Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = gait rehabilitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 477 KB  
Article
REEV SENSE IMUs for Spatiotemporal Gait Analysis in Post-Stroke Patients: Validation Against Optical Motion Capture
by Thibault Marsan, Sacha Clauzade, Xiang Zhang, Nicolas Grandin, Tatiana Urman, Evan Linton, Samy Sibachir, Catherine E. Ricciardi and Robin Temporelli
Sensors 2026, 26(2), 667; https://doi.org/10.3390/s26020667 - 19 Jan 2026
Viewed by 42
Abstract
Objective gait assessment is essential for post-stroke rehabilitation monitoring, yet optical motion capture systems remain inaccessible to most clinical settings due to cost and infrastructure constraints. This study assessed the validity of the REEV SENSE IMU for measuring spatiotemporal gait parameters in post-stroke [...] Read more.
Objective gait assessment is essential for post-stroke rehabilitation monitoring, yet optical motion capture systems remain inaccessible to most clinical settings due to cost and infrastructure constraints. This study assessed the validity of the REEV SENSE IMU for measuring spatiotemporal gait parameters in post-stroke individuals and evaluated assistive device effects on measurement accuracy. Twenty chronic post-stroke participants were enrolled, and fourteen completed the study (ten without an assistive device, four using a cane) after applying pre-defined exclusion criteria (walking speed <0.28 m/s, n = 6). Participants walked at self-selected speed while simultaneously being recorded by REEV SENSE IMUs and optical motion capture. Spatiotemporal parameters from matched heel strikes were compared using intraclass correlation coefficients (ICC), mean relative error (MRE), and Bland–Altman analysis. Temporal parameters demonstrated excellent reliability: contact time (ICC 0.96–0.99, MRE 2.77–5.45%), stride duration (ICC 0.95–0.99, MRE 2.57–2.62%), and cadence (ICC 0.98–0.99, MRE 1.80–1.93%). Spatial parameters showed greater variability, with stride length degrading substantially in slow-walking conditions (Cane group: ICC 0.76, MRE 8.60%). REEV SENSE provides reliable temporal parameter measurement comparable to commercial systems, positioning it as a practical tool for clinical gait monitoring in post-stroke rehabilitation. However, spatial parameter accuracy requires cautious interpretation in slow-walking regimes, necessitating independent validation when clinical decisions depend on precise stride length estimates. Full article
(This article belongs to the Special Issue Wearable Sensors for Gait Monitoring and Motion Analysis)
Show Figures

Figure 1

27 pages, 2521 KB  
Article
IoTToe: Monitoring Foot Angle Variability for Health Management and Safety
by Ata Jahangir Moshayedi, Zeashan Khan, Zhonghua Wang and Mehran Emadi Andani
Math. Comput. Appl. 2026, 31(1), 13; https://doi.org/10.3390/mca31010013 - 16 Jan 2026
Viewed by 158
Abstract
Toe-in (inward) and toe-out (outward) foot alignments significantly affect gait, posture, and joint stress, causing issues like abnormal gait, joint strain, and foot conditions such as plantar fasciitis and high arches. Addressing these alignments is crucial for improving mobility and comfort. This study [...] Read more.
Toe-in (inward) and toe-out (outward) foot alignments significantly affect gait, posture, and joint stress, causing issues like abnormal gait, joint strain, and foot conditions such as plantar fasciitis and high arches. Addressing these alignments is crucial for improving mobility and comfort. This study introduces IoTToe, a wearable IoT device designed to detect and monitor gait patterns by using six ADXL345 sensors positioned on the foot, allowing healthcare providers to remotely monitor alignment via a webpage, reducing the need for physical tests. Tested on 45 participants aged 20–25 years with diverse BMIs, IoTToe proved suitable for both children and adults, supporting therapy and diagnostics. Statistical tests, including ICC, DFA, and ANOVA, confirmed the device’s effectiveness in detecting gait and postural control differences between legs. Gait variability results indicated that left leg showed more adaptability (DFA close to 0.5), compared to the right leg which was found more consistent (DFA close to 1). Postural control showed stable and agile standing with values between 0.5 and 1. Sensor combinations revealed that removing sensor B (on the gastrocnemius muscle) did not affect data quality. Moreover, taller individuals displayed smaller ankle angle changes, highlighting challenges in balance and upper body stability. IoTToe offers accurate data collection, reliability, portability, and significant potential for gait monitoring and injury prevention. Future studies would expand participation, especially among women and those with alignment issues, to enhance the system’s applicability for foot health management, safety and rehabilitation, further supporting telemetric applications in healthcare. Full article
(This article belongs to the Special Issue Advances in Computational and Applied Mechanics (SACAM))
Show Figures

