Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = gait characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5463 KiB  
Article
Configuration Synthesis and Performance Analysis of 1T2R Decoupled Wheel-Legged Reconfigurable Mechanism
by Jingjing Shi, Ruiqin Li and Wenxiao Guo
Micromachines 2025, 16(8), 903; https://doi.org/10.3390/mi16080903 (registering DOI) - 31 Jul 2025
Viewed by 185
Abstract
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are [...] Read more.
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are carried out, and the motion mode of the robot’s reconfigurable mechanical leg is selected according to the task requirements. Then, the robot’s gait in walking mode is planned. Firstly, based on bionic principles, the motion characteristics of a mechanical leg based on a mammalian model and an insect model were analyzed. The input and output characteristics of the mechanism were analyzed to obtain the reconfiguration principle of the mechanism. Using type synthesis theory for the decoupled parallel mechanism, the configuration synthesis of the chain was carried out, and the constraint mode of the mechanical leg was determined according to the constraint property of the chain and the motion characteristics of the moving platform. Secondly, an evaluation index for the complexity of the reconfigurable mechanical leg structure was developed, and the synthesized mechanism was further analyzed and evaluated to select the mechanical leg’s configuration. Thirdly, the inverse position equations were established for the mechanical leg in the two motion modes, and its Jacobian matrix was derived. The degrees of freedom of the mechanism are completely decoupled in the two motion modes. Then, the workspace and motion/force transmission performance of the mechanical leg in the two motion modes were analyzed. Based on the weighted standard deviation of the motion/force transmission performance, the global performance fluctuation index of the mechanical leg motion/force transmission is defined, and the structural size parameters of the mechanical leg are optimized with the performance index as the optimization objective function. Finally, with the reconfigurable mechanical leg in the insect mode, the robot’s gait in the walking operation mode is planned according to the static stability criterion. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications, 2nd Edition)
Show Figures

Figure 1

11 pages, 246 KiB  
Article
Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study
by Elina Gianzina, Christos K. Yiannakopoulos, Elias Armenis and Efstathios Chronopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(3), 288; https://doi.org/10.3390/jfmk10030288 - 28 Jul 2025
Viewed by 242
Abstract
Background: Gait impairments are common in individuals with knee osteoarthritis awaiting total knee arthroplasty, affecting their mobility and quality of life. This study aimed to assess and compare biomechanical gait features between individuals awaiting total knee arthroplasty and healthy, non-arthritic controls, focusing on [...] Read more.
Background: Gait impairments are common in individuals with knee osteoarthritis awaiting total knee arthroplasty, affecting their mobility and quality of life. This study aimed to assess and compare biomechanical gait features between individuals awaiting total knee arthroplasty and healthy, non-arthritic controls, focusing on less-explored variables using sensor-based measurements. Methods: A cross-sectional observational study was conducted with 60 participants: 21 individuals awaiting total knee arthroplasty and 39 nonarthritic controls aged 64–85 years. Participants completed a standardized 14 m walk, and 17 biomechanical gait parameters were measured using the BTS G-Walk inertial sensor. Key variables, such as stride duration, cadence, symmetry indices, and pelvic angles, were analyzed for group differences. Results: The pre-total knee arthroplasty group exhibited significantly longer gait cycles and stride durations (p < 0.001), reduced cadence (p < 0.001), and lower gait cycle symmetry index (p < 0.001) than the control group. The pelvic angle symmetry indices for tilt (p = 0.014), rotation (p = 0.002), and obliquity (p < 0.001) were also lower. Additionally, the pre-total knee arthroplasty group had lower propulsion indices for both legs (p < 0.001) and a lower walking quality index on the right leg (p = 0.005). The number of elaborated steps was significantly greater in the pre-total knee arthroplasty group (left, p < 0.001, right: p < 0.001). No significant differences were observed in any other gait parameters. Conclusions: This study revealed significant gait impairment in individuals awaiting total knee arthroplasty. Although direct evidence for prehabilitation is lacking, future research should explore whether targeted approaches, such as strengthening exercises or gait retraining, can improve gait and functional outcomes before surgery. Full article
15 pages, 1395 KiB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 357
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

