Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = gD–Pass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 303
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

19 pages, 5605 KiB  
Article
Toward a Sustainable Indoor Environment: Coupling Geothermal Cooling with Water Recovery Through EAHX Systems
by Cristina Baglivo, Alessandro Buscemi, Michele Spagnolo, Marina Bonomolo, Valerio Lo Brano and Paolo Maria Congedo
Energies 2025, 18(9), 2297; https://doi.org/10.3390/en18092297 - 30 Apr 2025
Viewed by 446
Abstract
This study presents a preliminary analysis of an innovative system that combines indoor air conditioning with water recovery and storage. The device integrates Peltier cells with a horizontal Earth-to-Air Heat Exchanger (EAHX), exploiting the ground stable temperature to enhance cooling and promote condensation. [...] Read more.
This study presents a preliminary analysis of an innovative system that combines indoor air conditioning with water recovery and storage. The device integrates Peltier cells with a horizontal Earth-to-Air Heat Exchanger (EAHX), exploiting the ground stable temperature to enhance cooling and promote condensation. Warm, humid air is pre-cooled via the geothermal pipe, then split by a fan into two streams: one passes over the cold side of the Peltier cells for cooling and dehumidification, while the other flows over the hot side and heats up. The two airstreams are then mixed in a water storage tank, which also serves as a thermal mixing chamber to regulate the final air temperature. The analysis investigates the influence of soil thermal conditions on condensation within the horizontal pipe and the resulting cooling effect in indoor spaces. A hybrid simulation approach was adopted, coupling a 3D model implemented in COMSOL Multiphysics® with a 1D analytical model. Boundary conditions and meteorological data were based on the Typical Meteorological Year (TMY) for Palermo. Two scenarios were considered. In Case A, during the hours when air conditioning is not operating (between 11 p.m. and 9 a.m.), air is circulated in the exchanger to pre-cool the ground and the air leaving the exchanger is rejected into the environment. In Case B, the no air is not circulated in the heat exchanger during non-conditioning periods. Results from the June–August period show that the EAHXs reduced the average outdoor air temperature from 27.81 °C to 25.45 °C, with relative humidity rising from 58.2% to 66.66%, while maintaining nearly constant specific humidity. The system exchanged average powers of 102 W (Case A) and 96 W (Case B), corresponding to energy removals of 225 kWh and 212 kWh, respectively. Case A, which included nighttime soil pre-cooling, showed a 6% increase in efficiency. Condensation water production values range from around 0.005 g/s with one Peltier cell to almost 0.5 g/s with seven Peltier cells. As the number of Peltier cells increases, the cooling effect becomes more pronounced, reducing the output temperature considerably. This solution is scalable and well-suited for implementation in developing countries, where it can be efficiently powered by stand-alone photovoltaic systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 6491 KiB  
Article
Antioxidant and In Vitro Hepatoprotective Activities of a Polyphenol-Rich Fraction from the Peel of Citrus lumia Risso (Rutaceae)
by Vincenzo Musolino, Antonio Cardamone, Rosario Mare, Anna Rita Coppoletta, Francesca Lorenzo, Francesca Rita Noto, Angelo Galluccio, Luigi Tucci, Carmine Lupia, Cristina Carresi, Mariangela Marrelli, Samantha Maurotti, Micaela Gliozzi, Tiziana Montalcini, Arturo Pujia and Vincenzo Mollace
Plants 2025, 14(8), 1209; https://doi.org/10.3390/plants14081209 - 15 Apr 2025
Cited by 1 | Viewed by 664
Abstract
Citrus lumia Risso is an ancient, cultivated Mediterranean lime belonging to the Rutaceae family. It is a species extremely difficult to retrieve, but it is still found in some private gardens in certain regions of Southern Italy. Citrus fruits are a rich source [...] Read more.
Citrus lumia Risso is an ancient, cultivated Mediterranean lime belonging to the Rutaceae family. It is a species extremely difficult to retrieve, but it is still found in some private gardens in certain regions of Southern Italy. Citrus fruits are a rich source of bioactive compounds, particularly polyphenols, which have been linked to a reduction in the risk of several metabolic diseases. Here, hesperidium peel extracts were obtained by maceration with ethanol:water mixtures in different proportions (50:50, 80:20, 0:100) and the resulting crude extracts were then passed through a glass column containing adsorbent resins to concentrate the polyphenolic compounds. After phytochemical characterization, the extracts were evaluated for antioxidant activity using electron paramagnetic resonance (EPR) spectroscopy. Finally, the water polyphenolic-rich extract (ClumWp), which was the extract with the highest flavonoid content (18.355 ± 1.607 mg/mL) and the strongest antioxidant activity against hydroxyl radical, was tested to evaluate its potential protective effects on lipid accumulation in both 2D hepatocyte cultures and 3D spheroids. Treatment with 25 and 50 μg/mL resulted in a reduction in intracellular lipid content in the HepG2 liver cell line, while treatment with 100 µg/mL ClumWp resulted in a reduction in the intracellular lipid content in HepG2 + LX2 spheroids. In addition, treatment with ClumWp significantly increased ATP levels in the spheroids compared to those untreated, suggesting its ability to restore and promote ATP production. Our results highlight that the study of neglected species, such as Citrus lumia Risso, remains a valuable opportunity to valorize Mediterranean biodiversity, especially in the context of its potential applications to improve human health. In particular, the polyphenolic fraction of Citrus lumia peel showed promising effects on lipid metabolism and cellular energy balance and may prove valuable in the treatment of metabolic disorders such as MASLD, where lipid accumulation disrupts normal cellular functions. Full article
Show Figures