Figure 1

17 pages, 1760 KB  
Article
Sensor-Derived Trunk Stability and Gait Recovery: Evidence of Neuromechanical Associations Following Intensive Robotic Rehabilitation
by Hülya Şirzai, Yiğit Can Gökhan, Güneş Yavuzer and Hande Argunsah
Sensors 2026, 26(2), 573; https://doi.org/10.3390/s26020573 - 15 Jan 2026
Viewed by 224
Abstract
This quantitative observational study with pre–post design aimed to examine joint-specific kinematic adaptations and the relationship between trunk stability and spatiotemporal gait parameters following intensive robotic rehabilitation. A total of 12 neurological patients completed 16 sessions of gait training using the Tecnobody Smart [...] Read more.
This quantitative observational study with pre–post design aimed to examine joint-specific kinematic adaptations and the relationship between trunk stability and spatiotemporal gait parameters following intensive robotic rehabilitation. A total of 12 neurological patients completed 16 sessions of gait training using the Tecnobody Smart Gravity Walker. Pre- and post-training kinematic data were collected for bilateral hip and knee flexion–extension, trunk flexion–extension, trunk lateral flexion, and center-of-gravity displacement. Waveforms were normalized to 100% stride. Paired t-tests assessed pre–post differences, and correlations examined associations between trunk stability and gait performance. Significant increases were found in right hip flexion–extension (t = 3.44, p < 0.001), trunk flexion–extension (t = 9.49, p < 0.001), and center-of-gravity displacement (t = 15.15, p < 0.001), with reduced trunk lateral flexion (t = –8.64, p < 0.001). Trunk flexion–extension correlated with gait speed (r = 0.74), step length (r = 0.68), and stride length (r = 0.71); trunk lateral flexion correlated with cadence (r = 0.66) and stride length (r = 0.70). Intensive robotic rehabilitation improved trunk and hip kinematics, supporting trunk stability as an important biomechanical correlate of gait recovery. Sensor-derived metrics revealed strong neuromechanical coupling between postural control and locomotion in neurological patients. Full article
(This article belongs to the Special Issue Sensors and Wearable Device for Gait Analysis)
Show Figures

Figure 1

15 pages, 1580 KB  
Article
Electrical Muscle Stimulation with Russian Current in Chronic Cerebral Ischaemia
by Nelly M. A. Artamonova, Alina A. Saveko, Tatiana A. Shigueva, Vladimir V. Kitov, Maria A. Avdeeva, Valentina N. Tsyganova, Tatyana Yu. Orestova, Alla B. Guekht and Elena S. Tomilovskaya
Life 2026, 16(1), 126; https://doi.org/10.3390/life16010126 - 14 Jan 2026
Viewed by 135
Abstract
Objective: To test whether inpatient electrical muscle stimulation (EMS) using Russian current (5 kHz carrier, 50 Hz modulation; 4 s ON/6 s OFF) improves mobility and balance in elderly people with chronic cerebral ischaemia. Design: Prospective single-centre controlled observational pilot, embedded in routine [...] Read more.
Objective: To test whether inpatient electrical muscle stimulation (EMS) using Russian current (5 kHz carrier, 50 Hz modulation; 4 s ON/6 s OFF) improves mobility and balance in elderly people with chronic cerebral ischaemia. Design: Prospective single-centre controlled observational pilot, embedded in routine inpatient rehabilitation; no concealed randomisation (EMS + standard care; sham EMS + standard care; standard care only (control)). Methods: A single-centre controlled observational study with three groups was conducted (EMS n = 27, control n = 10, sham n = 7) with 3–9 sessions over 2 weeks (20 min; quadriceps and calves). Pre/Post Outcomes: Tinetti (balance/gait), Rivermead Mobility Index, Timed Up and Go (TUG), ankle extensor maximal voluntary force (MVF), stabilography (statokinesiogram path length (L), mean velocity of COP (V), sway area (S), and myotonometry; ANOVA, α = 0.05). Ethics approval and informed consent were obtained. Between-group differences in change scores were evaluated descriptively, and no formal hypothesis-testing was planned. Results: EMS showed significant gains versus control/sham—higher Tinetti total and Rivermead scores, faster TUG, higher MVF, and improved stabilography in the eyes-closed condition (reduced L, V, and S), with good tolerability and no serious adverse events (SAEs). Conclusions: Short-course Russian-current EMS is feasible and associated with clinically meaningful improvements in balance, gait, and strength in elderly patients with chronic cerebral ischaemia; however, larger randomised trials are warranted. Full article
Show Figures