15 pages, 1796 KiB  
Systematic Review
Treadmill Training in Patients with Parkinson’s Disease: A Systematic Review and Meta-Analysis on Rehabilitation Outcomes
by Elisa Boccali, Carla Simonelli, Beatrice Salvi, Mara Paneroni, Michele Vitacca and Davide Antonio Di Pietro
Brain Sci. 2025, 15(8), 788; https://doi.org/10.3390/brainsci15080788 - 24 Jul 2025
Viewed by 342
Abstract
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disorder that impairs mobility. Treadmill training (TT) is a common rehabilitation strategy for improving gait parameters in individuals with PD. This systematic review evaluated the effectiveness of TT in improving motor function, walking ability, and [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disorder that impairs mobility. Treadmill training (TT) is a common rehabilitation strategy for improving gait parameters in individuals with PD. This systematic review evaluated the effectiveness of TT in improving motor function, walking ability, and overall functional mobility in PD patients. Methods: We compared TT to other forms of gait and motor rehabilitation, including conventional and robotic gait training. Trials that compared a treadmill training group with a non-intervention group were excluded from this review. We searched multiple databases for RCTs involving Parkinson’s patients until January 2025. The primary outcomes were motor function (UPDRS-III) and walking ability (6 MWT and TUG test). Results: We identified 285 articles; 199 were excluded after screening. We assessed the full text of 86 articles for eligibility, and 13 RCTs met the inclusion criteria. Some of them were included in the meta-analysis. The TT group showed a significant improvement in UPDRS-III scores [mean difference (MD): −1.36 (95% CI: −2.60 to −0.11)] and greater improvement in TUG performance [MD, −1.75 (95% CI: −2.69 to −0.81)]. No significant difference in walking capacity as assessed through the 6 MWT was observed [MD: 26.03 (95% CI: −6.72 to 58.77). Conclusions: The current study suggests that TT is effective in improving the motor symptoms and functional mobility associated with PD. Further studies are needed to develop protocols that consider the patients’ clinical characteristics, disease stage, exercise tolerance, and respiratory function. Full article
(This article belongs to the Special Issue Outcome Measures in Rehabilitation)
Show Figures

Figure 1

21 pages, 2575 KiB  
Article
Gait Analysis Using Walking-Generated Acceleration Obtained from Two Sensors Attached to the Lower Legs
by Ayuko Saito, Natsuki Sai, Kazutoshi Kurotaki, Akira Komatsu, Shinichiro Morichi and Satoru Kizawa
Sensors 2025, 25(14), 4527; https://doi.org/10.3390/s25144527 - 21 Jul 2025
Viewed by 278
Abstract
Gait evaluation approaches using small, lightweight inertial sensors have recently been developed, offering improvements in terms of both portability and usability. However, accelerometer outputs include both the acceleration that is generated by human motion and gravitational acceleration, which changes along with the posture [...] Read more.
Gait evaluation approaches using small, lightweight inertial sensors have recently been developed, offering improvements in terms of both portability and usability. However, accelerometer outputs include both the acceleration that is generated by human motion and gravitational acceleration, which changes along with the posture of the body part to which the sensor is attached. This study presents a gait analysis method that uses the gravitational, centrifugal, tangential, and translational accelerations obtained from sensors attached to the lower legs. In this method, each sensor pose is sequentially estimated using sensor fusion to combine data obtained from a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer. The estimated sensor pose is then used to calculate the gravitational acceleration that is included in each axis of the sensor coordinate system. The centrifugal and tangential accelerations are determined from the gyroscope output. The translational acceleration is then obtained by subtracting the centrifugal, tangential, and gravitational accelerations from the accelerometer output. As a result, the acceleration components contained in the outputs of the accelerometers attached to the lower legs are provided. As only the acceleration components caused by walking motion are captured, thus reflecting their characteristics, it is expected that the developed method can be used for gait evaluation. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