Figure 1

13 pages, 35894 KiB  
Article
An Artificial Intelligence Approach to the Craniofacial Recapitulation of Crisponi/Cold-Induced Sweating Syndrome 1 (CISS1/CISS) from Newborns to Adolescent Patients
by Giulia Pascolini, Dario Didona and Luigi Tarani
Diagnostics 2025, 15(5), 521; https://doi.org/10.3390/diagnostics15050521 - 21 Feb 2025
Viewed by 880
Abstract
Background/Objectives: Crisponi/cold-induced sweating syndrome 1 (CISS1/CISS, MIM#272430) is a genetic disorder due to biallelic variants in CRFL1 (MIM*604237). The related phenotype is mainly characterized by abnormal thermoregulation and sweating, facial muscle contractions in response to tactile and crying-inducing stimuli at an early [...] Read more.
Background/Objectives: Crisponi/cold-induced sweating syndrome 1 (CISS1/CISS, MIM#272430) is a genetic disorder due to biallelic variants in CRFL1 (MIM*604237). The related phenotype is mainly characterized by abnormal thermoregulation and sweating, facial muscle contractions in response to tactile and crying-inducing stimuli at an early age, skeletal anomalies (camptodactyly of the hands, scoliosis), and craniofacial dysmorphisms, comprising full cheeks, micrognathia, high and narrow palate, low-set ears, and a depressed nasal bridge. The condition is associated with high lethality during the neonatal period and can benefit from timely symptomatic therapy. Methods: We collected frontal images of all patients with CISS1/CISS published to date, which were analyzed with Face2Gene (F2G), a machine-learning technology for the facial diagnosis of syndromic phenotypes. In total, 75 portraits were subdivided into three cohorts, based on age (Cohort 1 and 2) and the presence of the typical facial trismus (Cohort 3). These portraits were uploaded to F2G to test their suitability for facial analysis and to verify the capacity of the AI tool to correctly recognize the syndrome based on the facial features only. The photos which passed this phase (62 images) were fed to three different AI algorithms—DeepGestalt, Facial D-Score, and GestaltMatcher. Results: The DeepGestalt algorithm results, including the correct diagnosis using a frontal portrait, suggested a similar facial phenotype in the first two cohorts. Cohort 3 seemed to be highly differentiable. The results were expressed in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and p Value. The Facial D-Score values indicated the presence of a consistent degree of dysmorphic signs in the three cohorts, which was also confirmed by the GestaltMatcher algorithm. Interestingly, the latter allowed us to identify overlapping genetic disorders. Conclusions: This is the first AI-powered image analysis in defining the craniofacial contour of CISS1/CISS and in determining the feasibility of training the tool used in its clinical recognition. The obtained results showed that the use of F2G can reveal valid support in the diagnostic process of CISS1/CISS, especially in more severe phenotypes, manifesting with facial contractions and potentially lethal consequences. Full article
Show Figures

