Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,077)

Search Parameters:
Keywords = gait activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2976 KiB  
Article
Biomechanical Modeling and Simulation of the Knee Joint: Integration of AnyBody and Abaqus
by Catarina Rocha, João Lobo, Marco Parente and Dulce Oliveira
Biomechanics 2025, 5(3), 57; https://doi.org/10.3390/biomechanics5030057 (registering DOI) - 2 Aug 2025
Viewed by 87
Abstract
Background: The knee joint performs a vital function in human movement, supporting significant loads and ensuring stability during daily activities. Methods: The objective of this study was to develop and validate a subject-specific framework to model knee flexion–extension by integrating 3D gait data [...] Read more.
Background: The knee joint performs a vital function in human movement, supporting significant loads and ensuring stability during daily activities. Methods: The objective of this study was to develop and validate a subject-specific framework to model knee flexion–extension by integrating 3D gait data with individualized musculoskeletal (MS) and finite element (FE) models. In this proof of concept, gait data were collected from a 52-year-old woman using Xsens inertial sensors. The MS model was based on the same subject to define realistic loading, while the 3D knee FE model, built from another individual’s MRI, included all major anatomical structures, as subject-specific morphing was not possible due to unavailable scans. Results: The FE simulation showed principal stresses from –28.67 to +44.95 MPa, with compressive stresses between 2 and 8 MPa predominating in the tibial plateaus, consistent with normal gait. In the ACL, peak stress of 1.45 MPa occurred near the femoral insertion, decreasing non-uniformly with a compressive dip around –3.0 MPa. Displacement reached 0.99 mm in the distal tibia and decreased proximally. ACL displacement ranged from 0.45 to 0.80 mm, following a non-linear pattern likely due to ligament geometry and local constraints. Conclusions: These results support the model’s ability to replicate realistic, patient-specific joint mechanics. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

20 pages, 562 KiB  
Article
Effectiveness of a Post-Acute-Care Rehabilitation Program in Patients with Stroke: A Retrospective Cohort Study
by Yi-Pang Lo, Mei-Chen Wang, Yao-Hsiang Chen, Shang-Lin Chiang and Chia-Huei Lin
Life 2025, 15(8), 1216; https://doi.org/10.3390/life15081216 - 1 Aug 2025
Viewed by 290
Abstract
Early rehabilitation is essential for restoring functional recovery in patients with stroke, particularly during the early phase of post-acute care (PAC), or the subacute stage. We aimed to evaluate the effectiveness of a 7-week PAC rehabilitation program in improving muscle strength, physical performance, [...] Read more.
Early rehabilitation is essential for restoring functional recovery in patients with stroke, particularly during the early phase of post-acute care (PAC), or the subacute stage. We aimed to evaluate the effectiveness of a 7-week PAC rehabilitation program in improving muscle strength, physical performance, and functional recovery. A total of 219 inpatients with stroke in the subacute stage were initially recruited from the PAC ward of a regional teaching hospital in Northern Taiwan, with 79 eligible patients—within 1 month of an acute stroke—included in the analysis. The program was delivered 5 days per week, with 3–4 sessions daily (20–30 min each, up to 120 min daily), comprising physical, occupational, and speech–language therapies. Sociodemographic data, muscle strength, physical performance (Berg Balance Scale [BBS], gait speed, and 6-minute walk test [6MWT]), and functional recovery (modified Rankin Scale [mRS], Barthel Index [BI], Instrumental Activities of Daily Living [IADL], and Fugl–Meyer assessment: sensory and upper extremity) were collected at baseline, 3 weeks, and 7 weeks. Generalized estimating equations analyzed program effectiveness. Among the 56 patients (70.9%) who completed the program, significant improvements were observed in the muscle strength of both the affected upper (B = 0.93, p < 0.001) and lower limbs (B = 0.88, p < 0.001), as well as in their corresponding unaffected limbs; in physical performance, including balance (BBS score: B = 9.70, p = 0.003) and gait speed (B = 0.23, p = 0.024); and in functional recovery, including BI (B = 19.5, p < 0.001), IADL (B = 1.48, p < 0.001), and mRS (B = −0.13, p = 0.028). These findings highlight the 7-week PAC rehabilitation program as an effective strategy during the critical recovery phase for patients with stroke. Full article
(This article belongs to the Special Issue Advances in the Rehabilitation of Stroke)
Show Figures