13 pages, 1118 KiB  
Article
Assessing Gross Motor and Gait Function Using Hip–Knee Cyclograms in Ambulatory Children with Spastic Cerebral Palsy
by Jehyun Yoo, Juntaek Hong, Jeuhee Lee, Yebin Cho, Taekyung Lee and Dong-wook Rha
Sensors 2025, 25(14), 4485; https://doi.org/10.3390/s25144485 - 18 Jul 2025
Viewed by 349
Abstract
Weakness, spasticity, and muscle shortening are common in children with cerebral palsy (CP), leading to deficits in gross motor, gait, and selective motor functions. While traditional assessments, such as the Gross Motor Function Measure (GMFM-66), instrumented gait analysis, and the Selective Control Assessment [...] Read more.
Weakness, spasticity, and muscle shortening are common in children with cerebral palsy (CP), leading to deficits in gross motor, gait, and selective motor functions. While traditional assessments, such as the Gross Motor Function Measure (GMFM-66), instrumented gait analysis, and the Selective Control Assessment of the Lower Extremity (SCALE), are widely used, they are often limited by the resource-intensive nature of hospital-based evaluations. We employed cyclogram-based analysis, utilizing simple hip and knee joint kinematics to assess clinical measures, including GMFM-66, normalized gait speed, the gait deviation index (GDI), and the gait profile score (GPS). Principal component analysis was used to quantify the cyclogram shape characteristics. A total of 144 children with ambulatory spastic CP were included in the study. All the cyclogram parameters were significantly correlated with GMFM-66, gait speed, the GDI, and the sagittal plane subscore of the GPS for the hip and knee, with the swing phase area showing the strongest correlation. Regression models based on the swing phase area were used to estimate the GMFM-66 (R2 = 0.301) and gait speed (R2 = 0.484). The PC1/PC2 ratio showed a moderate correlation with selective motor control, as measured by the SCALE (R2 = 0.320). These findings highlight the potential of hip–knee cyclogram parameters to be used as accessible digital biomarkers for evaluating motor control and gait function in children with bilateral spastic CP. Further prospective studies using wearable sensors, such as inertial measurement units, are warranted to validate and build upon these results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 1842 KiB  
Review
Exercise and Nutrition for Sarcopenia: A Systematic Review and Meta-Analysis with Subgroup Analysis by Population Characteristics
by Yong Yang, Neng Pan, Jiedan Luo, Yufei Liu and Zbigniew Ossowski
Nutrients 2025, 17(14), 2342; https://doi.org/10.3390/nu17142342 - 17 Jul 2025
Viewed by 835
Abstract
Background: Sarcopenia significantly affects the health and quality of life in older adults. Exercise combined with nutritional interventions is widely recognized as an effective strategy for improving sarcopenia outcomes. However, current studies rarely focus on differential effects across subpopulations with distinct demographic and [...] Read more.
Background: Sarcopenia significantly affects the health and quality of life in older adults. Exercise combined with nutritional interventions is widely recognized as an effective strategy for improving sarcopenia outcomes. However, current studies rarely focus on differential effects across subpopulations with distinct demographic and health characteristics. This study aimed to explore the effects of combined exercise and nutrition interventions on sarcopenia-related outcomes, considering the variations in population characteristics. Methods: A systematic search was conducted across PubMed, Embase, the Web of Science, and Cochrane Library, covering the literature published between January 2010 and March 2025. Only randomized controlled trials (RCTs) evaluating combined exercise and nutritional interventions for sarcopenia were included. The primary outcomes were handgrip strength (HS), the skeletal muscle mass index (SMI), gait speed (GS), and the five-times sit-to-stand test (5STS). The mean differences (MD) with 95% confidence intervals (CIs) were calculated. Random-effects models were used for the meta-analysis and subgroup comparisons. Results: Fifteen RCTs involving 1258 participants in the intervention group and 1233 in the control group were included. Exercise combined with nutritional interventions significantly improved sarcopenia-related outcomes. HS improved with a pooled MD of 1.77 kg (95% CI: 0.51 to 3.03, p = 0.006); SMI increased by 0.22 kg/m2 (95% CI: 0.09 to 0.35, p = 0.0007); GS improved by 0.09 m/s (95% CI: 0.04 to 0.14, p = 0.0002); and 5STS performance improved with a time reduction of −1.38 s (95% CI: −2.47 to −0.28, p = 0.01). Subgroup analyses indicated that the intervention effects varied according to age, BMI, and living environment. Conclusions: Exercise combined with nutrition is effective in improving key outcomes associated with sarcopenia in older adults. The magnitude of these effects differed across population subgroups, underscoring the importance of tailoring interventions to specific demographic and health profiles. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