Figure 1

13 pages, 5479 KiB  
Article
Self-Foaming Expanded Ceramsites Prepared from Electrolytic Manganese Residue, Red Mud and Waste Soil
by Zhuowen Yang, Xuesong Lu, Jie Wang and Hongbo Tan
Materials 2025, 18(2), 356; https://doi.org/10.3390/ma18020356 - 14 Jan 2025
Cited by 3 | Viewed by 856
Abstract
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were [...] Read more.
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM. The mechanism behind the reaction among EMR, RM, and WS and self-foaming was discussed. The results showed that both the temperature and mixing ratio significantly influenced the basic performance of SEC. With the temperature lower than 1200 °C, sphere appearance could be maintained in all of these four groups; however, the density, porosity, and compressive strength in the cylinder seemed unacceptable. When the temperature rose up to 1220 °C, sphere appearance could be only found in the group whose mixing ratio of EMR, RM, and WS was 2:2.5:0.5. Under this condition, the excellent performance of SEC was observed, with a porosity of 46.7%, bulk density of 0.61 g/cm3, and 3 d compressive strength in a cylinder of 26.82 MPa. The mechanism behind the reaction among EMR, RM, and WS could be described: when the temperature is up to 1180 °C, an obvious chemical reaction took place, followed by the liquid phase being produced and the gas released by the decomposition of Fe2O3 in RM and gypsum in EMR. When the temperature is up to 1200 °C, the viscosity of the liquid phase and the rate of gas generation achieved the balance, and the liquid phase encapsulated the gas and anorthite (CaAl2Si2O8) began to grow slowly. As time passed, self-foaming expanded ceramsite was prepared. The results of this study are of great significance in the field of artificial lightweight aggregate and industrial solid waste resource utilization. Full article
Show Figures

Figure 1

16 pages, 8124 KiB  
Article
Dual-Port Six-Band Rectenna with Enhanced Power Conversion Efficiency at Ultra-Low Input Power
by Shihao Sun, Yuchao Wang, Bingyang Li, Hanyu Xue, Cheng Zhang, Feng Xu and Chaoyun Song
Sensors 2024, 24(23), 7433; https://doi.org/10.3390/s24237433 - 21 Nov 2024
Cited by 2 | Viewed by 1042
Abstract
In this paper, a novel topology and method for designing a multi-band rectenna is proposed to improve its RF-DC efficiency. The rectifier achieves simultaneous rectification using both series and parallel configurations by connecting two branches to the respective terminals of the diode, directing [...] Read more.
In this paper, a novel topology and method for designing a multi-band rectenna is proposed to improve its RF-DC efficiency. The rectifier achieves simultaneous rectification using both series and parallel configurations by connecting two branches to the respective terminals of the diode, directing the energy input from two ports to the anode and cathode of the diode. Six desired operating frequency bands are evenly distributed across these two branches, each of which is connected to antennas corresponding to their specific operating frequencies, serving as the receiving end of the system. To optimize the design process, a low-pass filter is incorporated into the rectifier design. This filter works in conjunction with a matching network that includes filtering capabilities to isolate the two ports of the rectifier. The addition of the filter ensures that each structure within the rectifier can be designed independently without adversely affecting the performance of the already completed structures. Based on the proposed design methodology, a dual-port rectenna operating at six frequency bands—1.85 GHz, 2.25 GHz, 2.6 GHz, 3.52 GHz, 5.01 GHz, and 5.89 GHz—was designed, covering the 4G, 5G, and Wi-Fi/WLAN frequency bands. The measured results indicate that high-power conversion efficiency was achieved at an input power of −10 dBm: 43.01% @ 1.85 GHz, 41.00% @ 2.25 GHz, 41.33% @ 2.6 GHz, 35.88% @ 3.52 GHz, 22.36% @ 5.01 GHz, and 19.27% @ 5.89 GHz. When the input power is −20 dBm, the conversion efficiency of the rectenna can be improved from 5.2% for single-tone input to 27.7% for six-tone input, representing a 22.5 percentage point improvement. The proposed rectenna demonstrates significant potential for applications in powering low-power sensors and other devices within the Internet of Everything context. Full article
Show Figures

