High-Voltage Electrical Discharge Extraction of Polyphenols from Winter Savory (Satureja montana L.): Antioxidant Assessment and Chemometric Interpretation
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of HVED Parameters on TPC and TFC of Winter Savory Extracts
2.2. Effect of HVED Parameters on Antioxidant Activity of Winter Savory Extracts
2.3. Polyphenolic Composition of HVED Extracts Analyzed by HPLC-DAD
2.4. Correlation Analysis of Bioactive Compounds with TPC, TFC, and Antioxidant Activities
2.5. Principal Component Analysis (PCA) of HVED Extract Profiles
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. High-Voltage Electrical Discharge (HVED)-Assisted Extraction
3.3. Total Phenols and Flavonoids Content
3.4. HPLC Analysis
3.5. Assessment of Antioxidant Activity
3.5.1. DPPH Assay
3.5.2. ABTS Assay
3.5.3. FRAP Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
CA | Caffeic acid |
C | Catechin |
CGA | Chlorogenic acid |
DPPH | 1,1-Diphenyl-2-picryl-hydrazyl-hydrate |
EC | Epicatechin |
EGC | Epigallocatechin |
FA | Ferulic acid |
FRAP | Ferric reducing antioxidant power |
GA | Gallic acid |
HVED | High-voltage electric discharge |
MYR | Myricetin |
PCA | Principal component analysis |
PCA2 | Procyanidin A2 |
pCA | p-Coumaric acid |
PCB1 | Procyanidin 1 |
PCB2 | Procyanidin 2 |
Q3Gal | Quercetin-3-D-galactoside |
QUE | Quercetin |
RUT | Rutin |
TFC | Total flavonoid content |
TPC | Total phenolic content |
References
- Ćetković, G.S.; Mandić, A.I.; Čanadanović-Brunet, J.M.; Djilas, S.M.; Tumbas, V.T. HPLC screening of phenolic compounds in winter savory (Satureja montana L.) extracts. J. Liq. Chromatogr. Relat. Technol. 2007, 30, 293–306. [Google Scholar] [CrossRef]
- Djordjevic, N.; Mancic, S.; Karabegovic, I.; Cvetkovic, D.; Stanojevic, J.; Savic, D.; Danilovic, B. Influence of the isolation method to the composition and antimicrobial and antioxidative activity of winter savory (Satureja montana L.) essential oil. J. Essent. Oil Bear. Plants 2021, 24, 386–399. [Google Scholar] [CrossRef]
- Hudz, N.; Makowicz, E.; Shanaida, M.; Białoń, M.; Jasicka-Misiak, I.; Yezerska, O.; Svydenko, L.; Wieczorek, P.P. Phytochemical evaluation of tinctures and essential oil obtained from Satureja montana herb. Molecules 2020, 25, 4763. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.; Zeković, Z.; Marošanović, B.; Todorović, M.P.; Vladić, J. Influence of pre-treatments on yield, chemical composition and antioxidant activity of Satureja montana extracts obtained by supercritical carbon dioxide. J. Supercrit. Fluids 2014, 95, 468–473. [Google Scholar] [CrossRef]
- Vladić, J.; Canli, O.; Pavlić, B.; Zeković, Z.; Vidović, S.; Kaplan, M. Optimization of Satureja montana subcritical water extraction process and chemical characterization of volatile fraction of extracts. J. Supercrit. Fluids 2017, 120, 86–94. [Google Scholar] [CrossRef]