Figure 1

11 pages, 420 KiB  
Article
Differences in Lower Limb Muscle Activity and Gait According to Walking Speed Variation in Chronic Stroke
by Yong Gyun Shin and Ki Hun Cho
Appl. Sci. 2025, 15(15), 8479; https://doi.org/10.3390/app15158479 - 30 Jul 2025
Viewed by 133
Abstract
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different [...] Read more.
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different speeds: slow (80% of self-selected speed), self-selected, and maximal speed. Surface electromyography was used to measure muscle activity in five paretic-side muscles (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius, and gluteus medius), while gait parameters, including stride length, stance and swing phases, single-limb support time, and the gait asymmetry index were assessed using a triaxial accelerometer. As walking speed increased, activity in the rectus femoris, biceps femoris, and gastrocnemius muscles significantly increased during the stance and swing phases (p < 0.05), whereas the gluteus medius activity tended to decrease. Stride length on the paretic and non-paretic sides significantly increased with faster walking speed (p < 0.05); however, no significant improvements were observed in other gait parameters or gait asymmetry. These findings suggest that although increasing walking speed enhances specific muscle activities, it does not necessarily improve overall gait quality or symmetry. Therefore, rehabilitation programs should incorporate multidimensional gait training that addresses speed and neuromuscular control factors such as balance and proprioception. Full article
Show Figures

Figure 1

24 pages, 2070 KiB  
Article
Reinforcement Learning-Based Finite-Time Sliding-Mode Control in a Human-in-the-Loop Framework for Pediatric Gait Exoskeleton
by Matthew Wong Sang and Jyotindra Narayan
Machines 2025, 13(8), 668; https://doi.org/10.3390/machines13080668 - 30 Jul 2025
Viewed by 202
Abstract
Rehabilitation devices such as actuated lower-limb exoskeletons can provide essential mobility assistance for pediatric patients with gait impairments. Enhancing their control systems under conditions of user variability and dynamic disturbances remains a significant challenge, particularly in active-assist modes. This study presents a human-in-the-loop [...] Read more.
Rehabilitation devices such as actuated lower-limb exoskeletons can provide essential mobility assistance for pediatric patients with gait impairments. Enhancing their control systems under conditions of user variability and dynamic disturbances remains a significant challenge, particularly in active-assist modes. This study presents a human-in-the-loop control architecture for a pediatric lower-limb exoskeleton, combining outer-loop admittance control with robust inner-loop trajectory tracking via a non-singular terminal sliding-mode (NSTSM) controller. Designed for active-assist gait rehabilitation in children aged 8–12 years, the exoskeleton dynamically responds to user interaction forces while ensuring finite-time convergence under system uncertainties. To enhance adaptability, we augment the inner-loop control with a twin delayed deep deterministic policy gradient (TD3) reinforcement learning framework. The actor–critic RL agent tunes NSTSM gains in real-time, enabling personalized model-free adaptation to subject-specific gait dynamics and external disturbances. The numerical simulations show improved trajectory tracking, with RMSE reductions of 27.82% (hip) and 5.43% (knee), and IAE improvements of 40.85% and 10.20%, respectively, over the baseline NSTSM controller. The proposed approach also reduced the peak interaction torques across all the joints, suggesting more compliant and comfortable assistance for users. While minor degradation is observed at the ankle joint, the TD3-NSTSM controller demonstrates improved responsiveness and stability, particularly in high-load joints. This research contributes to advancing pediatric gait rehabilitation using RL-enhanced control, offering improved mobility support and adaptive rehabilitation outcomes. Full article
Show Figures