Figure 1

15 pages, 294 KiB  
Article
Existence of Solutions for Nonlinear Choquard Equations with (p, q)-Laplacian on Finite Weighted Lattice Graphs
by Dandan Yang, Zhenyu Bai and Chuanzhi Bai
Axioms 2024, 13(11), 762; https://doi.org/10.3390/axioms13110762 - 3 Nov 2024
Cited by 1 | Viewed by 955
Abstract
In this paper, we consider the (p,q)-Laplacian Choquard equation on a finite weighted lattice graph G=(KN,E,μ,ω), namely for any 1<p<q<N [...] Read more.
In this paper, we consider the (p,q)-Laplacian Choquard equation on a finite weighted lattice graph G=(KN,E,μ,ω), namely for any 1<p<q<N, r>1 and 0<α<N, ΔpuΔqu+V(x)(|u|p2u+|u|q2u)=yKN,yx|u(y)|rd(x,y)Nα|u|r2u, where Δν is the discrete ν-Laplacian on graphs, and ν{p.q}, V(x) is a positive function. Under some suitable conditions on r, we prove that the above equation has both a mountain pass solution and ground state solution. Our research relies on the mountain pass theorem and the method of the Nehari manifold. The results obtained in this paper are extensions of some known studies. Full article
(This article belongs to the Special Issue Differential Equations and Its Application)
35 pages, 825 KiB  
Systematic Review
Influence of Carbohydrate Intake on Different Parameters of Soccer Players’ Performance: Systematic Review
by Marián Pueyo, Iñaki Llodio, Jesús Cámara, Daniel Castillo and Cristina Granados
Nutrients 2024, 16(21), 3731; https://doi.org/10.3390/nu16213731 - 31 Oct 2024
Cited by 2 | Viewed by 5787
Abstract
Background: The objective of this systematic review is to analyze the influence of carbohydrate (CHO) intake on physical and technical aspects, glucose and muscle glycogen levels, fatigue, cognition, and gastrointestinal comfort involved in the performance of soccer players, as well as to examine [...] Read more.
Background: The objective of this systematic review is to analyze the influence of carbohydrate (CHO) intake on physical and technical aspects, glucose and muscle glycogen levels, fatigue, cognition, and gastrointestinal comfort involved in the performance of soccer players, as well as to examine whether there are any differences between men and women. Methods: A bibliographic search was conducted in PubMed, Web of Science, Scopus, and SportDiscus, resulting in 61 selected articles. The PRISMA recommendations and the Cochrane Handbook for Systematic Reviews guidelines were followed. Results: The results indicate that CHO intake before and during the match improves speed and the number of sprints, attenuates the decrease in shooting accuracy and speed, increases time to fatigue, and enhances cognitive function. There is no consensus on passing, dribbling, jumping, or agility improvements. Glucose levels drop during the first 15 min of the second half without affecting performance. Conclusions: It is recommended that players ingest 6–8 g/kg/d of CHO the day before, a meal with 1–3 g/kg 3–4 h before, and 30–60 g/h during the match. Muscle glycogen drops drastically at the end of the match, remaining low at 48 h. Hence, 1–1.5 g/kg/h is recommended during the first 4 h, starting from the first 20 min. Female soccer players have a similar physical demand to men, and energy availability is low, especially in the post-match periods, as they underestimate their energy expenditure and do not consume enough CHO. Therefore, the recommended guidelines should be followed, individualized, and periodized according to each athlete’s energy needs. Full article
(This article belongs to the Special Issue Nutritional Habits in a Sports Context)
Show Figures

Figure 1

11 pages, 2767 KiB  
Article
A 2.4 GHz High-Efficiency Rectifier Circuit for Ambient Low Electromagnetic Power Harvesting
by Jinxin Du, Ruimeng Wang and Pingyi Zheng
Sensors 2024, 24(21), 6854; https://doi.org/10.3390/s24216854 - 25 Oct 2024
Cited by 2 | Viewed by 1495
Abstract
A novel 2.4 GHz high-efficiency rectifier circuit suitable for working under very-low-input electromagnetic (EM) power conditions (−20 to −10 dBm) is proposed for typical indoor power harvesting. The circuit features a SMS7630 Schottky diode in a series with a voltage booster circuit at [...] Read more.
A novel 2.4 GHz high-efficiency rectifier circuit suitable for working under very-low-input electromagnetic (EM) power conditions (−20 to −10 dBm) is proposed for typical indoor power harvesting. The circuit features a SMS7630 Schottky diode in a series with a voltage booster circuit at the front end and a direct-current (DC)-pass filter at the back end. The voltage booster circuit consists of an asymmetric coupled transmission line (CTL) and a high-impedance microstrip line (of 100 Ω instead of 50 Ω) to significantly increase the potential at the diode’s input, thereby enabling the diode to operate effectively even in very-low-power environments. The experimental measurements show that the microwave direct-current (MW-DC) conversion efficiency of the rectifier circuit reaches 31.1% at a −20 dBm input power and 62.4% at a −10 dBm input power, representing a 7.4% improvement compared to that of the state of the art. Furthermore, the rectifier circuit successfully shifts the input power level corresponding to the peak rectification efficiency from 0 dBm down to −10 dBm. This design is a promising candidate for powering low-energy wireless sensors in typical indoor environments (e.g., the home or office) with low EM energy density. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

