferol-3-O-galactoside, quercetin-3-O-glucoside, astragalin, and isorhamnetin-7-glucoside—were annotated after HPLC-MS analysis and found to be affected by the host species. In conclusion, it was found that extracts from different Cuscuta species differ in their antioxidant potential, which the host plants might further modify. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

14 pages, 2607 KiB  
Article
Anti-Influenza A Virus Activity of Rhododendron brachycarpum Extract and Identification of Hyperoside as the Active Constituent
by Yung Hun Park, Soo Yong Shin, Hayeong Choi, Jae Hyeok Lee, You Jin Kim, Seong Ji Woo, Wonkyun Ronny Im and Sung Ho Jeon
Microbiol. Res. 2025, 16(6), 132; https://doi.org/10.3390/microbiolres16060132 - 18 Jun 2025
Viewed by 411
Abstract
Influenza A virus (IAV) poses significant public health challenges due to its rapid mutation and drug resistance, necessitating novel antiviral strategies. Rhododendron brachycarpum, traditionally employed in folk medicine to treat inflammatory conditions, contains bioactive flavonoids with potential antiviral effects. In this study, [...] Read more.
Influenza A virus (IAV) poses significant public health challenges due to its rapid mutation and drug resistance, necessitating novel antiviral strategies. Rhododendron brachycarpum, traditionally employed in folk medicine to treat inflammatory conditions, contains bioactive flavonoids with potential antiviral effects. In this study, we investigated the anti-influenza activity of R. brachycarpum leaf extract and identified hyperoside (quercetin-3-O-galactoside) as the active constituent. The crude extract and its n-butanol fraction markedly reduced IAV replication in Madin–Darby canine kidney (MDCK) cells, with IC50/CC50 values of 74.51/201.09 μg/mL and 24.5/113.1 μg/mL, respectively. Hyperoside, purified via bioactivity-guided fractionation and HPLC analysis, demonstrated potent antiviral activity, with an IC50 of 66.59 μM (30.92 μg/mL) and a CC50 of 318.9 μM (148.1 μg/mL), indicating a favorable selectivity index. It significantly suppressed viral mRNA and protein expression in infected cells. Time-of-addition and hemagglutination inhibition assays suggested that hyperoside exerts antiviral effects during early infection stages, likely interfering with viral entry. In silico molecular docking analysis further supported this mechanism, revealing that hyperoside binds strongly to the receptor-binding domain of hemagglutinin (−11.5 kcal/mol), potentially blocking viral attachment. These findings reveal that hyperoside is a major antiviral component of R. brachycarpum and underscore its therapeutic potential as a natural antiviral candidate against IAV infections. Full article
Show Figures