Figure 1

12 pages, 1492 KiB  
Article
User Experiences of the Cue2walk Smart Cueing Device for Freezing of Gait in People with Parkinson’s Disease
by Matthijs van der Laan, Marc B. Rietberg, Martijn van der Ent, Floor Waardenburg, Vincent de Groot, Jorik Nonnekes and Erwin E. H. van Wegen
Sensors 2025, 25(15), 4702; https://doi.org/10.3390/s25154702 - 30 Jul 2025
Viewed by 303
Abstract
Freezing of gait (FoG) impairs mobility and daily functioning and increases the risk of falls, leading to a reduced quality of life (QoL) in people with Parkinson’s disease (PD). The Cue2walk, a wearable smart cueing device, can detect FoG and hereupon provides rhythmic [...] Read more.
Freezing of gait (FoG) impairs mobility and daily functioning and increases the risk of falls, leading to a reduced quality of life (QoL) in people with Parkinson’s disease (PD). The Cue2walk, a wearable smart cueing device, can detect FoG and hereupon provides rhythmic cues to help people with PD manage FoG in daily life. This study investigated the user experiences and device usage of the Cue2walk, and its impact on health-related QoL, FoG and daily activities. Twenty-five users of the Cue2walk were invited to fill out an online survey, which included a modified version of the EQ-5D-5L, tailored to the use of the Cue2walk, and its scale for health-related QoL, three FoG-related questions, and a question about customer satisfaction. Sixteen users of the Cue2walk completed the survey. Average device usage per day was 9 h (SD 4). Health-related QoL significantly increased from 5.2/10 (SD 1.3) to 6.2/10 (SD 1.3) (p = 0.005), with a large effect size (Cohen’s d = 0.83). A total of 13/16 respondents reported a positive effect on FoG duration, 12/16 on falls, and 10/16 on daily activities and self-confidence. Customer satisfaction was 7.8/10 (SD 1.7). This pilot study showed that Cue2walk usage per day is high and that 15/16 respondents experienced a variety of positive effects since using the device. To validate these findings, future studies should include a larger sample size and a more extensive set of questionnaires and physical measurements monitored over time. Full article
Show Figures

Figure 1

23 pages, 1711 KiB  
Case Report
Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report
by Stefano La Greca, Stefano Marinelli, Rocco Totaro, Francesca Pistoia and Riccardo Di Giminiani
Appl. Sci. 2025, 15(15), 8351; https://doi.org/10.3390/app15158351 - 27 Jul 2025
Viewed by 361
Abstract
The present study aims to investigate the multi-year effects (5 years) of individualized whole-body vibration (WBV) on locomotion, postural control, and handgrip strength in a 68-year-old man with relapse remitting multiple sclerosis (PwRRMS). The dose–response relationship induced by a single session was quantified [...] Read more.
The present study aims to investigate the multi-year effects (5 years) of individualized whole-body vibration (WBV) on locomotion, postural control, and handgrip strength in a 68-year-old man with relapse remitting multiple sclerosis (PwRRMS). The dose–response relationship induced by a single session was quantified by determining the surface electromyographic activity (sEMG) of the participant. The participant wore an orthosis to limit the lack of foot dorsiflexion in the weakest limb during walking in daily life. The gait alteration during walking was assessed at 1, 2 and 3 km/h (without the orthosis) through angle–angle diagrams by quantifying the area, perimeter and shape of the loops, and the sEMG of leg muscles was recorded in both limbs. The evaluation of postural control was conducted during upright standing by quantifying the displacement of the center of pressure (CoP). The handgrip strength was assessed by measuring the force–time profile synchronized with the sEMG activity of upper arm muscles. The participant improved his ability to walk at higher speeds (2–3 km/h) without the orthosis. There were greater improvements in the area and perimeter of angle–angle diagrams for the weakest limb (Δ = 36–51%). The sEMG activity of the shank muscles increased at all speeds, particularly in the tibialis anterior of weakest limbs (Δ = 10–68%). The CoP displacement during upright standing decreased (Δ = 40–60%), whereas the handgrip strength increased (Δ = 32% average). Over the 5-year period of intervention, the individualized WBV improved locomotion, postural control and handgrip strength without side effects. Future studies should consider the possibility of implementing an individualized WBV in PwRRMS. Full article
(This article belongs to the Special Issue Recent Advances in Exercise-Based Rehabilitation)
Show Figures