13 pages, 5919 KiB  
Article
Parametric Synthesis of Single-Stage Lattice-Type Acoustic Wave Filters and Extended Multi-Stage Design
by Wei-Hsien Tseng and Ruey-Beei Wu
Micromachines 2024, 15(9), 1075; https://doi.org/10.3390/mi15091075 - 26 Aug 2024
Viewed by 998
Abstract
This study proposes a single-stage lattice-type acoustic filter using an analytical solution method for either a narrow passband filter or a wider passband filter using two kinds of parameter assignments in the Butterworth–Van Dyke (BVD) model. To achieve the goal of a large [...] Read more.
This study proposes a single-stage lattice-type acoustic filter using an analytical solution method for either a narrow passband filter or a wider passband filter using two kinds of parameter assignments in the Butterworth–Van Dyke (BVD) model. To achieve the goal of a large bandwidth or high return loss, two first-order all-pass conditions are used. For multi-stage lattice-type filters, the cost function is defined and design parameters are extracted by using pattern search, while the initial values are provided through single-stage design to shorten optimization time and allow convergence to a better solution. This method provides the S-parameter frequency response for the filter on the YX 42° cut angle of lithium tantalate (electromechanical coupling coefficient of about 6%) that can meet the system specifications as much as possible. Finally, the three-stage lattice-type was applied to various 5G bands with a fractional bandwidth of 2–5%, resulting in a passband return loss of 10 dB and an out-of-band rejection of 40 dB or more. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

19 pages, 8706 KiB  
Article
Deep Learning-Based Flood Detection for Bridge Monitoring Using Accelerometer Data
by Penghao Deng, Jidong J. Yang and Tien Yee
Infrastructures 2024, 9(9), 140; https://doi.org/10.3390/infrastructures9090140 - 25 Aug 2024
Cited by 2 | Viewed by 1628
Abstract
Flooding and consequential scouring are the primary causes of bridge failures, making the detection of such events crucial for structural safety. This study investigates the characteristics of accelerometer data from bridge pier vibrations and proposes a flood detection method with deep learning-based models [...] Read more.
Flooding and consequential scouring are the primary causes of bridge failures, making the detection of such events crucial for structural safety. This study investigates the characteristics of accelerometer data from bridge pier vibrations and proposes a flood detection method with deep learning-based models based on ResNet18 and 1D Convolution architectures. These models were comprehensively evaluated for (1) detecting vehicles passing on bridges and (2) detecting flood events based on axis-specific accelerometer data under various traffic conditions. Continuous Wavelet Transform (CWT) was employed to convert the accelerometer data into richer time-frequency representations, enhancing the detection of passing vehicles. Notably, when vehicles are passing over bridges, the vertical direction exhibits a magnified and more sustained energy distribution across a wider frequency range. Additionally, under flooding conditions, time-frequency representations from the bridge direction reveal a significant increase in energy intensity and continuity compared with non-flooding conditions. For detection of vehicles passing, ResNet18 outperformed the 1D Convolution model, achieving an accuracy of 97.2% compared with 91.4%. For flood detection without vehicles passing, the two models performed similarly well, with accuracies of 97.3% and 98.3%, respectively. However, in scenarios with vehicles passing, the 1D Convolution model excelled, achieving an accuracy of 98.6%, significantly higher than that of ResNet18 (81.6%). This suggests that high-frequency signals, such as vertical vibrations induced by passing vehicles, are better captured by more complex representations (CWT) and models (e.g., ResNet18), while relatively low-frequency signals, such as longitudinal vibrations caused by flooding, can be effectively captured by simpler 1D Convolution over the original signals. Consequentially, the two model types are deployed in a pipeline where the ResNet18 model is used for classifying whether vehicles are passing the bridge, followed by two 1D Convolution models: one trained for detecting flood events under vehicles-passing conditions and the other trained for detecting flood events under no-vehicles-passing conditions. This hierarchical approach provides a robust framework for real-time monitoring of bridge response to vehicle passing and timely warning of flood events, enhancing the potential to reduce bridge collapses and improve public safety. Full article
Show Figures