Figure 1

15 pages, 3033 KB  
Article
Comparative Study of Different Algorithms for Human Motion Direction Prediction Based on Multimodal Data
by Hongyu Zhao, Yichi Zhang, Yongtao Chen, Hongkai Zhao, Zhuoran Jiang, Mingwei Cao, Haiqing Yang, Yuhang Ding and Peng Li
Sensors 2026, 26(2), 501; https://doi.org/10.3390/s26020501 - 12 Jan 2026
Viewed by 190
Abstract
The accurate prediction of human movement direction plays a crucial role in fields such as rehabilitation monitoring, sports science, and intelligent military systems. Based on plantar pressure and inertial sensor data, this study developed a hybrid deep learning model integrating a Convolutional Neural [...] Read more.
The accurate prediction of human movement direction plays a crucial role in fields such as rehabilitation monitoring, sports science, and intelligent military systems. Based on plantar pressure and inertial sensor data, this study developed a hybrid deep learning model integrating a Convolutional Neural Network (CNN) and a Bidirectional Long Short-Term Memory (BiLSTM) network to enable joint spatiotemporal feature learning. Systematic comparative experiments involving four distinct deep learning models—CNN, BiLSTM, CNN-LSTM, and CNN-BiLSTM—were conducted to evaluate their convergence performance and prediction accuracy comprehensively. Results show that the CNN-BiLSTM model outperforms the other three models, achieving the lowest RMSE (0.26) and MAE (0.14) on the test set, with an R2 of 0.86, which indicates superior fitting accuracy and generalization ability. The superior performance of the CNN-BiLSTM model is attributed to its ability to effectively capture local spatial features via CNN and model bidirectional temporal dependencies via BiLSTM, thus demonstrating strong adaptability for complex motion scenarios. This work focuses on the optimization and comparison of deep learning algorithms for spatiotemporal feature extraction, providing a reliable framework for real-time human motion prediction and offering potential applications in intelligent gait analysis, wearable monitoring, and adaptive human–machine interaction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 1087 KB  
Article
Neuromuscular and Kinetic Adaptations to Symmetric and Asymmetric Load Carriage During Walking in Individuals with Chronic Low Back Pain
by Raheleh Tajik, Wissem Dhahbi, Raghad Mimar, Mehdi Khaleghi Tazji, Halil İbrahim Ceylan, Serdar Bayrakdaroğlu, Valentina Stefanica and Nadhir Hammami
Bioengineering 2026, 13(1), 82; https://doi.org/10.3390/bioengineering13010082 - 12 Jan 2026
Viewed by 275
Abstract
Aim: This study examined how load size and symmetry affect trunk muscle activation patterns, vertical ground reaction forces, and estimated lumbar spine compression during overground walking in individuals with chronic low back pain (CLBP) and those without symptoms. Methods: Thirty male participants (15 [...] Read more.
Aim: This study examined how load size and symmetry affect trunk muscle activation patterns, vertical ground reaction forces, and estimated lumbar spine compression during overground walking in individuals with chronic low back pain (CLBP) and those without symptoms. Methods: Thirty male participants (15 with CLBP, 15 controls; ages 23–28 years) performed walking tests under four load conditions: symmetric and asymmetric carriage at 10% and 20% of body weight. Bilateral surface electromyography measured activation from seven trunk muscles (rectus abdominis, external oblique, internal oblique, latissimus dorsi, lumbar erector spinae, multifidus) and the thoracolumbar fascia region, normalized to maximum voluntary isometric contractions (%MVIC). Force plates recorded vertical ground reaction forces synchronized with heel-strike events. A repeated-measures ANOVA with Bonferroni corrections was used to analyze the effects of load configuration and magnitude. Results: Asymmetric loading at 20% body weight caused significantly higher peak vertical ground reaction forces compared to symmetric loading (mean difference = 47.3 N, p < 0.001), with a significant interaction between load magnitude and configuration (p = 0.004, ηp2 = 0.26). Participants with CLBP showed consistently higher trunk muscle activation throughout the gait cycle (peak: 37% MVIC vs. 30% MVIC in controls; p < 0.001, d = 1.68), with maximum recruitment at shorter muscle lengths and 24% less activation at optimal length (95% CI: 18.2–29.8%). The lumbar erector spinae and multifidus muscles exhibited the highest activation during asymmetric 20% loading in CLBP participants (0.282 and 0.263%MVIC, respectively), indicating compensatory neuromuscular strategies. Conclusion: Asymmetric load carriage creates disproportionately high mechanical and neuromuscular demands, effects that are greatly amplified in individuals with CLBP. These findings support rehabilitation strategies that improve load distribution and restore motor control, thereby reducing compensatory strain and enhancing trunk stability. Full article
(This article belongs to the Special Issue Biomechanics of Physical Exercise)
Show Figures