Figure 1

16 pages, 2166 KiB  
Case Report
Tailored Rehabilitation Program and Dynamic Ultrasonography After Surgical Repair of Bilateral Simultaneous Quadriceps Tendon Rupture in a Patient Affected by Gout: A Case Report
by Emanuela Elena Mihai, Matei Teodorescu, Sergiu Iordache, Catalin Cirstoiu and Mihai Berteanu
Healthcare 2025, 13(15), 1830; https://doi.org/10.3390/healthcare13151830 - 26 Jul 2025
Viewed by 419
Abstract
Spontaneous quadriceps tendon rupture is a very rare occurrence, notably for bilateral simultaneous ruptures. Its occurrence is commonly linked to an underlying condition that may weaken the tendons leading to rupture. We report the case of a 68-year-old Caucasian male afflicted with long-term [...] Read more.
Spontaneous quadriceps tendon rupture is a very rare occurrence, notably for bilateral simultaneous ruptures. Its occurrence is commonly linked to an underlying condition that may weaken the tendons leading to rupture. We report the case of a 68-year-old Caucasian male afflicted with long-term gout who presented a bilateral simultaneous quadriceps tendon rupture (BSQTR). We showcase the clinical presentation, the surgical intervention, rehabilitation program, dynamic sonographic monitoring, and home-based rehabilitation techniques of this injury, which aimed to improve activities of daily living (ADL) and quality of life (QoL). The patient was included in a 9-week post-surgical rehabilitation program and a home-based rehabilitation program with subsequent pain management and gait reacquisition. The outcome measures included right and left knee active range of motion (AROM), pain intensity measured on Visual Analogue Scale (VAS), functioning measured through ADL score, and gait assessment on Functional Ambulation Categories (FAC). All endpoints were measured at different time points, scoring significant improvement at discharge compared to baseline (e.g., AROM increased from 0 degrees to 95 degrees, while VAS decreased from 7 to 1, ADL score increased from 6 to 10, and FAC increased from 1 to 5). Moreover, some of these outcomes continued to improve after discharge, and the effects of home-based rehabilitation program and a single hip joint manipulation were assessed at 6-month follow-up. Musculoskeletal ultrasound findings showed mature tendon structure, consistent dynamic glide, and no scarring. Full article
(This article belongs to the Special Issue Joint Manipulation for Rehabilitation of Musculoskeletal Disorders)
Show Figures

Figure 1

15 pages, 1395 KiB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 349
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

13 pages, 442 KiB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Viewed by 298
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

18 pages, 1696 KiB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Viewed by 228
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