Figure 1

36 pages, 5369 KiB  
Article
Design and Analysis of a High-Gain, Low-Noise, and Low-Power Analog Front End for Electrocardiogram Acquisition in 45 nm Technology Using gm/ID Method
by Md. Zubair Alam Emon, Khosru Mohammad Salim and Md. Iqbal Bahar Chowdhury
Electronics 2024, 13(11), 2190; https://doi.org/10.3390/electronics13112190 - 4 Jun 2024
Cited by 4 | Viewed by 3714
Abstract
In this work, an analog front-end (AFE) circuit for an electrocardiogram (ECG) detection system has been designed, implemented, and investigated in an industry-standard Cadence simulation framework using an advanced technology node of 45 nm. The AFE consists of an instrumentation amplifier, a Butterworth [...] Read more.
In this work, an analog front-end (AFE) circuit for an electrocardiogram (ECG) detection system has been designed, implemented, and investigated in an industry-standard Cadence simulation framework using an advanced technology node of 45 nm. The AFE consists of an instrumentation amplifier, a Butterworth band-pass filter (with fifth-order low-pass and second-order high-pass sections), and a second-order notch filter—all are based on two-stage, Miller-compensated operational transconductance amplifiers (OTA). The OTAs have been designed employing the gm/ID methodology. Both the pre-layout and post-layout simulation are carried out. The layout consumes an area of 0.00628 mm2 without the resistors and capacitors. Analysis of various simulation results are carried out for the proposed AFE. The circuit demonstrates a post-layout bandwidth of 239 Hz, with a variable gain between 44 and 58 dB, a notch depth of −56.4 dB at 50.1 Hz, a total harmonic distortion (THD) of −59.65 dB (less than 1%), an input-referred noise spectral density of <34 μVrms/Hz at the pass-band, a dynamic range of 52.71 dB, and a total power consumption of 10.88 μW with a supply of ±0.6 V. Hence, the AFE exhibits the promise of high-quality signal acquisition capability required for portable ECG detection systems in modern healthcare. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

18 pages, 534 KiB  
Article
Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications
by Haihan Li, Yongming He, Shuntian Zheng, Fan Zhou and Hongwen Yang
Drones 2024, 8(5), 180; https://doi.org/10.3390/drones8050180 - 2 May 2024
Cited by 2 | Viewed by 1862
Abstract
Unmanned aerial vehicle (UAV) air-to-ground (AG) communication plays a critical role in the evolving space–air–ground integrated network of the upcoming sixth-generation cellular network (6G). The integration of massive multiple-input multiple-output (MIMO) systems has become essential for ensuring optimal performing communication technologies. This article [...] Read more.
Unmanned aerial vehicle (UAV) air-to-ground (AG) communication plays a critical role in the evolving space–air–ground integrated network of the upcoming sixth-generation cellular network (6G). The integration of massive multiple-input multiple-output (MIMO) systems has become essential for ensuring optimal performing communication technologies. This article presents a novel dual-driven learning-based network for millimeter-wave (mm-wave) massive MIMO symbol detection of UAV AG communications. Our main contribution is that the proposed approach combines a data-driven symbol-correction network with a model-driven orthogonal approximate message passing network (OAMP-Net). Through joint training, the dual-driven network reduces symbol detection errors propagated through each iteration of the model-driven OAMP-Net. The numerical results demonstrate the superiority of the dual-driven detector over the conventional minimum mean square error (MMSE), orthogonal approximate message passing (OAMP), and OAMP-Net detectors at various noise powers and channel estimation errors. The dual-driven MIMO detector exhibits a 2–3 dB lower signal-to-noise ratio (SNR) requirement compared to the MMSE and OAMP-Net detectors to achieve a bit error rate (BER) of 1×102 when the channel estimation error is −30 dB. Moreover, the dual-driven MIMO detector exhibits an increased tolerance to channel estimation errors by 2–3 dB to achieve a BER of 1×103. Full article
(This article belongs to the Special Issue Advances in Detection, Security, and Communication for UAV)
Show Figures

Figure 1

10 pages, 3013 KiB  
Article
Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter
by Yu Zhou, Yupeng Zheng, Qinwen Xu, Yuanhang Qu, Yuqi Ren, Xiaoming Huang, Chao Gao, Yan Liu, Shishang Guo, Yao Cai and Chengliang Sun
Micromachines 2024, 15(5), 563; https://doi.org/10.3390/mi15050563 - 25 Apr 2024
Cited by 4 | Viewed by 1862
Abstract
With the development of wireless communication, increasing signal processing presents higher requirements for radio frequency (RF) systems. Piezoelectric acoustic filters, as important elements of an RF front-end, have been widely used in 5G-generation systems. In this work, we propose a Sc0.2Al [...] Read more.
With the development of wireless communication, increasing signal processing presents higher requirements for radio frequency (RF) systems. Piezoelectric acoustic filters, as important elements of an RF front-end, have been widely used in 5G-generation systems. In this work, we propose a Sc0.2Al0.8N-based film bulk acoustic wave resonator (FBAR) for use in the design of radio frequency filters for the 5G mid-band spectrum with a passband from 3.4 to 3.6 GHz. With the excellent piezoelectric properties of Sc0.2Al0.8N, FBAR shows a large Keff2 of 13.1%, which can meet the requirement of passband width. Based on the resonant characteristics of Sc0.2Al0.8N FBAR devices, we demonstrate and fabricate different ladder-type FBAR filters with second, third and fourth orders. The test results show that the out-of-band rejection improves and the insertion loss decreases slightly as the filter order increases, although the frequency of the passband is lower than the predicted ones due to fabrication deviation. The passband from 3.27 to 3.47 GHz is achieved with a 200 MHz bandwidth and insertion loss lower than 2 dB. This work provides a potential approach using ScAlN-based FBAR technology to meet the band-pass filter requirements of 5G mid-band frequencies. Full article
Show Figures

Figure 1

18 pages, 5424 KiB  
Article
Methylmercury Effect and Distribution in Two Extremophile Microalgae Strains Dunaliella salina and Coccomyxa onubensis from Andalusia (Spain)
by Samuel Simansky, Jiří Holub, Ivana Márová, María Cuaresma, Ines Garbayo, Rafael Torronteras, Carlos Vílchez and Zivan Gojkovic
Microorganisms 2024, 12(3), 434; https://doi.org/10.3390/microorganisms12030434 - 21 Feb 2024
Viewed by 1972
Abstract
The main entrance point of highly toxic organic Hg forms, including methylmercury (MeHg), into the aquatic food web is phytoplankton, which is greatly represented by various natural microalgal species. Processes associated with MeHg fate in microalgae cells such as uptake, effects on cells [...] Read more.
The main entrance point of highly toxic organic Hg forms, including methylmercury (MeHg), into the aquatic food web is phytoplankton, which is greatly represented by various natural microalgal species. Processes associated with MeHg fate in microalgae cells such as uptake, effects on cells and toxicity, Hg biotransformation, and intracellular stability are detrimental to the process of further biomagnification and, as a consequence, have great importance for human health. The study of MeHg uptake and distribution in cultures of marine halophile Dunaliella salina and freshwater acidophilic alga Coccomyxa onubensis demonstrated that most of the MeHg is imported inside the cell, while cell surface adhesion is insignificant. Almost all MeHg is removed from the culture medium after 72 h. Significant processes in rapid MeHg removal from liquid medium are its abiotic photodegradation and volatilization associated with algal enzymatic activity. The maximum intracellular accumulation for both species was in 80 nM MeHg-exposed cultures after 24 h of exposure for D. salina (from 27 to 34 µg/gDW) and at 48 h for C. onubensis (up to 138 µg/gDW). The different Hg intakes in these two strains could be explained by the lack of a rigid cell wall in D. salina and the higher chemical ability of MeHg to pass through complex cell wall structures in C. onubensis. Electron microscopy studies on the ultrastructure of both strains demonstrated obvious microvacuolization in the form of many very small vacuoles and partial cell membrane disruption in 80 nM MeHg-exposed cultures. Results further showed that Coccomyxa onubensis is a good candidate for MeHg-contaminated water reclamation due to its great robustness at nanomolar concentrations of MeHg coupled with its very high intake and almost complete Hg removal from liquid medium at the MeHg levels tested. Full article
(This article belongs to the Special Issue The Application Potential of Microalgae in Green Biotechnology)
Show Figures

Figure 1

Back to TopTop