Differential Equations and Its Application

A special issue of Axioms (ISSN 2075-1680). This special issue belongs to the section "Mathematical Analysis".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 1063

Special Issue Editors


E-Mail Website
Guest Editor
College of Science, Northeast Forestry University, Harbin, China
Interests: functional differential equations (bifurcation theory and numerical analysis); reaction diffusion equation (bifurcation theory of and its application); mathematical biology

E-Mail Website
Guest Editor
School of Mathematics and Statistics, Linyi University, Linyi, China
Interests: bifurcation theory of and its application; mathematical biology

E-Mail Website
Guest Editor
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Interests: differential equations; difference equations; integral equations; numerical analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Axioms is an international, open access journal that provides an advanced forum for mathematics, mathematical logic, and mathematical physics studies. This Special Issue focuses on Differential Equations and Applications, particularly the mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the physical, engineering, financial, and life sciences.  In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following: dynamic stability, local and global methods, bifurcations, chaos, and deterministic and random vibrations.

We look forward to receiving your contributions.

Dr. Yuting Ding
Prof. Dr. Feng Li
Dr. Patricia J. Y. Wong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Axioms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mathematical model
  • dynamic system
  • bifurcation
  • chaos
  • normal form

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 270 KiB  
Article
Perturbed Dirac Operators and Boundary Value Problems
by Xiaopeng Liu and Yuanyuan Liu
Axioms 2024, 13(6), 363; https://doi.org/10.3390/axioms13060363 - 29 May 2024
Viewed by 319
Abstract
In this paper, the time-independent Klein-Gordon equation in R3 is treated with a decomposition of the operator Δγ2I by the Clifford algebra Cl(V3,3). Some properties of integral operators associated the [...] Read more.
In this paper, the time-independent Klein-Gordon equation in R3 is treated with a decomposition of the operator Δγ2I by the Clifford algebra Cl(V3,3). Some properties of integral operators associated the kind of equations and some Riemann-Hilbert boundary value problems for perturbed Dirac operators are investigated. Full article
(This article belongs to the Special Issue Differential Equations and Its Application)
16 pages, 281 KiB  
Article
Solving Nonlinear Second-Order ODEs via the Eisenhart Lift and Linearization
by Andronikos Paliathanasis
Axioms 2024, 13(5), 331; https://doi.org/10.3390/axioms13050331 - 16 May 2024
Viewed by 404
Abstract
The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The [...] Read more.
The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The research underscores the effectiveness of this geometric approach in the linearization of a class of Newtonian systems that cannot be linearized through symmetry analysis. Full article
(This article belongs to the Special Issue Differential Equations and Its Application)
Back to TopTop