22 pages, 6051 KiB  
Article
CPG-Based Control of an Octopod Biomimetic Machine Lobster for Mining Applications: Design and Implementation in Challenging Underground Environments
by Jianwei Zhao, Haokun Zhang, Mingsong Bao, Boxiang Yin, Yiteng Zhang and Zhen Jiang
Sensors 2025, 25(14), 4331; https://doi.org/10.3390/s25144331 - 11 Jul 2025
Viewed by 310
Abstract
Central pattern generators (CPGs) have been extensively researched and validated as a well-established methodology for bionic control, particularly within the field of legged robotics. However, investigations concerning octopod robots remain relatively sparse. This study presents the design of an octopod robotic system inspired [...] Read more.
Central pattern generators (CPGs) have been extensively researched and validated as a well-established methodology for bionic control, particularly within the field of legged robotics. However, investigations concerning octopod robots remain relatively sparse. This study presents the design of an octopod robotic system inspired by the biological characteristics of lobsters. The machine lobster utilizes remote sensing technology to execute designated tasks in subterranean and mining environments, with its motion regulated by CPGs, accompanied by a comprehensive simulation analysis. The research commenced with the modeling of a biomimetic lobster robot, which features a three-degree-of-freedom leg structure and torso, interconnected by shape memory alloys (SMAs) that serve as muscle actuators. Mathematically, both forward and inverse kinematics were formulated for the robot’s legs, and a 24-degree-of-freedom (DOF) gait pattern was designed and validated through MATLAB 2020a simulations. Subsequently, a multi-layer mesh CPG neural network model was developed utilizing the Kuramoto model, which incorporated frustration effects as the rhythm generator. The control model was constructed and evaluated in Simulink, while dynamic simulations were conducted using Adams 2022 software. The findings demonstrate the feasibility, robustness, and efficiency of the proposed CPG network in facilitating the forward locomotion of the lobster robot, thereby broadening the range of control methodologies applicable to octopod biomimetic robots. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

12 pages, 851 KiB  
Systematic Review
Plantar Pressure Distribution in Charcot–Marie–Tooth Disease: A Systematic Review
by Alberto Arceri, Antonio Mazzotti, Federico Sgubbi, Simone Ottavio Zielli, Laura Langone, GianMarco Di Paola, Lorenzo Brognara and Cesare Faldini
Sensors 2025, 25(14), 4312; https://doi.org/10.3390/s25144312 - 10 Jul 2025
Viewed by 390
Abstract
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A [...] Read more.
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A comprehensive search was conducted across PubMed, Scopus, and Web of Science databases. Risk of bias was assessed using the Newcastle–Ottawa Scale. Results: Six studies comprising 146 patients were included. Four studies employed dynamic baropodometry, and two used in-shoe pressure sensors to evaluate the main plantar pressure parameters. The findings were consistent across different populations and devices, with a characteristic plantar-pressure profile of marked midfoot off-loading with peripheral overload at the forefoot and rearfoot, often accompanied by a lateralized center-of-pressure path and a prolonged pressure–time exposure. These alterations reflect both structural deformities and impaired neuromuscular control. Interventional studies demonstrated a load redistribution of pressure after corrective surgery, though residual lateral overload often persists. Conclusions: Plantar pressure mapping seems to be a valuable tool to identify high-pressure zones of the foot in order to personalize orthotic treatment planning, to objectively monitor disease progression, and to evaluate therapeutic efficacy. Further longitudinal studies with standardized protocols are needed to confirm these results. Full article
Show Figures