11 pages, 266 KiB  
Article
Impact of the COVID-19 Pandemic on Functionality and Fall Risk in Institutionalized Geriatric Patients: A Longitudinal Observational Study
by Javier Torralba Estelles, Jorge Velert Belenguer, Elena Martinez Mendoza and Javier Ferrer Torregrosa
Life 2025, 15(7), 1130; https://doi.org/10.3390/life15071130 - 18 Jul 2025
Viewed by 277
Abstract
Background: The global impact of the COVID-19 pandemic has significantly influenced elderly functionality, particularly in terms of balance, gait, and independence in daily activities. This study sought to evaluate how these aspects have changed over the course of the health crisis. Methods: We [...] Read more.
Background: The global impact of the COVID-19 pandemic has significantly influenced elderly functionality, particularly in terms of balance, gait, and independence in daily activities. This study sought to evaluate how these aspects have changed over the course of the health crisis. Methods: We employed the Tinetti scale for assessing balance and gait, and the Barthel Index for measuring functional independence, conducting a comparative analysis of scores before and after the onset of the pandemic in a sample of elderly individuals. Results: Our findings indicated an increase in Tinetti scores, suggesting some improvement in balance and mobility, albeit with marked variability across participants. On the other hand, Barthel scores showed a significant decline, pointing to a reduction in functional independence. Conclusions: These results suggest that the impact of COVID-19 on elderly functionality is not uniform, highlighting the need for personalized rehabilitation strategies. Such strategies should not only focus on physical recovery but also consider the psychological and social repercussions of the pandemic to fully address the diverse needs of this vulnerable population. Full article
Show Figures

Figure 1

27 pages, 7203 KiB  
Article
The Combined Role of Coronal and Toe Joint Compliance in Transtibial Prosthetic Gait: A Study in Non-Amputated Individuals
by Sergio Galindo-Leon, Hideki Kadone, Modar Hassan and Kenji Suzuki
Prosthesis 2025, 7(4), 82; https://doi.org/10.3390/prosthesis7040082 - 14 Jul 2025
Viewed by 348
Abstract
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, [...] Read more.
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, which play critical roles in gait stability and efficiency. This study aims to evaluate the combined effects of compliance in the coronal plane and a flexible toe joint on prosthetic gait using non-amputated participants as a model. Methods: We conducted gait trials on ten non-amputated individuals in the presence and absence of compliance in the coronal plane and toe compliance, using a previously developed three-degree-of-freedom (DOF) prosthetic foot with a prosthetic simulator. We recorded and analyzed sagittal and coronal kinematic data, ground reaction forces, and electromyographic signals from muscles involved in the control of gait. Results: The addition of compliance in the coronal plane and toe compliance had significant kinematic and muscular effects. Notably, this compliance combination reduced peak pelvis obliquity by 27%, preserved the swing stance/ratio, and decreased gluteus medius’ activation by 34% on the non-prosthetic side, compared to the laterally rigid version of the prosthesis without toe compliance. Conclusions: The results underscore the importance of integrating compliance in the coronal plane and toe compliance in prosthetic feet designs as they show potential in improving gait metrics related to mediolateral movements and balance, while also decreasing muscle activation. Still, these findings remain to be validated in people with transtibial amputations. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

19 pages, 612 KiB  
Article
Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis
by Katharine Goldthorp, Benn Henderson, Pratheepan Yogarajah, Bryan Gardiner, Thomas Martin McGinnity, Brad Nicholas and Dawn C. Wimpory
Biology 2025, 14(7), 832; https://doi.org/10.3390/biology14070832 - 8 Jul 2025
Viewed by 495
Abstract
Motor deficits, including atypical gait, are common in individuals with autism spectrum disorder (ASD), although the precise nature and cause of this co-occurrence is unclear. Because walking is a natural activity and gait timing is a metric that is relatively accessible to measurement, [...] Read more.
Motor deficits, including atypical gait, are common in individuals with autism spectrum disorder (ASD), although the precise nature and cause of this co-occurrence is unclear. Because walking is a natural activity and gait timing is a metric that is relatively accessible to measurement, we explored whether autistic gait could be described solely in terms of the timing of gait parameters. The aim was to establish whether temporal analysis, including machine learning models, could be used as a group classifier between ASD and typically developing (TD) individuals. Thus, we performed a high-resolution temporal analysis of gait on two age-matched groups of male participants: one group with high-functioning ASD and a comparison TD group (each N = 16, age range 7 to 35 years). The primary data were collected using a VICON® 3D motion analysis system. Significant increased temporal variability of all gait parameters tested was observed for the ASD group compared to the TD group (p < 0.001). Further machine learning analysis showed that the temporal variability of gait could be used as a group classifier for ASD. Of the twelve models tested, the best-fitting model type was random forest. The temporal analysis of gait with machine learning algorithms may be useful as a future ASD diagnostic aid. Full article
Show Figures