- Grosso, C.; Figueiredo, A.C.; Burillo, J.; Mainar, A.M.; Urieta, J.S.; Barroso, J.G.; Coelho, J.A.; Palavra, A.M. Enrichment of the thymoquinone content in volatile oil from Satureja montana using supercritical fluid extraction. J. Sep. Sci. 2009, 32, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Zeljković, S.Ć.; Topčagić, A.; Požgan, F.; Štefane, B.; Tarkowski, P.; Maksimović, M. Antioxidant activity of natural and modified phenolic extracts from Satureja montana L. Ind. Crops Prod. 2015, 76, 1094–1099. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Švarc-Gajić, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds and antioxidant activity of a Mediterranean plant: The case of Satureja montana subsp. kitaibelii. J. Funct. Foods 2015, 18, 1167–1178. [Google Scholar] [CrossRef]
- Gomes, F.; Dias, M.I.; Lima, Â.; Barros, L.; Rodrigues, M.E.; Ferreira, I.C.; Henriques, M. Satureja montana L. and Origanum majorana L. decoctions: Antimicrobial activity, mode of action and phenolic characterization. Antibiotics 2020, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Kosir, I.J.; Koncic, M.Z.; Cerenak, A.; Potocnik, T.; Srecec, S.; Kosalec, I. Antimicrobial and antioxidant properties of Satureja montana L. and S. subspicata Vis. (Lamiaceae). Curr. Drug Targets 2015, 16, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Zekovic, Z.; Gavaric, A.; Pavlic, B.; Vidovic, S.; Vladic, J. Optimization: Microwave irradiation effect on polyphenolic compounds extraction from winter savory (Satureja montana L.). Sep. Sci. Technol. 2017, 52, 1377–1386. [Google Scholar] [CrossRef]
- Aćimović, M.; Šovljanski, O.; Pezo, L.; Travičić, V.; Tomić, A.; Zheljazkov, V.D.; Ćetković, G.; Švarc-Gajić, J.; Brezo-Borjan, T.; Sofrenić, I. Variability in biological activities of Satureja montana subsp. montana and subsp. variegata based on different extraction methods. Antibiotics 2022, 11, 1235. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, M.; Vladić, J.; Vidović, S.; Pastor, K.; Jokić, S.; Molnar, M.; Jerković, I. Application of deep eutectic solvents for the extraction of rutin and rosmarinic acid from Satureja montana L. and evaluation of the extracts antiradical activity. Plants 2020, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Boateng, I.D.; Clark, K. Trends in extracting Agro-byproducts’ phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem. 2024, 437, 137841. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Álvarez, R.; Carullo, D.; Pataro, G.; Ferrari, G.; Segura-Ponce, L. Testing of a new high voltage electrical discharge generator prototype at high frequencies to assist anthocyanin extraction from blueberries. Food Biosci. 2022, 50, 102127. [Google Scholar] [CrossRef]
- Hernández-Corroto, E.; Marina, M.L.; García, M.C. Application of high-voltage electrical discharges to the recovery of phenolic compounds from winery wastes. In Processing of Food Products and Wastes with High Voltage Electrical Discharges; Academic Press: New York, NY, USA, 2023; pp. 95–119. [Google Scholar]