Figure 1

12 pages, 1366 KiB  
Article
Influence of Main Thoracic and Thoracic Kyphosis Morphology on Gait Characteristics in Adolescents with Idiopathic Scoliosis: Gait Analysis Using an Inertial Measurement Unit
by Kento Takahashi, Yuta Tsubouchi, Tetsutaro Abe, Yuhi Takeo, Marino Iwakiri, Takashi Kataoka, Kohei Inoue, Noriaki Sako, Masashi Kataoka, Masashi Miyazaki and Nobuhiro Kaku
Sensors 2025, 25(14), 4265; https://doi.org/10.3390/s25144265 - 9 Jul 2025
Viewed by 347
Abstract
This study examined the relationship between spinal morphological changes and gait characteristics in patients with adolescent idiopathic scoliosis (AIS) using inertial measurement unit (IMU) analysis. Twenty-three female patients with AIS scheduled for corrective surgery underwent a preoperative gait analysis using an IMU positioned [...] Read more.
This study examined the relationship between spinal morphological changes and gait characteristics in patients with adolescent idiopathic scoliosis (AIS) using inertial measurement unit (IMU) analysis. Twenty-three female patients with AIS scheduled for corrective surgery underwent a preoperative gait analysis using an IMU positioned at the third lumbar vertebra. Gait stability indicators were calculated, including root mean square (RMS) values for mediolateral (RMSx), anteroposterior, and vertical components. Peak mediolateral components in four coronal plane quadrants were also analyzed. Relationships with the main thoracic (MT) curve, the thoracolumbar (TL) curve, and thoracic kyphosis (TK) were assessed using Spearman’s rank correlation. The MT curve is positively correlated with RMSx, whereas TK exhibited a negative correlation. Gait symmetry analysis revealed a positive correlation between the MT curve and peak mediolateral trunk acceleration in the second (left upper) quadrant, and negative correlations for TK in the first (right upper) and fourth (right lower) quadrants. Patients with AIS who have right-convex MT curves demonstrated leftward center-of-gravity shifts, although reduced TK limited this compensatory mechanism. These findings may inform the development of rehabilitation strategies for AIS. Full article
(This article belongs to the Collection Sensors in Biomechanics)
Show Figures

Graphical abstract

20 pages, 600 KiB  
Review
Neurological Disorders and Clinical Progression in Boxers from the 20th Century: A Narrative Review
by Rudolph J. Castellani, Nicolas Kostelecky, Jared T. Ahrendsen, Malik Nassan, Pouya Jamshidi and Grant L. Iverson
Brain Sci. 2025, 15(7), 729; https://doi.org/10.3390/brainsci15070729 - 8 Jul 2025
Viewed by 428
Abstract
Introduction: There are no validated clinical diagnostic criteria for chronic traumatic encephalopathy or traumatic encephalopathy syndrome (TES). To understand the historical clinical condition, its applicability to modern day athletes, and the pathogenesis of clinical problems, we examined the literature describing boxers from [...] Read more.
Introduction: There are no validated clinical diagnostic criteria for chronic traumatic encephalopathy or traumatic encephalopathy syndrome (TES). To understand the historical clinical condition, its applicability to modern day athletes, and the pathogenesis of clinical problems, we examined the literature describing boxers from the 20th century, with specific attention paid to neurological findings and characteristics of clinical disease progression. Methods: Data were extracted for 243 boxers included in 45 articles published between 1928 and 1999, including cases from articles originally published in German. The presence or absence of 22 neurological signs and features were extracted. Results: The most common neurological problems were slurring dysarthria (49%), gait disturbances (44%), and memory loss (36%), with several other problems that were less frequent, including hyperreflexia (25%), ataxia (22%), increased tone (19%), and extensor Babinski sign (16%). Frank dementia appeared in some cases (17%). There were significantly fewer neurological deficits reported in boxers who fought in the latter part of the 20th century compared to boxers who fought earlier in the century. For more than half of the cases, there were no comments about whether the neurological problems were progressive (145, 60%). A progressive condition was described in 71 cases (29%) and a stationary or improving condition was described in 27 cases (11%). Canonical neurodegenerative disease-like progression was described in 15 cases (6%). Discussion: Neurological problems associated with boxing-related neurotrauma during the 20th century are the foundation for present-day TES. However, the clinical signs and features in the 20th century differ in most ways from the modern criteria for TES. Full article
Show Figures