Figure 1

23 pages, 7558 KB  
Article
Instrumented Assessment of Gait in Pediatric Cancer Survivors: Identifying Functional Impairments After Oncological Treatment—A Pilot Study
by María Carratalá-Tejada, Diego Fernández-Vázquez, Víctor Navarro-López, Juan Aboitiz-Cantalapiedra, Francisco Molina-Rueda, Blanca López-Ibor Aliño and Alicia Cuesta-Gómez
Children 2026, 13(1), 96; https://doi.org/10.3390/children13010096 - 9 Jan 2026
Viewed by 178
Abstract
Background/Objectives: Pediatric cancer survivors frequently experience neuromuscular sequelae related to chemotherapy-induced neurotoxicity. Agents such as vincristine, methotrexate, and platinum compounds can lead to persistent gait alterations and sensorimotor deficits that impair mobility and quality of life. This study aimed to objectively assess [...] Read more.
Background/Objectives: Pediatric cancer survivors frequently experience neuromuscular sequelae related to chemotherapy-induced neurotoxicity. Agents such as vincristine, methotrexate, and platinum compounds can lead to persistent gait alterations and sensorimotor deficits that impair mobility and quality of life. This study aimed to objectively assess gait in pediatric cancer survivors after the completion of oncological pharmacological treatment to identify specific spatiotemporal, kinematic, and kinetic alterations and characterize neuromechanical patterns associated with neurotoxic exposure. Methods: A cross-sectional observational study was conducted including pediatric cancer survivors (6–18 years) who had completed chemotherapy and age- and sex-matched healthy controls. Gait was analyzed using a Vicon®3D motion capture system, with reflective markers placed on standardized anatomical landmarks. Spatiotemporal, kinematic, and kinetic variables were compared between groups using parametric tests and statistical parametric mapping (SPM) with Holm–Bonferroni correction (α = 0.05). Results: Pediatric cancer survivors showed slower gait velocity (Mean Difference (MD) = 0.17, p = 0.018, Confidence Interval CI95% = 0.04; 0.4), shorter step (MD = 0.1, p = 0.015, CI95% = 0.01; 0.19) and stride length (MD = 0.17, p = 0.018, CI95% = 0.03; 0.31), as well as reduced single support time (MD = 0.1, p = 0.043, CI95% = 0.01; 0.19), along with significant alterations in pelvic, hip, knee, and ankle kinematics compared with controls. Increased pelvic elevation (MD = 0.92, p = 0.018, CI95% = 0.25; 1.58), reduced hip extension during stance (MD = −2.99, p = 0.039, CI95% = −5.19; −0.74), knee hyperextension in mid-stance (MD = −3.84, p < 0.001, CI95% = −6.18; −0.72), and limited ankle dorsiflexion (MAS MD = −4.04, p < 0.001, CI95% = −6.79; −0.86, LAS MD = −3.16, p < 0.001) and plantarflexor moments in terminal stance (MAS MD = −149.65, p = 0.018, CI95% = −259.35; −48.25, LAS MD = −191.81, p = 0.008, CI95% = −323.81; −57.31) were observed. Ground reaction force peaks during loading response (MAS MD = −16.86, p < 0.001, CI95% = −26.12; −0.72 LAS MD = −11.74, p = 0.001, CI95% = −19.68; −3.94) and foot-off (MAS MD = 10.38, p = 0.015, CI95% = 0.41; 20.53, LAS MD = 11.88, p = 0.01, CI95% = 3.15; 22.38) were also reduced. Conclusions: Children who have completed chemotherapy present measurable gait deviations reflecting persistent neuromechanical impairment, likely linked to chemotherapy-induced neurotoxicity and deconditioning. Instrumented gait analysis allows early detection of these alterations and may support the design of targeted rehabilitation strategies to optimize functional recovery and long-term quality of life in pediatric cancer survivors. Full article
(This article belongs to the Special Issue Movement Disorders in Children: Challenges and Opportunities)
Show Figures