Figure 1

16 pages, 241 KiB  
Article
Encapsulation of Chokeberry Polyphenols by Ionic Gelation: Impact of Pullulan and Disaccharides Addition to Alginate Beads
by Mirela Kopjar, Ina Ćorković, Josip Šimunović and Anita Pichler
Appl. Sci. 2025, 15(11), 6320; https://doi.org/10.3390/app15116320 - 4 Jun 2025
Viewed by 493
Abstract
Alginate is one of the most utilized biopolymers for the encapsulation of polyphenols throughout ionic gelation. For improvement in the encapsulation of polyphenols, other biopolymers and/or fillers can be employed. The purpose of this study was to include pullulan and/or disaccharides in an [...] Read more.
Alginate is one of the most utilized biopolymers for the encapsulation of polyphenols throughout ionic gelation. For improvement in the encapsulation of polyphenols, other biopolymers and/or fillers can be employed. The purpose of this study was to include pullulan and/or disaccharides in an alginate encapsulation mixture to monitor whether we would achieve higher encapsulation of chokeberry juice polyphenols. Alginate hydrogel beads were used as controls, and through the results for total polyphenol and proanthocyanidin contents, concentrations of individual polyphenols, and antioxidant activities, it can be observed that pullulan and/or disaccharides had an impact on the encapsulation of these bioactives. Alginate/pullulan hydrogel beads had the highest contents of total polyphenols and proanthocyanidins (8.60 g/kg and 2.37 g/kg, respectively), whereas alginate/trehalose hydrogel beads had the lowest (5.50 g/kg and 1.16 g/kg, respectively). All hydrogel beads, except alginate/pullulan/sucrose, had higher anthocyanin (cyanidin-3-galactoside and cyanidin-3-arabinoside) contents than alginate beads (404.37 mg/kg and 89.97 mg/kg, respectively), but the most efficient combination for encapsulation of chokeberry anthocyanins was alginate/pullulan (477.32 mg/kg and 109.60 mg/kg, respectively). The highest concentration of neochlorogenic acid was determined in controls (260.14 mg/kg), while the highest concentration of chlorogenic acid in alginate/pullulan/sucrose beads (229.51 mg/kg). Quercetin-3-glucoside was evaluated as having the highest concentration in alginate/pullulan hydrogel beads (35.45 mg/kg). The data obtained through this study highlight the importance of the composition of an encapsulation mixture in order to achieve high encapsulation of chokeberry juice polyphenols. High encapsulation efficiency was obtained for anthocyanins, especially when pullulan was used in combination with alginate. Full article
(This article belongs to the Section Food Science and Technology)
21 pages, 3863 KiB  
Article
β-Galactosidase-Catalyzed Transglycosylation of Tyrosol: Substrates and Deep Eutectic Solvents Affecting Activity and Stability
by Alžbeta Koššuthová, Monika Antošová, Vladena Bauerová-Hlinková, Jacob A. Bauer and Milan Polakovič
Biomolecules 2025, 15(6), 801; https://doi.org/10.3390/biom15060801 - 31 May 2025
Viewed by 691
Abstract
β-Galactosidase, a glycoside hydrolase enzyme, also possesses glycosyl transferase activity and can glycosylate various aglycones, including tyrosol, a phenylethanoid with antioxidant and health-promoting effects. This study examines the effect of lactose, tyrosol and deep eutectic solvents (DESs) as co-solvents on the stability and [...] Read more.
β-Galactosidase, a glycoside hydrolase enzyme, also possesses glycosyl transferase activity and can glycosylate various aglycones, including tyrosol, a phenylethanoid with antioxidant and health-promoting effects. This study examines the effect of lactose, tyrosol and deep eutectic solvents (DESs) as co-solvents on the stability and activity of Aspergillus oryzae β-galactosidase during the enzymatic synthesis of tyrosol β-d-galactoside (TG). The enzyme’s thermal stability was assessed using nanoDSF and circular dichroism spectroscopy, while the enzyme’s activity and specificity toward different glycosyl acceptors were investigated using the initial rate method. The effects of tyrosol and DESs on tyrosol galactoside synthesis over a 6 h period were also studied. Lactose and glycerol were found to stabilize the enzyme. Among the DESs tested, those containing betaine showed the highest stabilizing effect. The presence of DESs not only affected the overall enzyme activity but also changed the enzyme specificity, most frequently in favor of lactose hydrolysis. Components of DESs containing alcohol groups (polyols) also acted as transglycosylation acceptors. However, both glycerol and tyrosol were found to inhibit overall enzyme activity and TG synthesis. Overall, our findings provide new and valuable insights into the influence of reaction conditions on the stability and specificity of β-galactosidase. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

23 pages, 1066 KiB  
Review
Galectin-1 in Cardiovascular Pathogenesis: Unraveling Dual Roles and Mechanistic Insights in Emerging Research
by Po-Yuan Chen, Chun-Yao Cheng, Chun-Chao Chen, Huan-Yuan Chen, Ju-Chi Liu, Wen-Rui Hao, Tzu-Hurng Cheng and Jin-Jer Chen
Medicina 2025, 61(6), 1020; https://doi.org/10.3390/medicina61061020 - 30 May 2025
Viewed by 599
Abstract
Galectin-1 (Gal-1), a β-galactoside-binding lectin, plays a complex role in cardiovascular diseases (CVDs), exerting both protective and pathological effects depending on the context. This review synthesizes findings from the past decade to explore Gal-1’s involvement in key aspects of CVD pathogenesis, including vascular [...] Read more.
Galectin-1 (Gal-1), a β-galactoside-binding lectin, plays a complex role in cardiovascular diseases (CVDs), exerting both protective and pathological effects depending on the context. This review synthesizes findings from the past decade to explore Gal-1’s involvement in key aspects of CVD pathogenesis, including vascular homeostasis, inflammation regulation, atherosclerosis progression, myocardial remodeling, and heart failure. While Gal-1 supports endothelial integrity and immune modulation, its dysregulation contributes to disease progression through pro-inflammatory signaling, fibrosis, and adverse cardiac remodeling. Emerging evidence suggests that Gal-1 holds potential as both a biomarker for risk assessment and a therapeutic target. However, critical knowledge gaps remain, particularly regarding its context-dependent effects, the limited scope of clinical trials, and unresolved mechanistic insights. Addressing these challenges will be essential to fully harness Gal-1’s therapeutic potential in cardiovascular medicine, guiding future research efforts toward precision interventions and clinical applications. Full article
(This article belongs to the Special Issue Current Advances in Cardiovascular Disease Research)
Show Figures

Graphical abstract

Back to TopTop