Figure 1

15 pages, 1081 KiB  
Systematic Review
Effectiveness of Robot-Assisted Gait Training in Stroke Rehabilitation: A Systematic Review and Meta-Analysis
by Jun Hyeok Lee and Gaeun Kim
J. Clin. Med. 2025, 14(13), 4809; https://doi.org/10.3390/jcm14134809 - 7 Jul 2025
Viewed by 685
Abstract
Background/Objectives: Robotic-assisted gait training (RAGT) is a promising adjunct to conventional rehabilitation for stroke survivors. However, its additive benefit over standard therapy remains to be fully clarified. This systematic review and meta-analysis evaluated the effectiveness of combining RAGT with conventional rehabilitation in improving [...] Read more.
Background/Objectives: Robotic-assisted gait training (RAGT) is a promising adjunct to conventional rehabilitation for stroke survivors. However, its additive benefit over standard therapy remains to be fully clarified. This systematic review and meta-analysis evaluated the effectiveness of combining RAGT with conventional rehabilitation in improving gait-related outcomes among individuals with stroke. Methods: We searched PubMed, Embase, CINAHL, and Cochrane CENTRAL through September 2024 for randomized controlled trials (RCTs) comparing combined RAGT and conventional rehabilitation versus conventional rehabilitation alone in adults post-stroke. Data were synthesized using a random-effects model, and subgroup analyses examined effects by intervention duration, stroke chronicity, and robotic system type. Results: Twenty-three RCTs (n = 907) were included. The combined intervention significantly improved gait function (SMD = 0.51, p = 0.001), gait speed (SMD = 0.47, p = 0.010), balance (MD = 4.58, p < 0.001), and ADL performance (SMD = 0.35, p = 0.001). Subgroup analyses revealed that end-effector robotic systems yielded superior outcomes compared to exoskeletons, particularly in subacute stroke patients. The most pronounced benefits were seen in gait velocity and dynamic balance, especially with ≤15 training sessions. Conclusions: Integrating RAGT with conventional rehabilitation enhances motor recovery and functional performance in stroke survivors. End-effector devices appear most effective in subacute phases, supporting individualized RAGT application based on patient and device characteristics. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

24 pages, 2447 KiB  
Article
Pilot Study: Effects of High-Intensity Training on Gait Symmetry and Locomotor Performance in Neurodivergent Children
by Noah D. Chernik, Melody W. Young, Reuben N. Jacobson, Stratos J. Kantounis, Samantha K. Lynch, James Q. Virga, Matthew J. Cannata, Hannah M. English, Pranav Krish, Anand Kanumuru, Alexander Lopez and Michael C. Granatosky
Symmetry 2025, 17(7), 1073; https://doi.org/10.3390/sym17071073 - 6 Jul 2025
Viewed by 300
Abstract
Neuromuscular gait deficits in children with autism spectrum disorder (ASD) are often overlooked. High-intensity training protocols may improve running performance, but their efficacy in pediatric populations is underexplored. This study evaluates the impact of a high-intensity running protocol on locomotor performance in neurotypical [...] Read more.
Neuromuscular gait deficits in children with autism spectrum disorder (ASD) are often overlooked. High-intensity training protocols may improve running performance, but their efficacy in pediatric populations is underexplored. This study evaluates the impact of a high-intensity running protocol on locomotor performance in neurotypical and neurodivergent children (children with ASD). Spatiotemporal gait characteristics (speed, stride frequency, stride length, and duty factor), gait symmetry (symmetry ratio), and kinematics were assessed for ten neurodivergent children (10–15 years old) during a 15 m sprint. Locomotor costs (cost of locomotion, transport, and locomotion per stride) were analyzed in six neurodivergent participants (11–14 years old) via open-flow respirometry during treadmill running. Participants completed a 5–12 week, twice-weekly program; neurotypical participants served as a control group. Neurodivergent and neurotypical children exhibited baseline differences in spatiotemporal variables. Following training, neurodivergent participants demonstrated statistically significant improvements in spatiotemporal metrics and locomotor costs. Differences in symmetry between the two groups were not present pre- or post-program. These findings highlight the efficacy of high-intensity running programs in improving sensorimotor function and coordination in children with ASD. This program provides valuable insights into gross motor rehabilitation for neurodivergent children, supporting its potential as an effective intervention. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Biomechanics and Gait Mechanics)
Show Figures