- Nastić, N.; Lončarić, A.; Simić, S.; Pastor, K.; Banožic, M.; Jokić, S.; Aladić, K.; Vladić, J. Anethum graveolens L. (dill) seed polyphenolic fractions: Assessment of high-voltage electrical discharges, subcritical water, and microwave-assisted extraction systems. J. Food Sci. 2025, 90, e17664. [Google Scholar] [CrossRef] [PubMed]
- Dukić, J.; Režek Jambrak, A.; Jurec, J.; Merunka, D.; Valić, S.; Radičić, R.; Krstulović, N.; Nutrizio, M.; Dubrović, I. High-Power Ultrasound and high-voltage electrical discharge-assisted extractions of bioactive compounds from sugar beet (Beta vulgaris L.) waste: Electron spin resonance and optical emission spectroscopy analysis. Molecules 2025, 30, 796. [Google Scholar] [CrossRef] [PubMed]
- Čutović, N.; Batinić, P.; Marković, T.; Radanović, D.; Marinković, A.; Bugarski, B.; Jovanović, A.A. Physicochemical properties of winter savory extracts prepared using ultrasound-assisted extraction. Lek. Sirov. 2022, 42, 34–42. [Google Scholar] [CrossRef]
- Čutović, N.; Batinić, P.; Marković, T.; Radanović, D.; Marinković, A.; Bugarski, B.; Jovanović, A.A. Optimization of the extraction process from Satureja montana L.: Physicochemical characterization of the extracts. Hem. Ind. 2023, 77, 251–263. [Google Scholar] [CrossRef]
- Kus, N.S. Organic reactions in subcritical and supercritical water. Tetrahedron 2012, 68, 949–958. [Google Scholar] [CrossRef]
- Puertolas, E.; Koubaa, M.; Barba, F.J. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Inter. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Žuntar, I.; Putnik, P.; Bursać Kovačević, D.; Nutrizio, M.; Šupljika, F.; Poljanec, A.; Dubrović, I.; Barba, F.J.; Režek Jambrak, A. Phenolic and antioxidant analysis of olive leaves extracts (Olea europaea L.) obtained by high voltage electrical discharges (HVED). Foods 2019, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother. 2021, 134, 111017. [Google Scholar] [CrossRef] [PubMed]
- Bimbiraitė-Survilienė, K.; Stankevičius, M.; Šuštauskaitė, S.; Gęgotek, A.; Maruška, A.; Skrzydlewska, E.; Barsteigienė, Z.; Akuņeca, I.; Ragažinskienė, O.; Lukošius, A. Evaluation of chemical composition, radical scavenging and antitumor activities of Satureja hortensis L. herb extracts. Antioxidants 2021, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Naraki, K.; Roohbakhsh, A.; Hayes, A.W.; Karimi, G. The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci. Nutr. 2023, 11, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Dasiman, R.; Nor, N.M.; Eshak, Z.; Mutalip, S.S.M.; Suwandi, N.R.; Bidin, H. A review of procyanidin: Updates on current bioactivities and potential health benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.R. Flavones, flavonols and their glycosides. In Methods in Plant Biochemistry; Academic Press: Cambridge, MA, USA, 1989; Volume 1, pp. 197–235. [Google Scholar]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric determination of antioxidant activity. Redox Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction—Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