Figure 1

34 pages, 6460 KB  
Article
Explainable Gait Multi-Anchor Space-Aware Temporal Convolutional Networks for Gait Recognition in Neurological, Orthopedic, and Healthy Cohorts
by Abdullah Alharthi
Mathematics 2026, 14(2), 230; https://doi.org/10.3390/math14020230 - 8 Jan 2026
Viewed by 192
Abstract
Gait recognition using wearable sensor data is crucial for healthcare, rehabilitation, and monitoring neurological and musculoskeletal disorders. This study proposes a deep learning framework for gait classification using inertial measurements from four body-mounted IMU sensors (head, lower back, and both feet). The data [...] Read more.
Gait recognition using wearable sensor data is crucial for healthcare, rehabilitation, and monitoring neurological and musculoskeletal disorders. This study proposes a deep learning framework for gait classification using inertial measurements from four body-mounted IMU sensors (head, lower back, and both feet). The data were collected from a publicly available, clinically annotated dataset comprising 1356 gait trials from 260 individuals with diverse pathologies. The framework, G-MASA-TCN (Gait Multi-Anchor, Space-Aware Temporal Convolutional Network), integrates multi-scale temporal fusion, graph-informed spatial modeling, and residual dilated convolutions to extract discriminative gait signatures. To ensure both high performance and interpretability, Integrated Gradients is incorporated as an explainable AI (XAI) method, providing sensor-level and temporal attributes that reveal the features driving model decisions. The framework is evaluated via repeated cross-validation experiments, reporting detailed metrics with cross-run statistical analysis (mean ± standard deviation) to assess robustness. Results show that G-MASA-TCN achieves 98% classification accuracy for neurological, orthopedic, and healthy cohorts, demonstrating superior stability and resilience compared to baseline architectures, including Gated Recurrent Unit (GRU), Transformer neural networks, and standard TCNs, and 98.4% accuracy in identifying individual subjects based on gait. Furthermore, the model offers clinically meaningful insights into which sensors and gait phases contribute most to its predictions. This work presents an accurate, interpretable, and reliable tool for gait pathology recognition, with potential for translation to real-world clinical settings. Full article
(This article belongs to the Special Issue Deep Neural Network: Theory, Algorithms and Applications)
Show Figures

Graphical abstract

13 pages, 258 KB  
Article
Functional Electrical Stimulation (FES) in Adults with Neurological Disorders and Foot Drop: Orthotic and Therapeutic Effects in Short- and Long-Term Users
by Niklas Bleichner, Merkur Alimusaj, Daniel W. W. Heitzmann, Andreas Stähle, Claudia Weichold, Cornelia Putz, Herta Flor, Frauke Nees and Sebastian I. Wolf
Bioengineering 2026, 13(1), 71; https://doi.org/10.3390/bioengineering13010071 - 8 Jan 2026
Viewed by 362
Abstract
Functional electrical stimulation (FES) is widely used to improve gait in individuals with neurological impairments; however, early responses in adults with congenital conditions, such as cerebral palsy, who are newly exposed to FES, remain poorly understood. This study investigated the orthotic and therapeutic [...] Read more.
Functional electrical stimulation (FES) is widely used to improve gait in individuals with neurological impairments; however, early responses in adults with congenital conditions, such as cerebral palsy, who are newly exposed to FES, remain poorly understood. This study investigated the orthotic and therapeutic effects of FES in short- and long-term users using standardized three-dimensional gait analysis. In this longitudinal study, short-term users (G1; n = 13; mean age 31.7 ± 18.1 years) were evaluated both without and with FES and followed over a 4–12-week insurance-covered trial period. Long-term users (G2; n = 11; mean age 32.2 ± 11.0 years), who had used FES for at least one year, were reassessed over a standardized 12-week interval. Linear mixed-effects models assessed the effects of FES and time, with subjects included as random effects to account for inter-individual variability. G1 showed significant therapeutic adaptations, including increased walking speed and step length and reduced step width, accompanied by decreased dorsiflexion during stance and swing, while no significant orthotic effects were observed. G2 demonstrated clear orthotic responses, such as increased dorsiflexion at heel strike and during swing and improved walking speed and step length, with minimal evidence of additional therapeutic adaptation. The initial reduction in dorsiflexion in G1 warrants further investigation. These findings suggest that evaluation timelines may need to be extended and that outcome measures beyond foot clearance should be considered, particularly given the heterogeneity and severity of congenital neurological conditions. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