Figure 1

14 pages, 784 KiB  
Article
Resting-State EEG Alpha Asymmetry as a Potential Marker of Clinical Features in Parkinson’s Disease
by Thalita Frigo da Rocha, Valton Costa, Lucas Camargo, Elayne Borges Fernandes and Anna Carolyna Gianlorenço
J. Pers. Med. 2025, 15(7), 291; https://doi.org/10.3390/jpm15070291 - 4 Jul 2025
Viewed by 500
Abstract
Background: Asymmetrical brain oscillations may be characteristic of Parkinson’s disease (PD). We investigated differences in oscillation asymmetry between individuals with PD and healthy controls and explored associations between the asymmetry and clinical features. Methods: Clinical and resting-state EEG data from 37 [...] Read more.
Background: Asymmetrical brain oscillations may be characteristic of Parkinson’s disease (PD). We investigated differences in oscillation asymmetry between individuals with PD and healthy controls and explored associations between the asymmetry and clinical features. Methods: Clinical and resting-state EEG data from 37 patients and 24 controls were cross-sectionally analyzed. EEG asymmetry indices were calculated for the delta, theta, alpha, and beta frequencies in the frontal, central, and parietal regions. Independent t-tests and linear regression models were employed. Results: Patients exhibited lower alpha asymmetry than controls in the parietal region (t(59) = 2.12, p = 0.03). In the frontal alpha asymmetry models, there were associations with time since diagnosis (β = −0.042) and attention/orientation (β = 0.061), and with Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRSIII)-posture (β = 0.136) and MDS-UPDRSIII-rest-tremor persistence (β = −0.111). In the central alpha model, higher asymmetry was associated with the physical activity levels (International Physical Activity Questionnaire) IPAQ-active (β = 0.646) and IPAQ-very active (β = 0.689), (Timed Up and Go) TUG dual-task cost (β = 0.023), MDS-UPDRSII-freezing (β = 0.238), and being male (β = 0.535). In the parietal alpha asymmetry model, MDS-UPDRSII-gait/balance was inversely associated with alpha asymmetry (β = −0.156), while IPAQ-active (β = −0.247) and being male (β = −0.191) were associated with lower asymmetry. Conclusions: Our findings highlight the potential role of alpha asymmetry as a neurophysiological marker of PD’s motor symptoms, mainly rest tremor, gait/balance, freezing, and specific cognitive domains such as attention/orientation. The models stressed the relationship between disease progression and reduced alpha asymmetry. Brazilian Registry of Clinical Trials (RBR-7zjgnrx, 9 June 2022). Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

13 pages, 814 KiB  
Review
Biofeedback for Motor and Cognitive Rehabilitation in Parkinson’s Disease: A Comprehensive Review of Non-Invasive Interventions
by Pierluigi Diotaiuti, Giulio Marotta, Salvatore Vitiello, Francesco Di Siena, Marco Palombo, Elisa Langiano, Maria Ferrara and Stefania Mancone
Brain Sci. 2025, 15(7), 720; https://doi.org/10.3390/brainsci15070720 - 4 Jul 2025
Viewed by 768
Abstract
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, [...] Read more.
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, heart rate variability (HRV) biofeedback, and electroencephalographic (EEG) neurofeedback in PD rehabilitation, analyzing their impacts on motor control, autonomic function, and cognitive performance. (3) Methods: This review critically examined 15 studies investigating the efficacy of electromyographic (EMG), heart rate variability (HRV), and electroencephalographic (EEG) feedback interventions in PD. Studies were selected through a systematic search of peer-reviewed literature and analyzed in terms of design, sample characteristics, feedback modality, outcomes, and clinical feasibility. (4) Results: EMG biofeedback demonstrated improvements in muscle activation, gait, postural stability, and dysphagia management. HRV biofeedback showed positive effects on autonomic regulation, emotional control, and cardiovascular stability. EEG neurofeedback targeted abnormal cortical oscillations, such as beta-band overactivity and reduced frontal theta, and was associated with improvements in motor initiation, executive functioning, and cognitive flexibility. However, the reviewed studies were heterogeneous in design and outcome measures, limiting generalizability. Subgroup trends suggested modality-specific benefits across motor, autonomic, and cognitive domains. (5) Conclusions: While EMG and HRV systems are more accessible for clinical or home-based use, EEG neurofeedback remains technically demanding. Standardization of protocols and further randomized controlled trials are needed. Future directions include AI-driven personalization, wearable technologies, and multimodal integration to enhance accessibility and long-term adherence. Biofeedback presents a promising adjunct to conventional PD therapies, supporting personalized, patient-centered rehabilitation models. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop