A Reliability Study of Small, Portable, Easy-to-Use, and IMU-Based Sensors for Gait Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Eligibility Criteria
2.3. Sample Size Calculation
2.4. Study Participants
2.5. Research Procedures
2.6. Statistical Analysis
3. Results
3.1. Reliability Results for Walking Speed (km/h)
3.2. Reliability Results for Cadence (Steps/min)
3.3. Reliability Results for Stride Length (cm)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LeBrasseur, N.K. Gait as an Integrative Measure and Predictor of Health Across Species. J. Gerontol. Ser. A 2019, 74, 1411–1412. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Xu, M.; Zhang, Z.; He, L.; Li, Y. Sarcopenia Prevalence and Associated Factors among Older Chinese Population: Findings from the China Health and Retirement Longitudinal Study. PLoS ONE 2021, 16, e0247617. [Google Scholar] [CrossRef]
- Thangal, S.N.M.; Talaty, M.; Balasubramanian, S. Assessment of Gait Sensitivity Norm as a Predictor of Risk of Falling during Walking in a Neuromusculoskeletal Model. Med. Eng. Phys. 2013, 35, 1483–1489. [Google Scholar] [CrossRef]
- Takayanagi, N.; Sudo, M.; Yamashiro, Y.; Chiba, I.; Lee, S.; Niki, Y.; Shimada, H. Predictivity of Daily Gait Speed Using Tri-Axial Accelerometers for Two-Year Incident Disability Among Japanese Older Adults. Sci. Rep. 2022, 12, 10067. [Google Scholar] [CrossRef]
- Soltani, A.; Abolhassani, N.; Marques-Vidal, P.; Aminian, K.; Vollenweider, P.; Paraschiv-Ionescu, A. Real-World Gait Speed Estimation, Frailty and Handgrip Strength: A Cohort-Based Study. Sci. Rep. 2021, 11, 18966. [Google Scholar] [CrossRef]
- Byun, S.; Han, J.W.; Kim, T.H.; Kim, K.; Kim, T.H.; Park, J.Y.; Suh, S.W.; Seo, J.Y.; So, Y.; Lee, K.H.; et al. Gait Variability Can Predict the Risk of Cognitive Decline in Cognitively Normal Older People. Dement. Geriatr. Cogn. Disord. 2018, 45, 251–261. [Google Scholar] [CrossRef]
- Artaud, F.; Singh-Manoux, A.; Dugravot, A.; Tzourio, C.; Elbaz, A. Decline in Fast Gait Speed as a Predictor of Disability in Older Adults. J. Am. Geriatr. Soc. 2015, 63, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Molinero, A.; Herrero-Larrea, A.; Miñarro, A.; Narvaiza, L.; Gálvez-Barrón, C.; Gonzalo León, N.; Valldosera, E.; De Mingo, E.; Macho, O.; Aivar, D.; et al. The Spatial Parameters of Gait and Their Association with Falls, Functional Decline and Death in Older Adults: A Prospective Study. Sci. Rep. 2019, 9, 8813. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.; Frizera-Neto, A. (Eds.) Chapter 3-Gait Analysis: Overview, Trends, and challenges: This Chapter Is Carried out with the Participation of Laura Susana Vargas Valencia. In Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics; Academic Press: Cambridge, MA, USA, 2022; ISBN 978-0-323-85952-3. [Google Scholar]
- Scataglini, S.; Verwulgen, S.; Roosens, E.; Haelterman, R.; Van Tiggelen, D. Measuring Spatiotemporal Parameters on Treadmill Walking Using Wearable Inertial System. Sensors 2021, 21, 4441. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative Spatiotemporal Gait Parameters in Older Adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef]
- Botros, A.; Gyger, N.; Schütz, N.; Single, M.; Nef, T.; Gerber, S.M. Contactless Gait Assessment in Home-like Environments. Sensors 2021, 21, 6205. [Google Scholar] [CrossRef] [PubMed]
- Carse, B.; Meadows, B.; Bowers, R.; Rowe, P. Affordable Clinical Gait Analysis: An Assessment of the Marker Tracking Accuracy of a New Low-Cost Optical 3D Motion Analysis System. Physiotherapy 2013, 99, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, S. Measurement Method of Determining Natural and Unnatural Gaits Using Autocorrelation Coefficients. Multimed. Tools Appl. 2022, 81, 36333–36351. [Google Scholar] [CrossRef]