14 pages, 705 KB  
Article
Evaluating Changes in Physical Activity and Clinical Outcomes During Post-Hospitalisation Rehabilitation for Persons with COPD: A Prospective Observational Cohort Study
by Anna L. Stoustrup, Phillip K. Sperling, Lars P. Thomsen, Thorvaldur S. Palsson, Kristina K. Christensen, Jane Andreasen and Ulla M. Weinreich
Sensors 2026, 26(2), 384; https://doi.org/10.3390/s26020384 - 7 Jan 2026
Viewed by 212
Abstract
Physical activity often remains low after hospitalisation for acute exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD). Although post-hospitalisation rehabilitation has shown to support recovery, its impact on daily activity levels in the early post-exacerbation phase is unclear. This study describes the changes in [...] Read more.
Physical activity often remains low after hospitalisation for acute exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD). Although post-hospitalisation rehabilitation has shown to support recovery, its impact on daily activity levels in the early post-exacerbation phase is unclear. This study describes the changes in physical activity (PA) and clinical outcomes during an 8-week rehabilitation following hospitalisation for AECOPD. This prospective observational cohort study included patients recently discharged after AECOPD from Aalborg University Hospital, Denmark. Participants received municipality-delivered post-hospitalisation rehabilitation consisting of tailored physiotherapy and occupational therapy of individually determined frequency. PA was assessed using thigh-worn triaxial accelerometers measuring 24 h/day over 8 weeks. Clinical outcomes included lung function (FEV1% predicted), dyspnoea scores, health-related quality of life (EuroQol 5-dimension, 5-level (EQ-5D-5L); EuroQol visual analogue scale (EQ-VAS)), frailty (Clinical Frailty Scale (CFS)), functional status (Short Physical Performance Battery (SPPB)), and symptom burden (COPD Assessment Test (CAT); St. George’s Respiratory Questionnaire (SGRQ)). Changes from baseline to 8 weeks were analysed using linear mixed-effects models and bootstrap resampling. Forty-three participants with a mean age 73.4 years, 67.4% female, and moderate frailty (CFS 5.4 ± 1.3) were included. Physical activity remained largely unchanged. Gait speed and total SPPB declined, whereas self-perceived health improved (EQ-VAS Δ +7.8, p = 0.008). Lung function, dyspnoea, and health related quality of life scores showed no significant change. In this frail, recently admitted COPD population, physical activity did not increase during the rehabilitation period, and some functional parameters declined. The improvement in self-perceived health suggests a divergence between subjective and objective outcomes. These findings highlight the need for long-term, tailored, and flexible approaches to support recovery after AECOPD. Full article
Show Figures

Figure 1

30 pages, 828 KB  
Systematic Review
Sex Differences in Severity and Recovery Following Mild Traumatic Brain Injury: A Systematic Review
by Shanika Arachchi, Ed Daly, Anushree Dwivedi and Lisa Ryan
Brain Sci. 2026, 16(1), 77; https://doi.org/10.3390/brainsci16010077 - 6 Jan 2026
Viewed by 503
Abstract
Background: Sex-based variations in brain structure, hormonal balance, and neurochemistry may influence symptom presentation and recovery after mild traumatic brain injury (mTBI). This systematic review investigated sex-related differences in mTBI severity, symptoms, and recovery outcomes across different injury mechanisms. Methods: This [...] Read more.
Background: Sex-based variations in brain structure, hormonal balance, and neurochemistry may influence symptom presentation and recovery after mild traumatic brain injury (mTBI). This systematic review investigated sex-related differences in mTBI severity, symptoms, and recovery outcomes across different injury mechanisms. Methods: This review followed PRISMA 2020 guidelines and was registered with PROSPERO (CRD420251011379). Searches were conducted in PubMed, SPORTDiscus, Web of Science, and Scopus for articles published between 2000 and 2024. Eligible studies included adults (≥18 years) diagnosed with mTBI or concussion (Glasgow Coma Scale 13–15) with quantifiable outcome data for both sexes. Data extraction and quality assessment followed the JBI critical appraisal tools. Results: Forty-one studies involving 15,656 participants (8671 males; 6985 females) met the inclusion criteria. Female participants reported a greater symptom burden, higher pain intensity, and longer recovery times for gait abnormalities and return to activity compared with males. Neuroimaging studies showed more extensive white matter alterations in females, whereas males displayed greater reductions in cerebral blood flow. Cognitive and neurosensory outcomes revealed poorer cognitive performance, slower reaction times, and higher rates of vestibular–ocular and visual abnormalities in females. A limited number of studies explored electrophysiological measures, indicating sex-based differences in early brain responses to emotional stimuli. Conclusions: Sex plays an important role in symptom presentation and recovery after mTBI. Female patients demonstrate heightened vulnerability across several clinical domains, likely due to biological and neurochemical differences. Recognising these sex-specific patterns can support more targeted diagnostic and rehabilitation strategies. Future research should further explore the structural and biochemical mechanisms underlying these differences to improve precision in mTBI management. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