Sample | Content (µg/g DW) | |||||
---|---|---|---|---|---|---|
Gallic Acid | Ferulic Acid | Epigallocatechin | Chlorogenic Acid | Caffeic Acid | ||
40 Hz | 1 min | 8.25 ± 0.49 i | 3.80 ± 0.14 g | n.d. | 10.10 ± 0.56 f | 7.70 ± 0.42 fg |
5 min | 14.90 ± 0.42 eg | 8.35 ± 0.35 f | n.d. | 13.15 ± 1.06 ef | 10.20 ± 1.84 ef | |
15 min | 7.25 ± 0.07 hi | 6.60 ± 0.00 f | n.d. | 16.10 ± 0.14 e | 5.40 ± 0.28 g | |
30 min | 11.90 ± 0.14 gh | 17.70 ± 2.10 bc | n.d. | 58.40 ± 1.97 d | 7.75 ± 0.77 fg | |
45 min | 44.50 ± 1.84 c | 19.55 ± 0.35 b | 194.40 ± 9.29 c | 59.65 ± 0.63 d | 15.10 ± 0.00 cd | |
70 Hz | 1 min | 13.65 ± 1.20 eg | 3.55 ± 0.21 g | n.d. | 16.3 ± 0.42 e | 5.80 ± 1.70 g |
5 min | 17.30 ± 1.27 e | 11.55 ± 0.49 e | n.d. | 57.4 ± 5.93 d | 9.65 ± 0.07 ef | |
15 min | 16.35 ± 1.20 ef | 15.45 ± 0.35 cd | 69.35 ± 0.92 fg | 64.65 ± 6.12 d | 2.15 ± 0.07 h | |
30 min | 12.10 ± 0.85 fg | 13.80 ± 0.42 de | 58.45 ± 1.06 g | 62.85 ± 1.48 d | 2.35 ± 0.21 h | |
45 min | 24.60 ± 3.11 d | 25.40 ± 1.97 a | 328.55 ± 6.90 b | 75.5 ± 4.81 b | 41.50 ± 1.98 b | |
100 Hz | 1 min | 57.90 ± 1.41 b | 14.10 ± 0.00 de | 80.10 ± 5.23 ef | 60.8 ± 2.82 d | 15.40 ± 0.14 cd |
5 min | 12.75 ± 1.91 g | 14.60 ± 0.85 d | 156.45 ± 9.54 d | 58.55 ± 5.44 d | 16.25 ± 0.92 c | |
15 min | 15.40 ± 0.57 eg | 14.90 ± 0.57 d | 98.35 ± 2.33 e | 73.9 ± 1.40 b | 12.30 ± 0.28 de | |
30 min | 66.70 ± 4.24 a | 19.85 ± 1.20 b | 174.10 ± 9.23 d | 102.4 ± 3.68 a | 15.65 ± 0.64 c | |
45 min | 24.40 ± 1.70 d | 27.10 ± 1.13 a | 384.60 ± 1.27 a | 69.1 ± 3.69 c | 94.90 ± 3.96 a | |
Procyanidin A2 | Catechin | p-Coumaric acid | Epicatechin | Myricetin | ||
40 Hz | 1 min | 20.90 ± 1.56 ef | n.d. | 12.70 ± 0.57 g | 11.70 ± 3.11 g | 93.60 ± 10.60 h |
5 min | 22.55 ± 0.77 ef | 37.15 ± 2.48 j | 18.05 ± 0.77 f | 21.65 ± 2.19 f | 144.00 ± 9.61 h | |
15 min | 23.75 ± 0.49 ef | 42.75 ± 1.34 ij | 24.20 ± 0.71 e | 24.10 ± 0.85 f | 154.25 ± 13.08 h | |
30 min | 42.30 ± 3.68 d | 99.55 ± 2.01 ef | 50.15 ± 2.33 b | 44.70 ± 0.86 d | 328.45 ± 6.71 f | |
45 min | 27.00 ± 3.54 e | 124.45 ± 2.76 cd | 51.05 ± 1.06 b | 52.15 ± 0.07 c | 370.80 ± 11.60 ef | |
70 Hz | 1 min | 12.50 ± 1.41 g | 45.20 ± 5.37 ij | 18.55 ± 0.49 f | 21.35 ± 2.62 f | 133.00 ± 8.20 h |
5 min | 29.40 ± 0.00 e | 65.00 ± 2.54 gh | 39.25 ± 1.06 d | 35.05 ± 1.06 e | 279.80 ± 7.50 g | |
15 min | 41.50 ± 1.84 d | 54.00 ± 4.95 hi | 44.50 ± 1.71 c | 42.65 ± 3.46 d | 342.05 ± 21.14 f | |
30 min | 50.30 ± 0.56 c | 109.85 ± 9.92 de | 50.30 ± 1.71 b | 50.90 ± 2.83 c | 4.30 ± 0.57 i | |
45 min | 134.55 ± 11.81 a | 140.30 ± 9.76 bc | 66.80 ± 4.10 a | 78.85 ± 3.18 a | 562.25 ± 12.52 b | |
100 Hz | 1 min | 47.25 ± 2.61 cd | n.d. | 2.50 ± 0.00 h | 48.60 ± 0.14 cd | 345.90 ± 2.83 f |
5 min | 40.20 ± 1.13 d | 82.35 ± 6.29 fg | 1.80 ± 0.14 h | 47.85 ± 1.20 cd | 360.60 ± 16.77 ef | |
15 min | 15.65 ± 0.35 fg | 145.65 ± 1.77 b | 43.70 ± 1.70 c | 52.35 ± 2.62 c | 407.35 ± 26.09 d | |
30 min | 52.30 ± 3.82 c | 108.45 ± 1.76 de | 67.65 ± 4.60 a | 64.15 ± 4.60 b | 486.25 ± 38.96 c | |
45 min | 102.80 ± 7.35 b | 169.95 ± 5.59 a | 40.85 ± 2.33 d | 80.50 ± 5.80 a | 646.05 ± 63.57 a | |
Rutin | Quercetin-3-D-galactoside | Procyanidin B1 | Quercetin | Procyanidin B2 | ||
40 Hz | 1 min | 22.85 ± 0.63 h | 7.10 ± 0.28 g | n.d. | 8.25 ± 0.21 d | n.d. |
5 min | 35.35 ± 2.05 gh | 13.70 ± 0.99 g | n.d. | 1.00 ± 0.00 f | n.d. | |
15 min | 47.70 ± 2.97 fg | 16.45 ± 1.77 g | n.d. | 13.90 ± 0.14 c | n.d. | |
30 min | 65.45 ± 7.21 ef | 42.70 ± 1.13 e | 145.55 ± 7.31 d | 2.20 ± 0.12 f | n.d. | |
45 min | 71.75 ± 0.49 de | 50.60 ± 0.42 d | 141.85 ± 8.60 d | 3.35 ± 1.20 ef | n.d. | |
70 Hz | 1 min | 29.35 ± 2.33 g | 12.70 ± 0.85 g | n.d. | 1.20 ± 0.28 f | n.d. |
5 min | 42.55 ± 1.06 g | 28.10 ± 1.70 f | 115.35 ± 1.91 ef | 1.40 ± 0.23 f | n.d. | |
15 min | 49.70 ± 0.85 fg | 37.30 ± 1.84 e | 101.80 ± 1.27 f | 3.35 ± 0.49 ef | n.d. | |
30 min | 107.20 ± 4.38 c | 51.30 ± 1.55 d | 124.90 ± 10.89 e | 3.05 ± 0.07 ef | n.d. | |
45 min | 204.00 ± 6.93 b | 115.10 ± 0.57 b | 220.25 ± 22.27 c | 2.80 ± 0.28 ef | 107.30 ± 2.83 b | |
100 Hz | 1 min | 67.90 ± 0.71 ef | 41.80 ± 2.26 e | 144.25 ± 0.49 d | 36.05 ± 0.49 b | 39.50 ± 4.38 c |
5 min | 70.35 ± 4.60 de | 39.30 ± 4.95 e | 139.60 ± 7.96 d | 38.65 ± 5.72 ab | 39.00 ± 3.54 c | |
15 min | 66.10 ± 3.82 ef | 46.40 ± 2.97 de | 215.65 ± 14.92 c | 40.95 ± 1.48 a | n.d. | |
30 min | 88.15 ± 8.41 cd | 75.55 ± 6.29 c | 281.00 ± 8.63 b | 6.75 ± 1.20 d | n.d. | |
45 min | 298.40 ± 20.65 a | 138.90 ± 9.86 a | 367.20 ± 1.98 a | 13.25 ± 0.91 c | 199.50 ± 14.42 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor, K.; Nastić, N.; Gavarić, A.; Simić, S.; Lončarić, A.; Banožić, M.; Aladić, K.; Jokić, S.; Vladić, J. High-Voltage Electrical Discharge Extraction of Polyphenols from Winter Savory (Satureja montana L.): Antioxidant Assessment and Chemometric Interpretation. Plants 2025, 14, 2214. https://doi.org/10.3390/plants14142214
Pastor K, Nastić N, Gavarić A, Simić S, Lončarić A, Banožić M, Aladić K, Jokić S, Vladić J. High-Voltage Electrical Discharge Extraction of Polyphenols from Winter Savory (Satureja montana L.): Antioxidant Assessment and Chemometric Interpretation. Plants. 2025; 14(14):2214. https://doi.org/10.3390/plants14142214
Chicago/Turabian StylePastor, Kristian, Nataša Nastić, Aleksandra Gavarić, Siniša Simić, Ante Lončarić, Marija Banožić, Krunoslav Aladić, Stela Jokić, and Jelena Vladić. 2025. "High-Voltage Electrical Discharge Extraction of Polyphenols from Winter Savory (Satureja montana L.): Antioxidant Assessment and Chemometric Interpretation" Plants 14, no. 14: 2214. https://doi.org/10.3390/plants14142214
APA StylePastor, K., Nastić, N., Gavarić, A., Simić, S., Lončarić, A., Banožić, M., Aladić, K., Jokić, S., & Vladić, J. (2025). High-Voltage Electrical Discharge Extraction of Polyphenols from Winter Savory (Satureja montana L.): Antioxidant Assessment and Chemometric Interpretation. Plants, 14(14), 2214. https://doi.org/10.3390/plants14142214