- Mundt, M.; Koeppe, A.; David, S.; Bamer, F.; Potthast, W.; Markert, B. Prediction of Ground Reaction Force and Joint Moments Based on Optical Motion Capture Data during Gait. Med. Eng. Phys. 2020, 86, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Azhand, A.; Rabe, S.; Müller, S.; Sattler, I.; Heimann-Steinert, A. Algorithm Based on One Monocular Video Delivers Highly Valid and Reliable Gait Parameters. Sci. Rep. 2021, 11, 14065. [Google Scholar] [CrossRef]
- Hii, C.S.T.; Gan, K.B.; Zainal, N.; Mohamed Ibrahim, N.; Azmin, S.; Mat Desa, S.H.; Van De Warrenburg, B.; You, H.W. Automated Gait Analysis Based on a Marker-Free Pose Estimation Model. Sensors 2023, 23, 6489. [Google Scholar] [CrossRef]
- Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Instrumenting Gait with an Accelerometer: A System and Algorithm Examination. Med. Eng. Phys. 2015, 37, 400–407. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; Von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified Self and Human Movement: A Review on the Clinical Impact of Wearable Sensing and Feedback for Gait Analysis and Intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef]
- Mason, R.; Pearson, L.T.; Barry, G.; Young, F.; Lennon, O.; Godfrey, A.; Stuart, S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med. 2023, 53, 241–268. [Google Scholar] [CrossRef]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The Use of Wearable Devices for Walking and Running Gait Analysis Outside of the Lab: A Systematic Review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and Reliability of Wearable Inertial Sensors in Healthy Adult Walking: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Laidig, D.; Jocham, A.J.; Guggenberger, B.; Adamer, K.; Fischer, M.; Seel, T. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors. Front. Digit. Health 2021, 3, 736418. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Królikowska, A.; Mika, A.; Reichert, P.; Kentel, M.; Kentel, M.; Poświata, A.; Roksela, A.; Kozak, D.; Bienias, K.; et al. A Reliability of Active and Passive Knee Joint Position Sense Assessment Using the Luna EMG Rehabilitation Robot. IJERPH 2022, 19, 15885. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Med 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Tsakonas, P.; Evans, N.; Andrews, B. The TripAnalyser: A Wearable System to Assess Gait and Potential Tripping. Acta Orthop. Et Traumatol. Hell. 2021, 72, 124–130. [Google Scholar]
- Kyrdalen, I.L.; Thingstad, P.; Sandvik, L.; Ormstad, H. Associations between Gait Speed and Well-known Fall Risk Factors among Community-dwelling Older Adults. Physiother. Res. Int. 2019, 24, e1743. [Google Scholar] [CrossRef]
- Urbanek, J.K.; Roth, D.L.; Karas, M.; Wanigatunga, A.A.; Mitchell, C.M.; Juraschek, S.P.; Cai, Y.; Appel, L.J.; Schrack, J.A. Free-Living Gait Cadence Measured by Wearable Accelerometer: A Promising Alternative to Traditional Measures of Mobility for Assessing Fall Risk. J. Gerontol. Ser. A 2023, 78, 802–810. [Google Scholar] [CrossRef]
- Singh, P.; Esposito, M.; Barrons, Z.; Clermont, C.A.; Wannop, J.; Stefanyshyn, D. Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit. Sensors 2021, 21, 2896. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Stabbert, H.; Bagwell, J.J.; Teng, H.-L.; Wade, V.; Lee, S.-P. Do People with Low Back Pain Walk Differently? A Systematic Review and Meta-Analysis. J. Sport Health Sci. 2022, 11, 450–465. [Google Scholar] [CrossRef]
- Bytyçi, I.; Henein, M.Y. Stride Length Predicts Adverse Clinical Events in Older Adults: A Systematic Review and Meta-Analysis. JCM 2021, 10, 2670. [Google Scholar] [CrossRef] [PubMed]
- Jocham, A.J.; Laidig, D.; Guggenberger, B.; Seel, T. Measuring Highly Accurate Foot Position and Angle Trajectories with Foot-Mounted IMUs in Clinical Practice. Gait Posture 2024, 108, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A Review in Gait Rehabilitation Devices and Applied Control Techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [Google Scholar] [CrossRef]