36 pages, 1927 KB  
Review
Research on Control Strategy of Lower Limb Exoskeleton Robots: A Review
by Xin Xu, Changbing Chen, Zuo Sun, Wenhao Xian, Long Ma and Yingjie Liu
Sensors 2026, 26(2), 355; https://doi.org/10.3390/s26020355 - 6 Jan 2026
Viewed by 346
Abstract
With an aging population and the high incidence of neurological diseases, rehabilitative lower limb exoskeleton robots, as a wearable assistance device, present important application prospects in gait training and human function recovery. As the core of human–computer interaction, control strategy directly determines the [...] Read more.
With an aging population and the high incidence of neurological diseases, rehabilitative lower limb exoskeleton robots, as a wearable assistance device, present important application prospects in gait training and human function recovery. As the core of human–computer interaction, control strategy directly determines the exoskeleton’s ability to perceive and respond to human movement intentions. This paper focuses on the control strategies of rehabilitative lower limb exoskeleton robots. Based on the typical hierarchical control architecture of “perception–decision–execution,” it systematically reviews recent research progress centered around four typical control tasks: trajectory reproduction, motion following, Assist-As-Needed (AAN), and motion intention prediction. It emphasizes analyzing the core mechanisms, applicable scenarios, and technical characteristics of different control strategies. Furthermore, from the perspectives of drive system and control coupling, multi-source perception, and the universality and individual adaptability of control algorithms, it summarizes the key challenges and common technical constraints currently faced by control strategies. This article innovatively separates the end-effector control strategy from the hardware implementation to provide support for a universal control framework for exoskeletons. Full article
Show Figures