Figure 1

15 pages, 1081 KiB  
Systematic Review
Effectiveness of Robot-Assisted Gait Training in Stroke Rehabilitation: A Systematic Review and Meta-Analysis
by Jun Hyeok Lee and Gaeun Kim
J. Clin. Med. 2025, 14(13), 4809; https://doi.org/10.3390/jcm14134809 - 7 Jul 2025
Viewed by 678
Abstract
Background/Objectives: Robotic-assisted gait training (RAGT) is a promising adjunct to conventional rehabilitation for stroke survivors. However, its additive benefit over standard therapy remains to be fully clarified. This systematic review and meta-analysis evaluated the effectiveness of combining RAGT with conventional rehabilitation in improving [...] Read more.
Background/Objectives: Robotic-assisted gait training (RAGT) is a promising adjunct to conventional rehabilitation for stroke survivors. However, its additive benefit over standard therapy remains to be fully clarified. This systematic review and meta-analysis evaluated the effectiveness of combining RAGT with conventional rehabilitation in improving gait-related outcomes among individuals with stroke. Methods: We searched PubMed, Embase, CINAHL, and Cochrane CENTRAL through September 2024 for randomized controlled trials (RCTs) comparing combined RAGT and conventional rehabilitation versus conventional rehabilitation alone in adults post-stroke. Data were synthesized using a random-effects model, and subgroup analyses examined effects by intervention duration, stroke chronicity, and robotic system type. Results: Twenty-three RCTs (n = 907) were included. The combined intervention significantly improved gait function (SMD = 0.51, p = 0.001), gait speed (SMD = 0.47, p = 0.010), balance (MD = 4.58, p < 0.001), and ADL performance (SMD = 0.35, p = 0.001). Subgroup analyses revealed that end-effector robotic systems yielded superior outcomes compared to exoskeletons, particularly in subacute stroke patients. The most pronounced benefits were seen in gait velocity and dynamic balance, especially with ≤15 training sessions. Conclusions: Integrating RAGT with conventional rehabilitation enhances motor recovery and functional performance in stroke survivors. End-effector devices appear most effective in subacute phases, supporting individualized RAGT application based on patient and device characteristics. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

17 pages, 4138 KiB  
Article
From Control Algorithm to Human Trial: Biomechanical Proof of a Speed-Adaptive Ankle–Foot Orthosis for Foot Drop in Level-Ground Walking
by Pouyan Mehryar, Sina Firouzy, Uriel Martinez-Hernandez and Abbas Dehghani-Sanij
Biomechanics 2025, 5(3), 51; https://doi.org/10.3390/biomechanics5030051 - 4 Jul 2025
Viewed by 296
Abstract
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s [...] Read more.
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s walking speed, a geometric model was used, together with real-time measurement of the user’s gait cycle. A geometric speed-adaptive model also scales a trapezoidal ankle-velocity profile in real time using the detected gait cycle. The algorithm was tested at three different walking speeds, with a prototype of the AFO worn by a test subject. Results: At walking speeds of 0.44 and 0.61 m/s, reduced tibialis anterior (TA) muscle activity was confirmed by electromyography (EMG) signal measurement during the stance phase of assisted gait. When the AFO was in assistance mode after toe-off (initial and mid-swing phase), it provided an average of 48% of the estimated required power to make up for the deliberate inactivity of the TA muscle. Conclusions: Kinematic analysis of the motion capture data showed that sufficient foot clearance was achieved at all three speeds of the test. No adverse effects or discomfort were reported during the experiment. Future studies should examine the device in populations with footdrop and include a comprehensive evaluation of safety. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

Back to TopTop