- Springer, S.; Yogev Seligmann, G. Validity of the Kinect for Gait Assessment: A Focused Review. Sensors 2016, 16, 194. [Google Scholar] [CrossRef]





| n = 98 | |||||||
|---|---|---|---|---|---|---|---|
| Variable | Mean | Median | Min | Max | Q1 | Q3 | SD |
| Age | 23.16 | 23 | 19 | 33 | 22 | 24 | 2.56 |
| Height | 173.19 | 173 | 148 | 195 | 165 | 180 | 9.31 |
| Body weight | 71.21 | 69 | 46 | 120 | 60 | 80 | 15.89 |
| BMI | 23.56 | 22.86 | 17.6 | 37.04 | 20.68 | 25.44 | 3.92 |
| Outcome Measure | Rater | Exam | Mean | SD * | D | SDdiff | CV | SEM | ICC (95% CI) |
|---|---|---|---|---|---|---|---|---|---|
| Inter-rater reliability | |||||||||
| Walking speed (km/h) | 1 | I | 5.47 | 0.68 | 0.04 | 0.31 | 12.40 | 0.23 | 0.941 (0.913–0.960) |
| 2 | I | 5.43 | 0.64 | 11.74 | 0.22 | ||||
| 1 | II | 5.47 | 0.64 | 0.02 | 0.32 | 11.61 | 0.22 | 0.932 (0.900–0.954) | |
| 2 | II | 5.45 | 0.61 | 11.21 | 0.21 | ||||
| Intra-rater reliability | |||||||||
| 1 | I | 5.47 | 0.68 | 0.00 | 0.27 | 12.40 | 0.19 | 0.916 (0.876–0.942) | |
| 1 | II | 5.47 | 0.64 | 11.61 | 0.18 | ||||
| 2 | I | 5.43 | 0.64 | 0.02 | 0.24 | 11.74 | 0.17 | 0.928 (0.895–0.951) | |
| 2 | II | 5.45 | 0.61 | 11.21 | 0.16 | ||||
| Outcome Measure | Rater | Exam | Mean | SD * | D | SDdiff | CV | SEM | ICC (95% CI) |
|---|---|---|---|---|---|---|---|---|---|
| Inter-rater reliability | |||||||||
| Cadence (steps/minute) | 1 | I | 118.06 | 8.74 | 0.21 | 3.54 | 7.40 | 2.31 | 0.957 (0.936–0.971) |
| 2 | I | 117.85 | 8.58 | 7.28 | 2.27 | ||||
| 1 | II | 118.25 | 8.63 | 0.28 | 3.69 | 7.30 | 2.73 | 0.950 (0.926–0.966) | |
| 2 | II | 117.97 | 8.26 | 7.00 | 2.61 | ||||
| Intra-rater reliability | |||||||||
| 1 | I | 118.06 | 8.74 | 0.19 | 3.16 | 7.40 | 2.31 | 0.934 (0.903–0.955) | |
| 1 | II | 118.25 | 8.63 | 7.30 | 2.28 | ||||
| 2 | I | 117.85 | 8.58 | 0.12 | 2.96 | 7.28 | 2.10 | 0.938 (0.909–0.958) | |
| 2 | II | 117.97 | 8.26 | 7.00 | 2.02 | ||||
| Outcome Measure | Rater | Exam | Mean | SD * | D | SDdiff | CV | SEM | ICC (95% CI) |
|---|---|---|---|---|---|---|---|---|---|
| Inter-rater reliability | |||||||||
| Stride length (cm) | 1 | I | 154.02 | 14.56 | 0.72 | 7.69 | 9.46 | 5.83 | 0.916 (0.877–0.943) |
| 2 | I | 153.30 | 13.01 | 8.48 | 5.20 | ||||
| 1 | II | 154.29 | 13.24 | 0.16 | 6.33 | 8.58 | 4.59 | 0.938 (0.908–0.958) | |
| 2 | II | 154.12 | 12.74 | 8.27 | 4.41 | ||||
| Intra-rater reliability | |||||||||
| 1 | I | 154.02 | 14.56 | 0.27 | 6.60 | 9.46 | 4.83 | 0.888 (0.837–0.923) | |
| 1 | II | 154.29 | 13.24 | 8.58 | 4.39 | ||||
| 2 | I | 153.30 | 13.01 | 0.83 | 5.58 | 8.48 | 4.11 | 0.906 (0.863–0.936) | |
| 2 | II | 154.12 | 12.74 | 8.27 | 4.03 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochman, M.T.; Kielar, A.; Kasprzak, M.; Kasperek, W.; Dutko, M.; Vellender, A.; Przysada, G.; Drużbicki, M. A Reliability Study of Small, Portable, Easy-to-Use, and IMU-Based Sensors for Gait Assessment. Sensors 2025, 25, 6597. https://doi.org/10.3390/s25216597
Kochman MT, Kielar A, Kasprzak M, Kasperek W, Dutko M, Vellender A, Przysada G, Drużbicki M. A Reliability Study of Small, Portable, Easy-to-Use, and IMU-Based Sensors for Gait Assessment. Sensors. 2025; 25(21):6597. https://doi.org/10.3390/s25216597
Chicago/Turabian StyleKochman, Maciej Tomasz, Aleksandra Kielar, Marta Kasprzak, Wojciech Kasperek, Martin Dutko, Adam Vellender, Grzegorz Przysada, and Mariusz Drużbicki. 2025. "A Reliability Study of Small, Portable, Easy-to-Use, and IMU-Based Sensors for Gait Assessment" Sensors 25, no. 21: 6597. https://doi.org/10.3390/s25216597
APA StyleKochman, M. T., Kielar, A., Kasprzak, M., Kasperek, W., Dutko, M., Vellender, A., Przysada, G., & Drużbicki, M. (2025). A Reliability Study of Small, Portable, Easy-to-Use, and IMU-Based Sensors for Gait Assessment. Sensors, 25(21), 6597. https://doi.org/10.3390/s25216597