Figure 1

11 pages, 236 KB  
Article
Gait Characteristics in Children with Juvenile Idiopathic Arthritis and Secondary Scoliosis
by Gökçe Leblebici, Eylül Pınar Kısa, Ela Tarakcı and Özgür Kasapçopur
Children 2026, 13(1), 83; https://doi.org/10.3390/children13010083 - 5 Jan 2026
Viewed by 241
Abstract
Background: Juvenile Idiopathic Arthritis (JIA) is a chronic inflammatory condition that can disrupt joint function and biomechanics, often leading to altered gait patterns. When coexisting with secondary scoliosis—a common musculoskeletal complication in children with JIA—postural and movement impairments may be further exacerbated. However, [...] Read more.
Background: Juvenile Idiopathic Arthritis (JIA) is a chronic inflammatory condition that can disrupt joint function and biomechanics, often leading to altered gait patterns. When coexisting with secondary scoliosis—a common musculoskeletal complication in children with JIA—postural and movement impairments may be further exacerbated. However, limited research has investigated the combined impact of JIA and secondary scoliosis on gait characteristics. This study aimed to evaluate gait parameters in children diagnosed with JIA and secondary scoliosis and to compare them with age-matched healthy peers. Methods: A total of 50 children (25 with JIA and secondary scoliosis, 25 healthy controls) were included. Demographic data, plantar pressure distribution, temporal gait parameters, and center of mass (CoM) displacement were assessed using computerized gait analysis. Group comparisons were performed using appropriate statistical methods. Results: Children with JIA and secondary scoliosis exhibited significantly lower forefoot loading on both dominant and non-dominant sides compared to controls (p < 0.05). Maximum loading values were also reduced bilaterally in the JIA group (p < 0.001). The dominant side single-limb support duration was significantly shorter (p = 0.027), and CoM displacement was greater (p = 0.044) in the JIA group. No differences were observed in rearfoot loading or walking speed. Conclusions: Children with coexisting JIA and secondary scoliosis demonstrate altered gait mechanics, likely reflecting compensatory adaptations due to joint inflammation and postural asymmetries. Gait analysis may offer valuable insights for tailoring rehabilitation strategies in this patient population. Full article
(This article belongs to the Section Pediatric Allergy and Immunology)
21 pages, 2641 KB  
Article
Plasma Short-Chain Fatty Acids and Cytokine Profiles in Chronic Kidney Disease: A Potential Pathophysiological Link
by Anna V. Sokolova, Dmitrii O. Dragunov and Grigory P. Arutyunov
Int. J. Mol. Sci. 2026, 27(1), 550; https://doi.org/10.3390/ijms27010550 - 5 Jan 2026
Viewed by 269
Abstract
Sarcopenia is highly prevalent among patients with chronic kidney disease (CKD) and chronic heart failure (CHF), yet the underlying immunometabolic mechanisms remain insufficiently understood. Short-chain fatty acids (SCFAs), inflammatory cytokines, and body-composition alterations may jointly contribute to the development of muscle dysfunction in [...] Read more.
Sarcopenia is highly prevalent among patients with chronic kidney disease (CKD) and chronic heart failure (CHF), yet the underlying immunometabolic mechanisms remain insufficiently understood. Short-chain fatty acids (SCFAs), inflammatory cytokines, and body-composition alterations may jointly contribute to the development of muscle dysfunction in this population. In this cross-sectional study, 80 patients with CKD and CHF underwent comprehensive clinical, biochemical, bioimpedance, inflammatory, and SCFA profiling. Sarcopenia was diagnosed according to EWGSOP2 criteria. Multivariable logistic regression, LASSO feature selection, correlation analysis, PCA, and Random Forest modeling were used to identify key determinants of sarcopenia. Sarcopenia was present in 39 (49%) participants. Patients with sarcopenia exhibited significantly lower body fat percentage, reduced ASM, and slower gait speed. Hexanoic acid (C6) showed an independent positive association with sarcopenia (OR = 2.24, 95% CI: 1.08–5.37), while IL-8 showed an inverse association with sarcopenia (OR = 0.38, 95% CI: 0.13–0.94), indicating that lower IL-8 levels were more frequently observed in individuals with sarcopenia. Correlation heatmaps revealed distinct SCFA–cytokine coupling patterns depending on sarcopenia status, with stronger pro-inflammatory clustering in C6-associated networks. The final multivariable model integrating SCFAs, cytokines, and body-composition metrics achieved excellent discrimination (AUC = 0.911) and good calibration. Sarcopenia in CKD–CHF patients represents a systemic immunometabolic disorder characterized by altered body composition, chronic inflammation, and dysregulated SCFA signaling. Hexanoic acid (C6) and IL-8 may serve as informative biomarkers of muscle decline. These findings support the use of multidimensional assessment and highlight potential targets for personalized nutritional, microbiota-modulating, and rehabilitative interventions. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 1524 KB  
Article
Wearable Sensor–Based Gait Analysis in Benign Paroxysmal Positional Vertigo: Quantitative Assessment of Residual Dizziness Using the φ-Bonacci Framework
by Beatrice Francavilla, Sara Maurantonio, Nicolò Colistra, Luca Pietrosanti, Davide Balletta, Goran Latif Omer, Arianna Di Stadio, Stefano Di Girolamo, Cristiano Maria Verrelli and Pier Giorgio Giacomini
Life 2026, 16(1), 75; https://doi.org/10.3390/life16010075 - 4 Jan 2026
Viewed by 273
Abstract
Background: Benign Paroxysmal Positional Vertigo (BPPV) is the most common vestibular disorder. Although canalith repositioning procedures (CRPs) typically resolve positional vertigo, several patients still report imbalance or residual dizziness, which remain difficult to quantify with standard tests. Wearable inertial sensors now allow [...] Read more.
Background: Benign Paroxysmal Positional Vertigo (BPPV) is the most common vestibular disorder. Although canalith repositioning procedures (CRPs) typically resolve positional vertigo, several patients still report imbalance or residual dizziness, which remain difficult to quantify with standard tests. Wearable inertial sensors now allow high-resolution, objective gait analysis and may detect subtle vestibular-related impairments. Objectives: This study evaluates the clinical usefulness of sensor-based gait metrics, enhanced by the newly developed φ-bonacci index framework to quantify gait changes and residual dizziness in BPPV before and after CRPs. Methods: Fifteen BPPV patients (BPPV-P) and fifteen age-matched controls completed walking tests under eyes-open (EO) and eyes-closed (EC) conditions using wearable inertial measurement units (IMU). φ-bonacci index components—self-similarity (A1), swing symmetry (A2), and double-support consistency (A4)—were calculated to assess gait harmonicity, symmetry and stability. Results: Before treatment, BPPV-P exhibited significantly higher A1 values than healthy controls (p = 0.038 EO; p = 0.011 EC), indicating impaired gait harmonicity. After CRPs, A1 values normalized to control levels, suggesting restored gait self-similarity. Under visual deprivation, both A1 and A4 showed pronounced increases across all groups, reflecting the contribution of vision to balance control. Among post-treatment patients, those reporting residual dizziness demonstrated persistently elevated A4 values—particularly under EC conditions—indicating incomplete sensory reweighting despite clinical recovery. Conclusions: Wearable sensor–derived φ-bonacci metrics offer sensitive, objective markers of gait abnormalities and residual dizziness in BPPV, supporting their use as digital biomarkers for diagnosis, rehabilitation, and follow-up. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

Back to TopTop